
Parallel Programming
Programowanie równoległe

Lecture 3: Monitors.

Paweł Rzążewski



Disadvantages of semaphores

Although semaphores allow us to solve the critical section problem,
they have some disadvantages:

I as a structural concept, they do not work well with
object-oriented programming,

I solving even a simple task requires many semaphores,
I they are used for mutual exclusion and condition

synchronization – the programs are hard to read and analyze.



Monitors – in a perfect world

A monitor is a class (or an object of this class) with the following
properties:

I all fields, variables, methods are private, except for the
so-called entry methods,

I entry methods are public,
I at most one entry method may be executed at the same time.

The monitor can be in one of two states:
I busy – some entry method is executed,
I free – no entry method is executed.

If the monitor is busy and a process P wants to enter it (by calling
an entry method), P is suspended in the entry set.



Monitors – in a perfect world

A monitor is a class (or an object of this class) with the following
properties:

I all fields, variables, methods are private, except for the
so-called entry methods,

I entry methods are public,
I at most one entry method may be executed at the same time.

The monitor can be in one of two states:
I busy – some entry method is executed,
I free – no entry method is executed.

If the monitor is busy and a process P wants to enter it (by calling
an entry method), P is suspended in the entry set.



Waiting set

Additionally, we have some pre-defined type QUEUE , which is a
first-in-first-out collection of processes. Each of these queues has
two methods:

I delay() (wait, sleep) – the process calling this method is
suspended in the waiting set. The monitor becomes free.

I continue() (signal, notify) – one process from the waiting
set is awaken. It continues from the place, where it called
delay().

Each of these methods can only be called inside an entry method.



Notifying the queue
Suppose we have the monitor with one QUEUE q.

entry A():
q.delay()
work1()

entry B():
q.notify()
work2()

The process P1 calls A() and then process P2 calls B().

After calling q.notify(), the control is immediately passed to
P1. Thus work2() is never executed!

A good practice is to call notify() as the last operation in an
entry method. If this is not possible (e.g. we want to notify many
processes), some additional work is needed.



Notifying the queue
Suppose we have the monitor with one QUEUE q.

entry A():
q.delay()
work1()

entry B():
q.notify()
work2()

The process P1 calls A() and then process P2 calls B().

After calling q.notify(), the control is immediately passed to
P1. Thus work2() is never executed!

A good practice is to call notify() as the last operation in an
entry method. If this is not possible (e.g. we want to notify many
processes), some additional work is needed.



Notifying the queue
Suppose we have the monitor with one QUEUE q.

entry A():
q.delay()
work1()

entry B():
q.notify()
work2()

The process P1 calls A() and then process P2 calls B().

After calling q.notify(), the control is immediately passed to
P1. Thus work2() is never executed!

A good practice is to call notify() as the last operation in an
entry method. If this is not possible (e.g. we want to notify many
processes), some additional work is needed.



Producer and consumer using monitors

Recall that we have a number of producers and consumers using a
single-element buffer b. The producers write data into the buffer.
The consumers read the produced data. If the buffer is full, a
producer should wait. If the buffer is empty, a consumer should
wait.
We define a monitor class Buffer , b is an object of this class.

Producer:
repeat:

x ← produce()
b.put(x)

Consumer:
repeat:

b.get(x)
consume(x)



Producer and consumer using monitors – ctd.

Monitor Buffer
int full
product buffer
QUEUE qc
QUEUE qp

entry put(x): entry get(x):
if (full = 1) if (full = 0)

qp.delay() qc.delay()
buffer ← x x ← buffer
full ← 1 full ← 0
qc.notify() qp.notify()



What about a bigger buffer?

Design a monitor solution for
I producer-consumer problem with an infinite buffer,
I producer-consumer problem with a k-element buffer,
I producer-consumer problem with a k-element buffer, where

copying takes much time.



Readers-writers with priority to writers

What about the readers-writers problem?

We shall use the following variables:
integer nr – the number of reading readers,
integer nw – the number of waiting writers,
boolean flag w – is true when a writer is writing,
two QUEUE s qr and qw of readers and writers.



Readers-writers with priority to writers

What about the readers-writers problem?

We shall use the following variables:
integer nr – the number of reading readers,
integer nw – the number of waiting writers,
boolean flag w – is true when a writer is writing,
two QUEUE s qr and qw of readers and writers.



Readers-writers with priority to writers

entry reader-start()
if nw > 0 or w = true

qr.delay()
nr ← nr + 1
qr.notify()

entry reader-end()
nr ← nr − 1
if nr = 0

qw.notify()

entry writer-start()
if nr > 0 or w = true

nw ← nw + 1
qw.delay()
nw ← nw − 1

w ← true

entry writer-end()
w ← false
if nw > 0

qw.notify()
qr.notify()

Why do we call qr .notify() in the last line of writer-end()?



Readers-writers with priority to writers

entry reader-start()
if nw > 0 or w = true

qr.delay()
nr ← nr + 1
qr.notify()

entry reader-end()
nr ← nr − 1
if nr = 0

qw.notify()

entry writer-start()
if nr > 0 or w = true

nw ← nw + 1
qw.delay()
nw ← nw − 1

w ← true

entry writer-end()
w ← false
if nw > 0

qw.notify()
qr.notify()

Why do we call qr .notify() in the last line of writer-end()?



Readers-writers with priority to writers

entry reader-start()
if nw > 0 or w = true

qr.delay()
nr ← nr + 1
qr.notify()

entry reader-end()
nr ← nr − 1
if nr = 0

qw.notify()

entry writer-start()
if nr > 0 or w = true

nw ← nw + 1
qw.delay()
nw ← nw − 1

w ← true

entry writer-end()
w ← false
if nw > 0

qw.notify()
qr.notify()

Why do we call qr .notify() in the last line of writer-end()?



Dining philosophers and monitors

Again, we have a monitor with the following variables (all indices
are computed cyclically):
Fork[1...n] – states of forks (Free or Busy)
Wait[1...n] – indicates is the given philosopher is waiting
QWait[1...n] – an array of QUEUE s where the philosophers wait

entry try-to-take-forks(i)
if Fork[i ] = B or Fork[i + 1] = B

Wait[i ]← true
QWait[i ].delay()
Wait[i ]← false

Fork[i ]← B
Fork[i + 1]← B

entry put-down-forks(i)
Fork[i ]← F
Fork[i + 1]← F
if Wait[i − 1] = true and Fork[i − 1] = F

QWait[i − 1].notify()
if Wait[i + 1] = true and Fork[i + 2] = F

QWait[i + 1].notify()

Is it ok?
What happens if both neighbors can start eating?



Dining philosophers and monitors

Again, we have a monitor with the following variables (all indices
are computed cyclically):
Fork[1...n] – states of forks (Free or Busy)
Wait[1...n] – indicates is the given philosopher is waiting
QWait[1...n] – an array of QUEUE s where the philosophers wait

entry try-to-take-forks(i)
if Fork[i ] = B or Fork[i + 1] = B

Wait[i ]← true
QWait[i ].delay()
Wait[i ]← false

Fork[i ]← B
Fork[i + 1]← B

entry put-down-forks(i)
Fork[i ]← F
Fork[i + 1]← F
if Wait[i − 1] = true and Fork[i − 1] = F

QWait[i − 1].notify()
if Wait[i + 1] = true and Fork[i + 2] = F

QWait[i + 1].notify()

Is it ok?

What happens if both neighbors can start eating?



Dining philosophers and monitors

Again, we have a monitor with the following variables (all indices
are computed cyclically):
Fork[1...n] – states of forks (Free or Busy)
Wait[1...n] – indicates is the given philosopher is waiting
QWait[1...n] – an array of QUEUE s where the philosophers wait

entry try-to-take-forks(i)
if Fork[i ] = B or Fork[i + 1] = B

Wait[i ]← true
QWait[i ].delay()
Wait[i ]← false

Fork[i ]← B
Fork[i + 1]← B

entry put-down-forks(i)
Fork[i ]← F
Fork[i + 1]← F
if Wait[i − 1] = true and Fork[i − 1] = F

QWait[i − 1].notify()
if Wait[i + 1] = true and Fork[i + 2] = F

QWait[i + 1].notify()

Is it ok?
What happens if both neighbors can start eating?



Dining philosophers and monitors – corrected

Fork[1...n] – states of forks (Free or Busy)
Wait[1...n] – indicates is the given philosopher is waiting
QWait[1...n] – an array of QUEUE s where the philosophers wait
wait – a flag indicating that the previous neighbor can be awaken

entry put-down-forks(i)
Fork[i ]← F
Fork[i + 1]← F
if Wait[i − 1] = true and Fork[i − 1] = F

wait ← true
if Wait[i + 1] = true and Fork[i + 2] = F

QWait[i + 1].notify()
if wait = true

wait ← false
QWait[i − 1].notify()

entry try-to-take-forks(i)
if Fork[i ] = B or Fork[i + 1] = B

Wait[i ]← true
QWait[i ].delay()
Wait[i ]← false

Fork[i ]← B
Fork[i + 1]← B
if wait = true

wait ← false
QWait[i − 2].notify()



Dining philosophers and monitors – corrected

Fork[1...n] – states of forks (Free or Busy)
Wait[1...n] – indicates is the given philosopher is waiting
QWait[1...n] – an array of QUEUE s where the philosophers wait
wait – a flag indicating that the previous neighbor can be awaken

entry put-down-forks(i)
Fork[i ]← F
Fork[i + 1]← F
if Wait[i − 1] = true and Fork[i − 1] = F

wait ← true
if Wait[i + 1] = true and Fork[i + 2] = F

QWait[i + 1].notify()
if wait = true

wait ← false
QWait[i − 1].notify()

entry try-to-take-forks(i)
if Fork[i ] = B or Fork[i + 1] = B

Wait[i ]← true
QWait[i ].delay()
Wait[i ]← false

Fork[i ]← B
Fork[i + 1]← B
if wait = true

wait ← false
QWait[i − 2].notify()



Monitors in Java

There are several ways of achieving similar behavior in Java. The
most similar to our perfect-world-monitors is as follows.

Entry functions
final Lock lock = new ReentrantLock();

public void Method(...) {
lock.lock();
try {
...
} finally {
lock.unlock();
}

}



Producer and consumer using monitors – again

Monitor Buffer
int full
product buffer
QUEUE qc
QUEUE qp

entry put(x): entry get(x):
if (full = 1) if(full = 0)

qp.delay() qc.delay()
buffer ← x x ← buffer
full ← 1 full ← 0
qc.notify() qp.notify()



Producer and consumer in Java

final Lock lock = new ReentrantLock();
final Condition empty = lock.newCondition();
final Condition full = lock.newCondition();
Object buffer;

public void put(Object x) throws
InterruptedException {

lock.lock();
try {
if (buffer == null) empty.await();
buffer = x;
full.signal();
} finally {
lock.unlock(); }

}



Producer and consumer in Java
final Lock lock = new ReentrantLock();

final Condition empty = lock.newCondition();
final Condition full = lock.newCondition();
Object buffer;

public void get(Object x) throws
InterruptedException {

lock.lock();
try {
if (buffer ! = null) full.await();
Object x = buffer;
buffer = null;
empty.signal();
return x;
} finally {
lock.unlock(); }

}



Conditional variables and locks

The conditional variables are related to locks:
final Condition empty = lock.newCondition();.
Calling await() on the variable unlocks the lock. On the other
hand, when awake a process using signal(), the lock becomes
locked.



Monitors in C#
The simplest way to implement entry methods is by using lock.
object o = (whatever)

public void entryMethod() {
lock(o)
{

work();
}

}

which is a syntax sugar for:

public void entryMethod() {
Monitor.Enter(o);
work();
Monitor.Exit(o);

}



Monitors in C#, ctd.

Waiting and waking is done by:
Monitor.Wait(o);
Monitor.Pulse(o);

Monitor Buffer
object o = new object();

int get(): entry put(x):
lock(o) { lock(o) {

if (empty) add_element();
Monitor.Wait(o); Monitor.Pulse(o);

take_element(); }
}

Introducing multiple queues is more complicated, see:
https://github.com/CodeExMachina/ConditionVariable.

https://github.com/CodeExMachina/ConditionVariable


Monitors in C#, ctd.

Waiting and waking is done by:
Monitor.Wait(o);
Monitor.Pulse(o);

Monitor Buffer
object o = new object();

int get(): entry put(x):
lock(o) { lock(o) {

if (empty) add_element();
Monitor.Wait(o); Monitor.Pulse(o);

take_element(); }
}

Introducing multiple queues is more complicated, see:
https://github.com/CodeExMachina/ConditionVariable.

https://github.com/CodeExMachina/ConditionVariable


Spurious wakeup

It may happen, that the process awaiting on some conditional
variable is awaken, even if no process signalled it. This is called a
spurious wakeup and happens in many implementations of
conditional variables (Java, POSIX, Win API).

Thus we should always use:
while (buffer ! = null) full.await();
instead of
if (buffer ! = null) full.await();


