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Selling plane tickets

Recall the example from the last lecture. A webpage offers plane
tickets. Only one ticket for a particular flight is left.

1. two users simultaneously notice that the ticket is available,
2. both users try to buy the ticket,
3. wrongly designed system sells the same ticket twice.



Mutual exclusion

Mutual exclusion is a mechanism, which guarantees that only one
process may access some piece of memory at the same time. It
may be obtained in different ways, e.g.:

I disabling interrupts (hardware solution),
I atomic operations (software solution)

But mutual exclusion of single operations is not enough!
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Non-determinism
Consider the following example.
x is a global variable, with initial value 0

Process 1:
x ← 1

Process 2:
x ← 2

Scenario 1:

Process 1 Process 2 x
0

x ← 1 1
x ← 2 2

Final value: x = 2

Scenario 2:

Process 1 Process 2 x
0

x ← 2 2
x ← 1 1

Final value: x = 1

The same piece of code may produce different results!
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Non-determinism – continued
x , y , z are global variables, with initial values 0

Process 1: Process 2:
y ← x + 1 y ← x + 1
x ← y x ← y
z ← z + y z ← z + y

Scenario 1:
Proc. 1 Proc. 2 x y z

0 0 0
y ← x + 1 0 1 0
x ← y 1 1 0
z ← z + y 1 1 1

y ← x + 1 1 2 1
x ← y 2 2 1
z ← z + y 2 2 3

Scenario 2:
Proc. 1 Proc. 2 x y z

0 0 0
y ← x + 1 0 1 0

y ← x + 1 0 1 0
x ← y 1 1 0

x ← y 1 1 0
z ← z + y 1 1 1

z ← z + y 1 1 2
Scenario 3:
Proc. 1 Proc. 2 x y z

0 0 0
y ← x + 1 0 1 0
x ← y 1 1 0

y ← x + 1 1 2 0
z ← z + y 1 2 2

x ← y 2 2 2
z ← z + y 2 2 4
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Critical section

As we have seen, mutual exclusion of single operations is not
enough to guarantee proper and effective synchronization.

Critical section
The critical section is a part of the process, whose execution should
not be interrupted by other processes. Whenever a process enters
its critical section, it will be able to finish it without preemption.



Critical section – continued
x , y , z are global variables, with initial values 0

Process 1:
start of critical section
y ← x + 1
x ← y
z ← z + y
end of critical section
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Producer-consumer

Producer-consumer is a very common pattern found in parallel
computing. We have two types of processes, sharing a common
buffer:

Producer:
repeat:

produce x
write x to the buffer

Consumer:
repeat:

read x from the buffer
consume x

If the buffer is full (x has not been consumed), the producer has to
wait. Analogously, if the buffer is empty (nothing has been
produced), the consumer has to wait.



Producer-consumer – first attempt

Producer:
for i ← 1 to N

produce;
while(buf = 1)

do nothing;
buf ← 1;

Consumer:
for i ← 1 to N

while(buf = 0)
do nothing;

consume from buf;
buf ← 0;

Does it ensure mutual exclusion? Yes.

Is it a good solution? No.

Busy waiting is always an error – it is extremely inefficient.
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Producer-consumer – more processes

What happens if we have more than one producer and more than
one consumer?

Producer:
produce;
while(buf = 1)

do nothing;
buf ← 1;

Consumer:
while(buf = 0)

do nothing;
consume from buf;
buf ← 0;

Does it work? No.
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Producer-consumer – more processes – ctd.
Let us have 2 producers and 2 consumers.
Producer 1 Producer 2 Consumer 1 Consumer 2 buf

0
... 0
buf ← 1 1
(terminate) 1

while(buf = 0) 1
while(buf = 0) 1

consume 1
consume 1

buf ← 0 0
(terminate) 0

buf ← 0 0
(terminate) 0

... 0
buf ← 1 1
(terminate) 1

The same item is consumed twice!
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Producer-consumer – even more processes

What if we had 4 Producers and 4 Consumers?

Producer 1 Producer 2 Consumer 1 Consumer 2 buf
0
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Producer-consumer – even more processes – ctd.
Producer 3 Producer 4 Consumer 3 Consumer 4 buf

1
while(buf = 0) 1

while(buf = 0) 1
consume 1

consume 1
buf ← 0 0
(terminate) 0

buf ← 0 0
(terminate) 0

... 0
buf ← 1 1
(terminate) 1

... 0
while(buf = 1) 1
do nothing 1

Producer 4 will never terminate, as buf will always remain 1.
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How to manage a critical section?

The solution should have the following properties:
I each process should be treated equally,
I it should be independent on the speed of processes,
I the conflicts should be solved in finite time,
I the parts of processes, which are outside the critical section,

should be independent.



Semaphores

A solution satisfying these criteria was proposed by Edsger Dijkstra
(1930–2002).

Picture source: Wikipedia

It was inspired by the semaphores used in the rail transport.



Counting semaphores

A semaphore is an integer variable v , accompanied with a
collection q of processes (usually a queue or a priority queue). It
has two operations: wait (acquire, decrement, down, pend,
procure, P) and signal (release, increment, up, port, vacate, V).

Wait:
if v = 0

add yourself to q
sleep

v ← v − 1

Signal:
v ← v + 1
if |q| ≥ 1

wake the first process in q

Both these operations are atomic!
A binary semaphore is a semaphore that may only be 0 or 1
(assume that we do not Signal a semaphore with value 1).
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Producer-consumer using semaphores
Global variables: buf = 0, and two binary semaphores
s_empty = 1 and s_full = 0.

Producer:
produce;
Wait(s_empty);
buf ← 1;
Signal(s_full);

Consumer:
Wait(s_full);
consume from buffer;
buf ← 0;
Signal(s_empty);

Note that s_full = 1 if buf = 1 and s_empty = 1 if buf = 0. The
semaphores indicate if the particular process may enter its critical
section.

Is it always true that s_full + s_empty = 1?

It may happen that s_full = 0 and s_empty = 0 (during the
consumption)!
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Producer-consumer
We can also imagine a situation, when each process is a consumer
and a producer at the same time. We have two buffers buf1 = 0
and buf2 = 0. We also have a pair of binary semaphores for each
buffer: s_empty1 = 1, s_full1 = 0, and s_empty2 = 1 and
s_full2 = 0.

Cons-Prod1:
Wait(s1_full);
consume from buf1;
buf1 ← 0;
Signal(s_empty1);
produce;
Wait(s_empty2);
buf2 ← 1;
Signal(s_full2);

Cons-Prod2:
Wait(s2_full);
consume from buf2;
buf2 ← 0;
Signal(s_empty2);
produce;
Wait(s_empty1);
buf1 ← 1;
Signal(s_full1);

What is wrong?
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Deadlock

Cons-Prod1:
Wait(s1_full);
consume from buf1;
buf1 ← 0;
Signal(s_empty1);
produce;
Wait(s_empty2);
buf2 ← 1;
Signal(s_full2);

Cons-Prod2:
Wait(s2_full);
consume from buf2;
buf2 ← 0;
Signal(s_empty2);
produce;
Wait(s_empty1);
buf1 ← 1;
Signal(s_full1);

Deadlock
The deadlock is a situation, when two actions wait for each other
to finish. This way none of them can terminate.

The deadlock is always a critical error of the programmer!
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Producer-consumer with an infinite buffer
Now suppose that instead of a one-element buffer we have an
infinite buffer. We use the following variables:
buf [], initially empty
first_free = 1 – the index of the first empty cell in buf
last_occ = 1 – the index of the last not-consumed cell in buf
counting semaphore s_full = 0 (why not s_empty as well?)
binary semaphore s_p = 1 for mutual exclusion of producers
binary semaphore s_c = 1 for mutual exclusion of producers

Producer:
produce x;
Wait(s_p);
buf [first_free]← x;
first_free ← first_free + 1;
Signal(s_full);
Signal(s_p);

Consumer:
Wait(s_full);
Wait(s_c);
x ← buf [last_occ]
last_occ ← last_occ + 1
Signal(s_c);
consume x;
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Producer-consumer with finite buffer
The assumption that buf is infinite may not be very realistic.
buf [] – a k-element buffer
first_free = 1
last_occ = 1
counting semaphore s_full = 0, s_empty = k
binary semaphore s_p = 1
binary semaphore s_c = 1

Producer:
produce x;
Wait(s_empty);
Wait(s_p);
buf [first_free]← x;
first_free ← (first_free + 1) mod k;
Signal(s_full);
Signal(s_p);

Consumer:
Wait(s_full);
Wait(s_c);
x ← buf [last_occ];
last_occ ← (last_occ + 1) mod k;
Signal(s_c);
Signal(s_empty);
consume x;



Producer-consumer with finite buffer
The assumption that buf is infinite may not be very realistic.
buf [] – a k-element buffer
first_free = 1
last_occ = 1
counting semaphore s_full = 0, s_empty = k
binary semaphore s_p = 1
binary semaphore s_c = 1

Producer:
produce x;
Wait(s_empty);
Wait(s_p);
buf [first_free]← x;
first_free ← (first_free + 1) mod k;
Signal(s_full);
Signal(s_p);

Consumer:
Wait(s_full);
Wait(s_c);
x ← buf [last_occ];
last_occ ← (last_occ + 1) mod k;
Signal(s_c);
Signal(s_empty);
consume x;



Producer-consumer, when copying takes much time
Focus on these two innocent-looking lines:

Producer:
produce x;
Wait(s_empty);
Wait(s_p);
buf [first_free]← x;
first_free ← (first_free + 1) mod k;
Signal(s_full);
Signal(s_p);

Consumer:
Wait(s_full);
Wait(s_c);
x ← buf [last_occ];
last_occ ← (last_occ + 1) mod k;
Signal(s_c);
Signal(s_empty);
consume x;

What if the buffer contains real data, not just integers? What if
copying this data takes much time?
We are blocking whole buffer (for producers or consumers), but we
need just one cell!



Producer-consumer, when copying takes much time

How to improve it?

Hint
How is it done in theaters?

Hint
Taking your place takes much time. How do they guarantee that
no two people will seat on the same place, without blocking the
whole room?

Use tickets, which are easy (and quick) to obtain!
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Producer-consumer, when copying takes much time

Introduce two queues: q_full containing the indices of cells, which
are full, and q_empty with the indices of empty cells.

buf [] – a k-element buffer
q_empty = (1, 2, . . . , n) – indices of empty cells
q_full = () – indices of full cells
counting semaphore s_empty = k – number of empty cells
counting semaphore s_full = 0 – number of full cells
binary semaphore s_qe = 1 – blocking access to q_empty
binary semaphore s_qf = 1 – blocking access to q_full
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Producer-consumer, when copying takes much time

Producer:
produce x;
Wait(s_empty);
Wait(s_qe);
i ← Dequeue(q_empty);
Signal(s_qe);
buf [i ]← x;
Wait(s_qf );
Enqueue(q_full , i);
Signal(s_qf );
Signal(s_full);

Consumer:
Wait(s_full);
Wait(s_qf );
i ← Dequeue(q_full);
Signal(s_qf );
x ← buf [i ];
Wait(s_qe);
Enqueue(q_empty , i);
Signal(s_qe);
Signal(s_empty);
consume x;

When executing the highlighted lines, only buf [i ] is blocked –
other processed may access the rest of the buffer.



Readers-writers

Readers-writers is another classical synchronization scheme. Again
we have two types of processes – readers and writers. They use a
common piece of memory, called the page. Writer writes on the
page. No other process may access the page at this time. The
readers only read – many readers may read at the same time.
Of course we can have many writers and readers.



Readers-writers – solution
r_count = 0 – the number of readers currently reading the page
binary semaphore s_rc = 1 – blocking access to r_count
binary semaphore s_p = 1 – blocking access to the page

Writer:
Wait(s_p);
write on the page;
Signal(s_p);

Reader:
Wait(s_rc);
r_count ← r_count + 1
if r_count = 1

Wait(s_p);
Signal(s_rc);
read the page;
Wait(s_rc);
r_count ← r_count − 1
if r_count = 0

Signal(s_p);
Signal(s_rc);



Starvation
What is the problem with this solution?

Writer:
Wait(s_p);
write on the page;
Signal(s_p);

Reader:
Wait(s_rc);
r_count ← r_count + 1
if r_count = 1

Wait(s_p);
Signal(s_rc);
read the page;
Wait(s_rc);
r_count ← r_count − 1
if r_count = 0

Signal(s_p);
Signal(s_rc);

Writer may not be able to write anything if the readers come!
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Starvation

Starvation
Starvation is a situation when a process is perpetually denied the
access to some resource.

It may be caused by different results:
I wrong synchronization scheme,
I lack of resources,
I priorities of processes.



Readers-writers using semaphores, priority to writers

We enforce a priority of writers – no reader can start reading if a
writer is waiting.
r_count = 0 – the number of readers currently reading the page
w_count = 0 – the number of writers waiting
binary semaphore s_rc = 1 – blocking access to r_count
binary semaphore s_wc = 1 – blocking access to w_count
binary semaphore s_p = 1 – blocking access to the page
binary semaphore s_pri = 1 – enforcing the priority of writers



Readers-writers using semaphores, priority to writers

Writer:
Wait(s_wc);
w_count ← w_count + 1;
if w_count = 1

Wait(s_pri);
Signal(s_wc);
Wait(s_p);
write on the page;
Signal(s_p);
Wait(s_wc);
w_count ← w_count − 1;
if w_count = 0

Signal(s_pri);
Signal(s_wc);

Reader:
Wait(s_pri);
Wait(s_rc);
r_count ← r_count + 1;
if r_count = 1

Wait(s_p);
Signal(s_rc);
Signal(s_pri);
read from the page;
Wait(s_rc);
r_count ← r_count − 1;
if r_count = 0

Signal(s_p);
Signal(s_rc);

There is still something wrong – try to find out what.



Readers-writers using semaphores, priority to writers

Writer:
Wait(s_wc);
w_count ← w_count + 1;
if w_count = 1

Wait(s_pri);
Signal(s_wc);
Wait(s_p);
write on the page;
Signal(s_p);
Wait(s_wc);
w_count ← w_count − 1;
if w_count = 0

Signal(s_pri);
Signal(s_wc);

Reader:
Wait(s_pri);
Wait(s_rc);
r_count ← r_count + 1;
if r_count = 1

Wait(s_p);
Signal(s_rc);
Signal(s_pri);
read from the page;
Wait(s_rc);
r_count ← r_count − 1;
if r_count = 0

Signal(s_p);
Signal(s_rc);

There is still something wrong – try to find out what.



Dining philosophers
N philosophers sit at a round table. For most of the time they are
thinking. When they get hungry, they pick up two forks (note that
each fork is shared by two philosophers!) and eat. Then they get
back to thinking.

Philosopher:
repeat:

think;
pick up forks;
eat;
put down forks;

Picture source: Wikipedia



Dining philosophers – solution 1

Philosopher:
repeat:

think;
wait for the left fork;
pick up the left fork;
wait for the right fork;
pick up the right fork;
eat;
put down the left fork;
put down the right fork;

What is wrong?
Deadlock.
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Philosopher:
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wait for the left fork;
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Deadlock.



Dining philosophers – solution 2

Philosopher:
repeat:

think;
wait for the left fork;
pick up the left fork;
if the right fork is occupied

put down the left fork;
go to beginning;

pick up the right fork;
eat;
put down the left fork;
put down the right fork;

What is wrong?
Busy waiting.
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repeat:

think;
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go to beginning;
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Dining philosophers – solution 2

Philosopher:
repeat:

think;
wait for the left fork;
pick up the left fork;
if the right fork is occupied

put down the left fork;
go to beginning;

pick up the right fork;
eat;
put down the left fork;
put down the right fork;

What is wrong?
Busy waiting.



Dining philosophers – correct solution

We have to make sure that both forks are picked up at the same
time!
We introduce a table of states of philosophers state[]. Each
philosopher can be in one of the states: T(hinking), H(ungry),
E(ating). Additionally, we have a table sem[] of semaphores. Each
philosopher has his own semaphore. Finally, we have a binary
semaphore s to block the access to state[].

The crucial building block of our solution is the following
procedure, testing if the i-th philosopher can start eating (indices
are computed modulo N).

test(i)
if state[i − 1] 6= E and state[i ] = H and state[i + 1] 6= E:

state[i ]← E
Signal(sem[i ])



Dining philosophers – correct solution
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Dining philosophers – correct solution – ctd.
Now we are ready to present the function of the philosopher.

Philosopher(i)
repeat:

think;
Wait(s);
state[i ] = H;
test(i);
Signal(s);
Wait(sem[i ]);
take forks;
eat;
release forks;
Wait(s);
state[i ] = T;
test(i + 1); test(i − 1);
Signal(s);

If the resources are not available,
the philosopher waits on sem[i ].
It can only be released when
calling the function test[i ] (either
by philosopher i or by one of his
neighbors).
Whenever sem[i ] is released,
state[i ] is set to E , so no
neighbor of i will start eating. So
we can pick up both forks in any
way we like.



Unisex bathroom problem

Design a synchronization protocol for the following problem:
1. there is one toilet that is used by both women and men,
2. assume that the capacity of the toilet is unbounded (it’s a

really HUGE toilet),
3. however, we do not allow men and women to use the toilet at

the same time; if the women are inside, the men have to wait
and vice versa,

Be careful to avoid starvation (in the technical sense!).



Binary semaphores vs. counting semaphores
Counting semaphores seem to be more powerful than binary
semaphores. How to emulate a counting semaphore with binary
semaphores?

Initialize(K):
int val ← K
BinSem gate ← init(min(1,K));
BinSem mutex ← init(1);

Wait:
Wait(gate);
Wait(mutex);
val ← val -1;
if (val > 0):

Signal(gate)
Signal(mutex)

Signal:
Wait(mutex);
val ← val + 1;
if (val = 1):

Signal(gate);
Signal(mutex);



Binary semaphores vs. counting semaphores
Counting semaphores seem to be more powerful than binary
semaphores. How to emulate a counting semaphore with binary
semaphores?

Initialize(K):
int val ← K
BinSem gate ← init(min(1,K));
BinSem mutex ← init(1);

Wait:
Wait(gate);
Wait(mutex);
val ← val -1;
if (val > 0):

Signal(gate)
Signal(mutex)

Signal:
Wait(mutex);
val ← val + 1;
if (val = 1):

Signal(gate);
Signal(mutex);



More types of semaphores

Design the following variations of semaphores:
1. Semaphore with Check: a semaphore with additional

operation Check(), which returns false if the value in the
semaphore is 0, or returns true and decreases the value, if it is
positive.

2. Semaphore with two kinds of processes: a semaphore, which
can be accessed by two types of processes, and processes of
the first type always have priority over the second type.

3. Semaphore with priority of processors: a semaphore, in which
every process has a priority (integer) and first we wake the
processes with higher priority.

4. Generalized semaphores: a counting semaphore with two
operations: Wait(n) and Signal(n), which decrease/increase
the value of the semaphore by n.
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