
Parallel Programming
Programowanie równoległe

Lecture 4: Distributed algorithms.

Paweł Rzążewski

Typical network topologies

ring star fully connected grid

hierarchical

Synchronous network model

There are several models of computation in the case of distributed
algorithms. The one we are going to use is Synchronous Network
Model.
The system consists of a number of computing units (processes)
placed in the vertices of some directed graph (network). Each
process communicates only with its neighbors.
Also, usually, each process knows its own id. The id’s can be any
numbers, provided that they are unique (note that they do not
have to be consecutive integers!)

Synchronous operations

The computation is divided into rounds. Each round consists of
two stages:

1. Perform some local computation. Prepare the messages to be
sent to the neighbors.

2. Send all messages to out-neighbors. Receive all messages
from in-neighbors. This is performed in one step (there is no
particular order of messages received).

Sometimes, for simplicity, we will assume that the process sends a
message to every neighbor each turn. The messages with no
meaning will be called null-messages. When a process receives a
null-message, it just ignores it.

Complexity measures
When analyzing distributed algorithms we shall usually be
interested in two functions.

Time complexity is the number of rounds needed to perform the
computation. Note that in this model we do not care about the
time of local computations during each round (which may
sometimes be unrealistic).

Communication complexity is the number of non-null messages
sent during the computation. Sometimes, if more relevant, we will
be interested in the total length (in bits) of all messages.

In general, we will try to minimize the time complexity. However,
high communication complexity can be a real issue. Usually there
are several distributed algorithms running in the same network and
sharing the same network bandwidth.

Complexity measures
When analyzing distributed algorithms we shall usually be
interested in two functions.

Time complexity is the number of rounds needed to perform the
computation. Note that in this model we do not care about the
time of local computations during each round (which may
sometimes be unrealistic).

Communication complexity is the number of non-null messages
sent during the computation. Sometimes, if more relevant, we will
be interested in the total length (in bits) of all messages.

In general, we will try to minimize the time complexity. However,
high communication complexity can be a real issue. Usually there
are several distributed algorithms running in the same network and
sharing the same network bandwidth.

Complexity measures
When analyzing distributed algorithms we shall usually be
interested in two functions.

Time complexity is the number of rounds needed to perform the
computation. Note that in this model we do not care about the
time of local computations during each round (which may
sometimes be unrealistic).

Communication complexity is the number of non-null messages
sent during the computation. Sometimes, if more relevant, we will
be interested in the total length (in bits) of all messages.

In general, we will try to minimize the time complexity. However,
high communication complexity can be a real issue. Usually there
are several distributed algorithms running in the same network and
sharing the same network bandwidth.

Synchronous vs. asynchronous systems

The synchronous model may seem too simple at first glance.
However, we can simulate it on an asynchronous one using the
algorithms called synchronizers. Basic synchronizers are:

I synchronizer alpha – low time complexity, high communication
complexity,

I synchronizer beta – high time complexity, low communication
complexity,

I synchronizer gamma – moderate time complexity, moderate
communication complexity.

Typical problems in distributed systems

In distributed systems we encounter some problems, which are very
easy in the case of local algorithms. Typical ones are:

I choosing a coordinator (selecting a process to perform some
special task)

I choosing local coordinators (selecting a group of processes,
such that every vertex is either a coordinator, or is adjacent to
a coordinator),

I detecting when the computation has finished,
I detecting deadlocks,
I setting global time,
I reaching the agreement (i.e. a common value of some

variable).

Selecting the leader in a ring

Leader selection
The processes are organized in a ring (uni- or bi-directional). The
number of processes in n. Each process has a local variable status,
which is initially unknown. The problem is to reach a situation
when exactly one process has status = leader.

Selecting the leader in a ring of identical processes
Theorem
If all processes are identical, the problem cannot be solved in a
deterministic way.

Proof.
Suppose we have some algorithm solving the problem of selecting a
leader in a ring of identical processes. Consider a unique execution
of this algorithm. Observe that since the processes are identical,
they start in the same state (values of local variables, state of local
memory etc.). Moreover, if the processes are in the same state s,
in the next round they will all be in the same state s ′.
So whenever a process reaches the state with status = leader, all
other processes are in the same state.

Breaking the symmetry is a crucial issue in distributed
computation!

Selecting the leader in a ring of identical processes
Theorem
If all processes are identical, the problem cannot be solved in a
deterministic way.

Proof.
Suppose we have some algorithm solving the problem of selecting a
leader in a ring of identical processes. Consider a unique execution
of this algorithm. Observe that since the processes are identical,
they start in the same state (values of local variables, state of local
memory etc.). Moreover, if the processes are in the same state s,
in the next round they will all be in the same state s ′.
So whenever a process reaches the state with status = leader, all
other processes are in the same state.

Breaking the symmetry is a crucial issue in distributed
computation!

Selecting the leader in a ring of identical processes
Theorem
If all processes are identical, the problem cannot be solved in a
deterministic way.

Proof.
Suppose we have some algorithm solving the problem of selecting a
leader in a ring of identical processes. Consider a unique execution
of this algorithm. Observe that since the processes are identical,
they start in the same state (values of local variables, state of local
memory etc.). Moreover, if the processes are in the same state s,
in the next round they will all be in the same state s ′.
So whenever a process reaches the state with status = leader, all
other processes are in the same state.

Breaking the symmetry is a crucial issue in distributed
computation!

Selecting the leader in a directed ring – LCR algorithm
Each process has a unique id. The ids do not correspond to
positions of processes in the ring!

Algorithm LCR (Le Lann, Chang, Roberts)

Algorithm: LCR
1 s ← my_id
2 repeat
3 Send(s)
4 y ← Receive()
5 if y > my_id then
6 s ← y
7 else if y = my_id then
8 status ← leader
9 else if y < my_id then

10 s ← null

Selecting the leader in a ring – LCR algorithm

Theorem
The algorithm described above solves the leader selection problem.

What is the complexity?

Theorem
Time complexity of the described algorithm is n.
Communication complexity is O(n2), average is O(n log n).

Selecting the leader in a ring – LCR algorithm
Problem 1
Find an assignment of ids, where the communication complexity of
the LCR algorithm is Ω(n2).
Find an assignment of ids, where the communication complexity of
the LCR algorithm is O(n).

Problem 2
How to modify the algorithm to solve the following problem: we
want to reach the state when exactly one process will have status
= leader and the other processes will have status = non-leader?

Problem 3
The processes in the described solution do not halt. How to
modify the algorithm so that each process halts? What if we have
additional requirement that each process knows the id of the leader
after the computation is completed?

Selecting the leader in a ring – LCR algorithm
Problem 1
Find an assignment of ids, where the communication complexity of
the LCR algorithm is Ω(n2).
Find an assignment of ids, where the communication complexity of
the LCR algorithm is O(n).

Problem 2
How to modify the algorithm to solve the following problem: we
want to reach the state when exactly one process will have status
= leader and the other processes will have status = non-leader?

Problem 3
The processes in the described solution do not halt. How to
modify the algorithm so that each process halts? What if we have
additional requirement that each process knows the id of the leader
after the computation is completed?

Selecting the leader in a ring – LCR algorithm
Problem 1
Find an assignment of ids, where the communication complexity of
the LCR algorithm is Ω(n2).
Find an assignment of ids, where the communication complexity of
the LCR algorithm is O(n).

Problem 2
How to modify the algorithm to solve the following problem: we
want to reach the state when exactly one process will have status
= leader and the other processes will have status = non-leader?

Problem 3
The processes in the described solution do not halt. How to
modify the algorithm so that each process halts? What if we have
additional requirement that each process knows the id of the leader
after the computation is completed?

Selecting the leader in a bi-directional ring – HS algorithm

Algorithm HS (Hirschberg, Sinclair)
Each message will consist of a triple (u, flag , hop_count), where u
is an id of a process, flag can be either out or in, and hop_count
is an integer.
Each process has the following local variables:
u, which is some process’ id, initialized my_id ,
send+, containing some message or null , initialized with
(my_id , out, 1),
send−, containing some message or null , initialized with
(my_id , out, 1),
status, which is initially unknown, can be changed to leader,
phase, which is an integer, initially 0.

Selecting the leader in a bi-directional ring – HS algorithm

Algorithm: HS
1 repeat
2 send send+ to the right neighbor
3 send send− to the left neighbor
4 send+← null
5 send− ← null
6 if if the message from the left neighbor is (v , out, h) then
7 if v > u and h > 1 then send+← (v , out, h − 1);
8 if v > u and h = 1 then send− ← (v , in, 1);
9 if v = u then status ← leader ;

10 if if the message from the right neighbor is (v , out, h) then
11 if v > u and h > 1 then send− ← (v , out, h − 1);
12 if v > u and h = 1 then send+← (v , in, 1);
13 if v = u then status ← leader ;
14 · · ·

Selecting the leader in a bi-directional ring – HS algorithm

Algorithm: HS
1 repeat
2 if if the message from the left neighbor is (v , in, 1) and

v 6= u then
3 send+← (v , in, 1)
4 if if the message from the right neighbor is (v , in, 1) and

v 6= u then
5 send− ← (v , in, 1)
6 if if the messages from both neighbors are (u, in, 1) then
7 phase ← phase + 1
8 send+← (u, out, 2phase)
9 send− ← (u, out, 2phase)

Selecting the leader in a bi-directional ring – HS algorithm

Theorem
The algorithm HS solves the leader selection problem in a
bi-directional ring.

Theorem
The time complexity of the algorithm HS is O(log n).
The communication complexity of the algorithm HS is O(n log n).

Theorem
The communication complexity of any algorithm selecting a leader
in a bi-directional ring, using only comparisons of ids, is Ω(n log n).

There are algorithms with communication complexity O(n) – they
use some additional knowledge on ids.

Selecting the leader in a bi-directional ring – HS algorithm

Theorem
The algorithm HS solves the leader selection problem in a
bi-directional ring.

Theorem
The time complexity of the algorithm HS is O(log n).
The communication complexity of the algorithm HS is O(n log n).

Theorem
The communication complexity of any algorithm selecting a leader
in a bi-directional ring, using only comparisons of ids, is Ω(n log n).

There are algorithms with communication complexity O(n) – they
use some additional knowledge on ids.

Selecting the leader in a bi-directional ring – HS algorithm

Theorem
The algorithm HS solves the leader selection problem in a
bi-directional ring.

Theorem
The time complexity of the algorithm HS is O(log n).
The communication complexity of the algorithm HS is O(n log n).

Theorem
The communication complexity of any algorithm selecting a leader
in a bi-directional ring, using only comparisons of ids, is Ω(n log n).

There are algorithms with communication complexity O(n) – they
use some additional knowledge on ids.

Selecting the leader in a bi-directional ring – HS algorithm

Theorem
The algorithm HS solves the leader selection problem in a
bi-directional ring.

Theorem
The time complexity of the algorithm HS is O(log n).
The communication complexity of the algorithm HS is O(n log n).

Theorem
The communication complexity of any algorithm selecting a leader
in a bi-directional ring, using only comparisons of ids, is Ω(n log n).

There are algorithms with communication complexity O(n) – they
use some additional knowledge on ids.

Selecting the leader in a directed ring with O(n) messages

I the number n of elements of the ring is known,
I ids are integers
I synchronous model

Idea of an algorithm:

Phase i = 1, 2, . . . ,

1. If my id is not i , do not initiate any message.
2. Otherwise, send my id to the neighbor.
3. If a message is received, pass it forward.

Time complexity: n ·m, where m is min id.
Communication complexity n

Selecting the leader in a directed ring with O(n) messages

I the number n of elements of the ring is known,
I ids are integers
I synchronous model

Idea of an algorithm:

Phase i = 1, 2, . . . ,

1. If my id is not i , do not initiate any message.
2. Otherwise, send my id to the neighbor.
3. If a message is received, pass it forward.

Time complexity: n ·m, where m is min id.
Communication complexity n

Selecting the leader in a general network

What happens if the processes form a arbitrary directed graph
(general network)?

The diameter of the graph G is max{dist(u, v) : u, v ∈ V (G)}.

Suppose that the diameter of the network is known for every
process.

Selecting the leader in a general network

What happens if the processes form a arbitrary directed graph
(general network)?

The diameter of the graph G is max{dist(u, v) : u, v ∈ V (G)}.

Suppose that the diameter of the network is known for every
process.

Selecting the leader in a general network

What happens if the processes form a arbitrary directed graph
(general network)?

The diameter of the graph G is max{dist(u, v) : u, v ∈ V (G)}.

Suppose that the diameter of the network is known for every
process.

Selecting the leader in a general network – Flood Max

Algorithm: Flood Max
1 m← my_id
2 d ← diameter of the network
3 for rounds = 1, 2, . . . , d do
4 receive messages from all neighbors
5 U ← set of received ids
6 m← max{U ∪ {m}}
7 if m = my_id then status ← leader ;
8 else status ← nonleader ;

Theorem
Time complexity of the Flood Max algorithm is d.
Communication complexity of the Flood Max algorithm is d · |E |.

Any ideas for improvements?

Selecting the leader in a general network – Flood Max

Algorithm: Flood Max
1 m← my_id
2 d ← diameter of the network
3 for rounds = 1, 2, . . . , d do
4 receive messages from all neighbors
5 U ← set of received ids
6 m← max{U ∪ {m}}
7 if m = my_id then status ← leader ;
8 else status ← nonleader ;

Theorem
Time complexity of the Flood Max algorithm is d.
Communication complexity of the Flood Max algorithm is d · |E |.

Any ideas for improvements?

Spreading the gossip

Problem
A process i has some information. Design and analyze an algorithm
that will send this information to all processes in the network.

Problem
Design and analyze an algorithm to compute the diameter of the
network (for simplicity, suppose we have an undirected graph).

Spreading the gossip

Problem
A process i has some information. Design and analyze an algorithm
that will send this information to all processes in the network.

Problem
Design and analyze an algorithm to compute the diameter of the
network (for simplicity, suppose we have an undirected graph).

Finding a maximal independent set

We want to select a set X of vertices, such that:
I no two vertices from X are adjacent,
I every vertex is either in X or is adjacent to a vertex from X .

Formally, each process from X should set status = selected , while
every other process should set status = loser .

Finding a maximal independent set

We want to select a set X of vertices, such that:
I no two vertices from X are adjacent,
I every vertex is either in X or is adjacent to a vertex from X .

Formally, each process from X should set status = selected , while
every other process should set status = loser .

Finding a maximal independent set

Assume that the number of processes n is known to every process
and there are no ids.
Problem
Design an algorithm selecting a maximal independent set in a
graph.

We do not know whether a deterministic polylogarithmic algorithm
exists (huge open problem stated in 1986)!

Finding a maximal independent set

Assume that the number of processes n is known to every process
and there are no ids.
Problem
Design an algorithm selecting a maximal independent set in a
graph.

We do not know whether a deterministic polylogarithmic algorithm
exists (huge open problem stated in 1986)!

Finding a maximal independent set – LubyMIS

The idea of the algorithm LubyMIS (named after its inventor,
Michael Luby [1986]) is based on the following procedure:

Algorithm: LubyMIS – idea
1 X ← ∅
2 while V 6= ∅ do
3 choose some non-empty independent set X ′ ⊆ V
4 X ← X ∪ X ′
5 remove the vertices from X ′ and their neighbors from V
6 return X

Finding a maximal independent set – LubyMIS
The algorithm is randomized. It works in stages, each consisting of
three rounds.

1. Every process chooses some value v uniformly at random from
the set {1, . . . ,B} (B is some big number). Then each
process sends v to all its neighbors. X ′ is the set of processes,
whose value of v is bigger than the values of all its neighbors
(why is it independent? why is it non-empty?).

2. Vertices from X ′ (winners) notify the neighbors that they are
losers.

3. Losers notify their neighbors. Winners and losers finish. The
neighbors of losers remove them from their neighborhoods.

What happens if two vertices choose the same value of v?

Theorem
With probability one, the algorithm LubyMIS terminates. The
expected number of rounds is O(log n) (setting B = n4 is enough).

Finding a maximal independent set – LubyMIS
The algorithm is randomized. It works in stages, each consisting of
three rounds.

1. Every process chooses some value v uniformly at random from
the set {1, . . . ,B} (B is some big number). Then each
process sends v to all its neighbors. X ′ is the set of processes,
whose value of v is bigger than the values of all its neighbors
(why is it independent? why is it non-empty?).

2. Vertices from X ′ (winners) notify the neighbors that they are
losers.

3. Losers notify their neighbors. Winners and losers finish. The
neighbors of losers remove them from their neighborhoods.

What happens if two vertices choose the same value of v?

Theorem
With probability one, the algorithm LubyMIS terminates. The
expected number of rounds is O(log n) (setting B = n4 is enough).

Finding a maximal independent set – LubyMIS
The algorithm is randomized. It works in stages, each consisting of
three rounds.

1. Every process chooses some value v uniformly at random from
the set {1, . . . ,B} (B is some big number). Then each
process sends v to all its neighbors. X ′ is the set of processes,
whose value of v is bigger than the values of all its neighbors
(why is it independent? why is it non-empty?).

2. Vertices from X ′ (winners) notify the neighbors that they are
losers.

3. Losers notify their neighbors. Winners and losers finish. The
neighbors of losers remove them from their neighborhoods.

What happens if two vertices choose the same value of v?

Theorem
With probability one, the algorithm LubyMIS terminates. The
expected number of rounds is O(log n) (setting B = n4 is enough).

Finding a maximal independent set – another approach

Here is a simpler and better algorithm [Afek, Alon, Barad,
Hornstein, Barkai, Bar-Joseph, A Biological Solution to a
Fundamental Distributed Computing Problem, Science, 2011]

The algorithm is inspired by the process of development of fly’s
nervous system.

n← upper bound on the number of nodes
D ← upper bound on the maximum degree
M ← carefully chosen constant
B is a special type of message, is consists of 1 bit

Finding a maximal independent set
Algorithm: MIS

1 for i ← 0 to logD do
2 for j ← 0 to M log n do
3 (1st exchange)
4 v ← 0
5 if a success with probability 1/2logD−i then
6 broadcast B to all neighbors
7 v ← 1
8 if received a message B then v ← 0;
9 (2nd exchange)

10 if v = 1 then
11 broadcast B to all neighbors
12 status ← selected
13 else if received B then
14 status ← loser

Finding a maximal independent set

With high probability, all nodes are either selected or losers.

Time complexity: O(log n logD), worst case: O(log2 n).
Communication complexity: O(n), one-bit messages.

Communication complexity is optimal: each node has to receive at
least one message!

Finding a maximal independent set

With high probability, all nodes are either selected or losers.

Time complexity: O(log n logD), worst case: O(log2 n).
Communication complexity: O(n), one-bit messages.

Communication complexity is optimal: each node has to receive at
least one message!

Finding a maximal independent set

With high probability, all nodes are either selected or losers.

Time complexity: O(log n logD), worst case: O(log2 n).
Communication complexity: O(n), one-bit messages.

Communication complexity is optimal: each node has to receive at
least one message!

