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RAM model

When designing and analysing sequential algorithms, we usually
use the so-called RAM (Random Access Machine) model.
We have one processor, executing the commands sequentially, one
by one. Each operation (arithmetic operation, memory read/write
etc.) takes unit time.
We are interested in the complexity (optimistic, pessimistic,
average), which is the number of operations performed by the
algorithm (equal to the computation time).



PRAM model

In parallel algorithms, the model we usually use is PRAM (Parallel
RAM).
We have a number of processors, working in parallel, in
synchronized way (the processors execute one step at the same
time).
The processors share a global memory (which is also used for the
synchronization). Each processor knows its index. Also, we assume
that the total number of processors in known.



PRAM model – continued

The parallel parts of the algorithm are denoted by the parallel
for (sometimes we will write parallel for all).
So, when we write:
parallel for all i ∈ X do

action(i)
we actually mean that for each element i of X we assign one
processor and this processor executes the method action on its
own element.



Mean square error
We have n observations of the same value (X = [x1, x2, . . . , xn]).
Our goal is to compute the mean-square error E .
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Mean square error – first approach

Consider the following (stupid) algorithm.

Algorithm: MSE1
1 X2[. . .]← vector of length n
2 E ← 0
3 sx ← 0
4 sx2← 0
5 parallel foreach i = 1, 2, . . . , n do
6 X2[i ]← X [i ] · X [i ]
7 foreach i = 1, 2, . . . , n do
8 sx ← sx + X [i ]
9 sx2← sx2 + X2[i ]

10 E ← sx2− sx · sx/n
11 return E



Complexity of parallel algorithms

When estimating the complexity, we have to differentiate between
the computation time and the number of operations.

Time complexity
Time complexity measures the computation time. The complexity
of each parallel loop is the maximum complexity of each task
performed in parallel.

Work complexity
Work complexity measures the total number of operations
executed during the computation. This is the complexity of the
algorithm executed on single-processor machine.



Complexity of parallel algorithms

We say that a parallel algorithm is sequentially optimal if its work
complexity is equal to the complexity of the best sequential
algorithm for this problem.

Often sequential optimality requires lots of synchronization, which
destroys parallelism (and thus the time complexity).
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EREW, CREW, CRCW

There are several different submodels of PRAM. The most
important are:

CREW (Concurrent Read, Exclusive Write) many processors may read
the same memory cell at the same time, only one may write
to it.

EREW (Exclusive Read, Exclusive Write) at most one process may
access a single memory cell, either for reading or writing,

CRCW (Concurrent Read, Concurrent Write) many processes may
write in a single memory cell at the same time.

The most common model is CREW. However, they are essentially
different.



Concurrent write

If we allow for a concurrent write, we have to specify the behavior
in case of conflicts. The common behaviors are:

I the result is any of the values written in the common cell,
I the result is the value written by the processor with the

smallest id,
I the result is some function (e.g. sum) of the values written.

A typical trick in the design of algorithms is to make sure that if
many processors write in the shared memore cell (in parallel), then
every process writes the same value.



Find one in CRCW PRAM

Suppose we have a binary vector X of length n. Our goal is to
report, if there exists at least one 1 in X .
A sequential algorithm has complexity

O(n).
Consider the following algorithm on CRCW PRAM.

Algorithm: FindOne-CRCW
1 result ← 0
2 parallel for i = 1, 2, . . . , n do
3 if X [i ] = 1 then result ← 1;
4 return result
Number of processors used: n
Time complexity: O(1)
Work complexity: O(n)
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Find max in CRCW PRAM
Suppose we have a vector X of length n. Our goal is to find the
index of the maximum value in X .
A sequential algorithm has complexity

O(n).

Algorithm: FindMax-CRCW
1 M ← vector of length n
2 parallel for 1 ≤ i ≤ n do
3 M[i ]← 1
4 parallel for 1 ≤ i < j ≤ n do
5 if X [i ] < X [j] then M[i ]← 0;
6 parallel for 1 ≤ i ≤ n do
7 if M[i ] = 1 then result ← i ;
8 return result

Number of processors used: O(n2)

– can be improved to O(n1+ε)

Time complexity: O(1)
Work complexity: O(n2)
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Find first one in CRCW PRAM

Suppose we have a binary X of length n. Our goal is to find the
index of the first 1 in X .

I Design an algorithm (for CRCW PRAM) with a constant time
complexity, using O(n2) processors.

I Design an algorithm (for CRCW PRAM) with a constant time
complexity, using O(n) processors.
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EREW vs. CRCW algorithms

Finding 1 in a binary vector or finding a minimum in a vector of
integers requires O(log n) time on EREW machine.
This is not an accident.

Theorem
Every algorithm using p processors on CRCW machine can be at
most O(log p) faster than the fastest algorithm for the same
problem, using p processors on EREW machine.

We can simulate any algorithm for CRCW PRAM on EREW
PRAM with overhead at most O(log p).

From now on we focus on EREW PRAM.
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Summation

Suppose we have a vector X of length n. Our goal is to find the
sum of elements in X .

A sequential algorithm has complexity O(n).
The following procedure computes the sum of X [i , i + 1, . . . , j].

Algorithm: ParallelSum[X ,i ,j]
1 if i = j then return X [i ];
2 r ← [0, 0]
3 parallel for p = 1, 2 do
4 if p = 1 then r [p]← ParallelSum(X , i , b(i + j)/2c) ;
5 if p = 2 then r [p]← ParallelSum(X , b(i + j)/2c+ 1, j) ;
6 return r [1] + r [2]
Number of processors used: n
Time complexity: O(log n)
Work complexity: O(n log n)
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Summation – non-recursive

Algorithm: ParallelSumNonRec[X ]
1 parallel for p = 1, 2 do
2 B[i ]← X [i ]
3 for h = 1, 2, . . . , log n do
4 parallel for p = 1, 2, . . . , n/2h do
5 B[i ]← B[2i − 1] + B[2i ]

6 return B[1]

Of course in the same way we can compute other functions, like
maximum, minimum, boolean operations etc.
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2 E ← 0
3 sx ← 0
4 sx2← 0
5 parallel foreach i = 1, 2, . . . , n do
6 X2[i ]← X [i ] · X [i ]
7 sx ← ParallelSum(X , 1, n)
8 sx2← ParallelSum(X2, 1, n)
9 E ← sx2− sx · sx/n

10 return E

Number of processors used: n
Time complexity: O(log n)
Work complexity: O(n log n)



Mean square error – second approach

Algorithm: MSE2
1 X2[. . .]← vector of length n
2 E ← 0
3 sx ← 0
4 sx2← 0
5 parallel foreach i = 1, 2, . . . , n do
6 X2[i ]← X [i ] · X [i ]
7 sx ← ParallelSum(X , 1, n)
8 sx2← ParallelSum(X2, 1, n)
9 E ← sx2− sx · sx/n

10 return E
Number of processors used:

n
Time complexity: O(log n)
Work complexity: O(n log n)



Mean square error – second approach

Algorithm: MSE2
1 X2[. . .]← vector of length n
2 E ← 0
3 sx ← 0
4 sx2← 0
5 parallel foreach i = 1, 2, . . . , n do
6 X2[i ]← X [i ] · X [i ]
7 sx ← ParallelSum(X , 1, n)
8 sx2← ParallelSum(X2, 1, n)
9 E ← sx2− sx · sx/n

10 return E
Number of processors used: n
Time complexity:

O(log n)
Work complexity: O(n log n)



Mean square error – second approach

Algorithm: MSE2
1 X2[. . .]← vector of length n
2 E ← 0
3 sx ← 0
4 sx2← 0
5 parallel foreach i = 1, 2, . . . , n do
6 X2[i ]← X [i ] · X [i ]
7 sx ← ParallelSum(X , 1, n)
8 sx2← ParallelSum(X2, 1, n)
9 E ← sx2− sx · sx/n

10 return E
Number of processors used: n
Time complexity: O(log n)
Work complexity:

O(n log n)



Mean square error – second approach

Algorithm: MSE2
1 X2[. . .]← vector of length n
2 E ← 0
3 sx ← 0
4 sx2← 0
5 parallel foreach i = 1, 2, . . . , n do
6 X2[i ]← X [i ] · X [i ]
7 sx ← ParallelSum(X , 1, n)
8 sx2← ParallelSum(X2, 1, n)
9 E ← sx2− sx · sx/n

10 return E
Number of processors used: n
Time complexity: O(log n)
Work complexity: O(n log n)



Prefix sum

Prefix sum
Prefix sum (sometimes called scan) is an operation that transforms
a vector X [x1, x2, . . . , xn] into a vector [x ′1, x ′2, . . . , x ′n], where
x ′i =

∑i
j=1 xi .

So for
X = [1, 1, 2, 0, 3, 1, 2],

we obtain
[1, 2, 4, 4, 7, 8, 10].

Of course wan change + to any other binary operation, like max,
min, multiplication, boolean function etc.



Prefix sum – example
Suppose we want to find all solutions of some problem. We have
distributed the searching among n processors, each processor found
some number of solutions (possible 0). It keeps them in its own set
T . Our goal is to create table X , containing all solutions.

Algorithm: CollectSolutions
1 num[. . .]← vector of length n
2 parallel foreach i = 1, 2, . . . , n do
3 num[i ]← |T |
4 Scan(num)
5 X ← vector of length num[n]
6 parallel foreach i = 1, 2, . . . , n do
7 for j = num[i − 1] + 1 to num[i ] do
8 X [j]← T [j − num[i − 1]]

9 return X

To simplify the notation, we assume that num[0] = 0.



Parallel prefix sum – first approach

We can do something very similar to the parallel addition
algorithm. Assume for simplicity that n is a power of 2.

Algorithm: Scan1(X )
1 if |X | = 0 then return;
2 parallel for p = 1, 2 do
3 if p = 1 then Scan1(LeftHalf (X )) ;
4 if p = 2 then Scan1(RightHalf (X )) ;
5 parallel for n/2 < j ≤ n do
6 X [j]← x [n/2] + x [j]

Number of processors used: n
Time complexity: O(log n) (exactly log n steps)
Work complexity: O(n log n)
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Work complexity: O(n log n)
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Parallel prefix sum – second approach

Again, we assume that n is a power of 2.

Algorithm: Scan2(X )
1 if |X | = 0 then return;
2 Y ← a vector of length n/2
3 parallel for 1 ≤ i ≤ n/2 do
4 Y [i ]← X [2i − 1] + X [2i ]
5 Scan2(Y )
6 parallel for 1 < i ≤ n/2 do
7 X [2i ]← Y [i ]
8 if i > 1 then X [2i − 1]← Y [i − 1] + X [2i − 1] ;

Number of processors used: can be efficiently made O(n/ log n)
Time complexity: O(log n) (exactly 2 log n − 2 steps)
Work complexity: O(n)
Works better if we have fewer processors
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Matrix multiplication

Suppose we have to multiply two matrices A and B.

The simplest, sequential way to do this is:

Algorithm: Multiply(A, B)
1 for i = 1 to n do
2 for j = 1 to n do
3 ci ,j ← 0
4 for k = 1 to n do
5 ci ,j ← ci ,j + ai ,k · bk,j

How to do this in parallel? For simplicity, assume that:
I they are square matrices n × n,
I the number of processors available is p2,
I p divides n.
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Parallel matrix multiplication – blocks

We partition our matrices into p2 blocks.

A =


A1,1 A1,2 · · · A1,p
A2,1 A2,2 · · · A2,p

...
Ap,1 Ap,2 · · · Ap,p



B =


B1,1 B1,2 · · · B1,p
B2,1 B2,2 · · · B2,p

...
Bp,1 Bp,2 · · · Bp,p





Parallel matrix multiplication – idea of the algorithm

Each process (i , j) computes a single block Ci ,j . Each processes
one block of A and one block of B at the time.

Algorithm: Compute(i ,j)
1 Ci ,j ← p × p matrix of zeros
2 for k = 0 to p − 1 do
3 Ci ,j ← Ci ,j + Ai−k,j · Bi ,j−k

In each step we shift A to the left and shift B up (modulo p).
The multiplication inside the loop is just a sequential multiplication
of two n

p ×
n
p matrices.

Time complexity: O
(
p · (n/p)3) = O

(
n3

p2

)
(if the naive algorithm

for matrix multiplication is used).
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