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Abstract—This paper presents a neural network approach
to solving the most common type of human IQ test problems
– Raven’s Progressive Matrices (RMs). The proposed DeepIQ
system is composed of three modules: a deep autoencoder which
is trained to learn a feature-based representation of various
figure images used in IQ tests, an ensemble of shallow multilayer
perceptrons applied to detection of feature differences, and a
scoring module use for assessment of candidate answers. DeepIQ
is able to learn the underlying principles of solving RMs (the
importance of similarity of figures in shape, rotation, size or
shading) in a domain-independent way, that allows its subsequent
application to test instances constructed based on a different set
of figures, never seen before, or another type of IQ problem,
with no requirement for additional training. This transfer learning
property is of paramount importance due to scarce availability
of the real data, and is demonstrated in the paper on two
different RM data sets, as well as two distinct types of IQ tasks
(solving RMs and odd-one-out problems). Experimental results
are promising, excelling human average scores by a large margin
on the most challenging subset of RM instances and exceeding
90% accuracy in odd-one-out tests.

I. INTRODUCTION

In psychology, there exist well-established and generally
accepted methods to evaluate human intelligence by means
of psychometric tests (IQ tests) measuring the intelligence
quotient (IQ). In the case of Artificial Intelligence (AI), such
comprehensive methods are yet to be developed, except for
the well-known Turing Test [1]. The applicability of the
Turing Test is, however, limited to assessing certain aspects of
presumably intelligent, human-like machine behavior. More-
over, the assessment is subjective, and does not allow for
quantitative evaluation. In 2003 Bringsjord and Schimanski
attempted to bridge this gap and introduced the concept of
Psychometric AI [2] which points to psychometric tests as a
valid approach to defining and evaluating IQ of the AI systems
and a viable alternative to task-oriented assessment methods.
Related work. In the mainstream AI / Machine Learning (ML)
literature the number of papers related to solving IQ tests by
machines is rather limited, although the topic gained visible in-
terest in recent years. A survey article [3] on computer models
solving intelligence-requiring problems mentions 30 papers,
half of which have appeared since 2011. The first attempt

Accepted for the International Joint Conference on Neural Networks
(IJCNN 2019) - Budapest, Hungary, July 2019

was made over 50 years ago by [4] who designed a computer
program for detecting regularities in figures in the so-called
geometric-analogy problems (similar to IQ test instances).
Subsequent papers were concentrated on various types of
intelligence tests, for instance completion of sequences of
numbers [5], words-related tests [6], verbal tests [7], Bennett’s
Mechanical Comprehension Tests [8] or general approaches to
solving various types of IQ tests [9], [10].

The proposed DeepIQ system is evaluated on the problems
which follow the rule-based construction principles of the
most popular IQ tests - Raven’s Progressive Matrices [11],
referred to as RMs hereafter. There are three main reasons that
motivated our choice of RMs as a testbed problem. Firstly,
machine learning and testing on real IQ test examples is
practically impossible due to their scarce public accessibil-
ity, as psychologists do not make them publicly available.
Secondly, the most popular human IQ tests follow the same
construction principles as RMs (but with different sets of figure
shapes) [11]. Thirdly, RMs (likewise IQ tests) pose a real
challenge for both humans [12] and (notably) artificial sys-
tems [3] and solving them requires specific cognitive abilities
(image recognition, regularities detection, feature abstraction
and generalization).

To the best of our knowledge, only a few following attempts
to machine solving of IQ test problems were made so far.
An approach proposed in [13] constructs a relational graph
of detected image features, while in [14] a pre-defined rule-
based system is applied. Both above approaches do not employ
Machine Learning (ML) techniques. In a recent study [15]
problems similar to RMs are used to determine the ability
of certain neural network architectures - Convolutional Neu-
ral Networks (CNNs), Long Short-Term Memory (LSTM)
or Residual Neural Networks (ResNETs) - to demonstrate
abstract reasoning properties. As admitted by the authors, the
IQ problems considered in [15] are only loosely inspired by the
RM principles and differ from problems that humans taking
Raven-style IQ tests are faced with. Another related recent
paper [16] employs CNNs to generate a new image based on
the rules detected in two other given images. In principle, such
an ability could have been useful in solving RMs, however,
only if the operational regime had been changed, i.e. the
answer had not been generated by the system from scratch, but
selected out of an available answer-set. The last paper [17],



which is the closest to our approach, applies convolutional
neural networks to determine stability of features across RM
images and a set of rules worked out based on this stability
information. Our method differs from [17] by utilizing other
ML techniques (deep autoencoder and multilayer perceptrons)
to assess relations among image features, and by checking
the consistency of feature changes instead of their stability.
Furthermore, DeepIQ is applied to a wider range of test
problems, in terms of both variability and difficulty level. A
distinctive feature of DeepIQ is its high efficacy also in the
case when the training and testing sets rely on different sets
of figures (shapes) used in RM instances.

It should be underlined that none of the previous approaches
addressed the problem of limited availability of real-life
test examples. Training and testing instances in the above-
mentioned systems are sampled from the same distributions
(the same available figure sizes, shapes, etc.) what does not
reflect the real-life situation, in which the main attributes of
the figures used in the test are not known in advance and the
key difficulty for a human test-taker is to grasp the RM rules
in an abstract (figure independent) way. The design of DeepIQ
directly addresses this aspect.
DeepIQ system. The vast majority of solving methods
proposed in the above-cited papers rely on application of
specifically-defined sets of rules reflecting various types
of possible interrelations between objects (numbers, words,
shapes, etc.). In this paper we take a different approach and
focus on the process of learning the feature-based representa-
tion and solution principles of the IQ test instances. The goal
is accomplished by means of learning the relations between
pairs of images in a way that allows for successful knowledge
transfer and its inter-domain usage (transfer learning) [18],
[19]. The main idea of transfer learning is applying knowledge
gained during solving one problem (source domain) to solving
different, but related problem (target domain). In a situation
when no labeled data in the target domain are available and
there are ample labeled data in the source domain, the problem
is called transductive transfer learning (TTL) [19]. TTL was
successfully applied, for instance, to text categorization [20],
[21] or image recognition [22].

Our approach employs a deep autoencoder (AE) which is
trained to learn a common feature-based representation of
various figure images characterized by their shape, rotation,
size and shading. Based on this common representation an
ensemble of shallow multilayer perceptrons (MLPs) are trained
to detect feature-related differences between a pair of figure
images presented in their input layers. The outputs of these
MLPs are then combined to provide the ultimate assessment
of feature-based differences between the two input images.
A baseline idea of DeepIQ is inspired by the human way of
solving IQ tests [23].
Contribution. We attempt to design a system capable of
efficiently solving the RM instances, based on the training
process performed on the set of figures (shapes) different
from those used in the test phase. The challenge consists
in learning a feature-based RM representation in a general,

(a) Left and right RM diagonals.
Three of each kind.

(b) An RM example.

Fig. 1: RM diagonals and an RM example. A figure fitting the blank
space is the middle one from the answer vector.

domain-independent way that allows their subsequent ap-
plication to RMs constructed based on new set of figures,
previously unknown to the system. Experimental results prove
high efficacy of the transfer learning approach implemented in
DeepIQ. The system exceeds human average scores by a clear
margin on a subset of the most challenging test instances.

Furthermore, it is demonstrated that the same system, with
only modified scoring function, can be successfully applied to
a different type of IQ test problems (the odd-one-out problem)
with no need for additional training.

II. RAVEN’S MATRICES AND HUMAN IQ TESTS

RMs represent the most popular kind of IQ tests. Their
baseline idea was introduced by [24] and later on they have
become one of the most popular methods of measuring human
mental abilities [11]. Despite certain limitations, the main ad-
vantage of RMs is their universality, as they are independent of
nationality, age, knowledge and language [12]. RMs are a well-
established method, widely researched by psychologists [23]
and used, for instance, in Mensa qualification tests [25].

A single test instance is in the form of a 3× 3 grid, whose
8 cells contain appropriately chosen figures. The 9th, bottom-
right cell is empty and the goal is to pick one out of 5 proposed
candidate answers, to fill this blank cell, which fits the set of
relations defining this particular RM. Each such relation is
a rule that operates on the following attributes of the figures:
shape, rotation, size and shading. These attributes may change
vertically (row by row), horizontally (column by column) or
diagonally, in each case according to a given rule. Please note,
that each RM has 3 left and 3 right diagonals - see Figure 1a.
An example of RM is presented in Figure 1b in which the
size of figures changes in a column-wise manner. Clearly,
the answer is the middle figure - a big-size diamond shape
without shading. For further information regarding the design
principles of IQ tests the reader can refer to [11].

Following [26] all RM tests can be categorized into 4
classes based on the number of relations that define them (cf.
Figure 2):

• a single relation - only one feature of the figures changes
in either rows, columns, left-diagonals or right-diagonals,
the other features remain unchanged;

• two relations - exactly two features change;
• three relations - exactly three features change;



(a) RM with one
relation.

(b) RM with two
relations.

(c) RM with three
relations.

(d) RM with logic
relation.

Fig. 2: Examples of possible types of RMs. In fig. (a), shapes of the
figures change column-wise. In fig. (b), rotation of the figures and
shading change respectively in left diagonals and right diagonals.
In fig. (c), figure shapes in subsequent rows, rotation angles in
subsequent columns and shading in subsequent left diagonals change
simultaneously. In fig. (d), the right column is the result of a pixel-
based logic OR operation of the left and middle columns. In this
paper, test problems of types (a), (b) and (c) are considered.

• logic relations - AND, OR or XOR operations are per-
formed on the figures in rows, columns or diagonals.

In this study we will concentrate on the first three groups.
While logic relations may pose a challenge for humans, they
are fairly easy to detect in autonomous way by machines,
simply by checking all possible pixel-based logic operations
in all 4 directions (rows, columns and diagonals).

III. DeepIQ APPROACH

The proposed DeepIQ system for solving RMs is composed
of the three main modules:

• a deep AE which provides compressed representation of
individual RM cells,

• four feature related MLPs,
• a scoring module.

The role of the first module is to learn a common, comprehen-
sive representation of figures appearing in RMs. Its last layer
provides a compressed 16-element real vector representation
of a given RM cell presented as the input - see Figure 4.

The second module, an ensemble of 4 MLPs, is used
to detect specific feature-based differences between the two
cells presented in their input layers. These MLPs are trained
on pairs of 16-element compressed AE representations of
artificially generated RM cells (figures).

The third module computes a degree of fit of each of 5
candidate answers. First, a candidate answer is temporarily
added to RM (in a blank cell), and then its level of fitness
is determined based on the monotonicity of changes of all 4
figure features, separately in rows, columns, left diagonals and
right diagonals.

Figure 3 presents an overview of the system information
flow in the test phase. First, the RM which is to be solved
is presented in the AE input layer. Next, all 8 cells are
transformed into their compressed AE representations. Then,
based on these AE representations, feature related MLPs
detect differences between any two neighboring cells in rows,
columns and diagonals. Finally, for each candidate answer, its
fitness score is calculated based on the MLPs outputs, and the
best fitted one is selected as an RM solution.

Fig. 3: DeepIQ information flow in the test phase.

The following subsections introduce the three above-
mentioned DeepIQ components in more detail and further
explain their usage in the test phase.

Deep autoencoder

Each of 9 cells of RM is represented as a square image
of size n× n pixels which present one figure (except for the
bottom-right cell, which is empty). Each of these 8 non-empty
images is first transformed into a vector of n2 integer numbers
from the interval [0, 255], which correspond to gray scale
intensity of the pixels. Next, each such vector is compressed by
AE to a 16-element real vector. AE is composed of 4 encoding
layers, respectively with 2500 (input layer), 1024, 256, 16
(compression layer) neurons (as depicted in Figure 4) and
3 decompression layers with 256, 1024, 2500 (output layer)
neurons, resp. All layers (shallow AEs) are trained with the
ReLU activation function.

Fig. 4: Deep autoencoder architecture. Its last layer provides a
compressed version (16 numbers) of the input image.

We decided to use deep AE architecture instead of CNNs
(which are generally considered to be the first choice for image
feature extraction tasks) for the two following reasons. Firstly,
one of the main motivations in designing the system was
to address the problem of highly limited availability of real-
life test examples, and therefore build the underlying feature
representation in the way that abstracts from particular RM
figures to the highest possible extent. Consequently, instead of



using a discriminative model (such as CNN) an unsupervised
approach was preferred. Secondly, CNNs were previously
applied to solve RMs in [17] and [16], so their comparison
with the outcomes of AE based approach seems to be an
interesting and natural direction.

Feature related perceptrons

The role of this module is to percept feature-based dif-
ferences between two figure images presented in the input.
To this end 4 MLPs are used, each dedicated to detection
of differences in one of the 4 examined features, i.e. shape,
rotation, size and shading. Input pairs are RM cells compressed
by deep AE, and the MLP output describes the way in
which the first image differs from the second one regarding a
particular feature, but with no reference to other features. For
instance, the size-related MLP takes into account differences
in size regardless of the shape, rotation and shading of the
figures.

All 4 networks are 3-layer MLPs with 32 inputs (two cell
representations), 16 neurons in the first hidden layer, 8 neurons
in the second hidden layer, and either 2 or 5 output layer
neurons, as explained below. In the output units a Softmax
activation function is used and in all other layers the ReLU
function is applied.

The shape-related MLP has two output units. The first one is
active if no shape difference is detected, the other one activates
if the shapes are perceived as different.

The remaining 3 MLPs (for detection of differences in
rotation (r), size (s) and shading (h), resp.) are composed
of 5 output neurons. Their output is interpreted as a degree
to which a given feature in the first input image differs from
the same feature in the second input image. More precisely, a
possible range of changes of feature k ∈ {r, s, h} is divided
into 5 pairwise equal disjoint intervals dkj , j ∈ {0, 1, 2, 3, 4}.
Activation of the m-th output neuron (m ∈ {0, 1, 2, 3, 4}) in
the k-th MLP denotes the case j1−j2 = m (mod 5), where dkj1
and dkj2 are intervals to which a value of feature k belongs, in
the first and the second image, resp. For example, the range of
figure rotation feature is divided into the following intervals:
dr0 = [0, 25π), d

r
1 = [ 25π,

4
5π), d

r
2 = [ 45π,

6
5π), d

r
3 = [ 65π,

8
5π)

and dr4 = [85π, 2π]. If, for instance, the rotation angle of the
first figure equals π

2 , i.e. ∈ dr1 and of the second one is equal
to 3

2π, i.e. ∈ dr3, then the third output neuron (m = 2) should
be activated in the rotation-related MLP.

For the size feature, possible values range from n
2 to n as the

size is interpreted as a maximum distance (in pixels) between
two non-white pixels horizontally or vertically in straight (non
rotated) figure. Possible values of shading range from 0 to 255
and denote the level of grayness of pixels inside the figure
shape.

Please note, that the above-mentioned feature values are
computed only for training instances during their generation.
In the test phase they are estimated autonomously by the
DeepIQ system.

Figure 5 presents an architecture of the feature-related
module with two example images shown in the input. Since the

input figures are of the same shape, the first (leftmost) output
neuron fires in the shape-related MLP. A difference in rotation
angle equals 7

4π and therefore fits the highest values interval
(the rightmost output neuron is activated in the second MLP).
The figures are of the same size, hence the first neuron is
active in the size-related MLP output layer. The images differ
in shading, the left one is around 50% gray and the right one
is white. Consequently, the third output neuron is activated in
the shading-related MLP.

Fig. 5: An architecture of the feature-related module with two
example figure images shown in the input. Figures have the same
shape and size, differ “moderately” in shading and “significantly” by
rotation angle.

Answers scoring module

The third module evaluates a degree of fitness of each
candidate answer. For each candidate answer, for each feature,
patterns of changes in rows, in columns and in diagonals
are detected by multiple use of the first two modules, and
consequently, the estimated fitness score is computed for that
answer. For instance, for a given feature (say rotation), the
pattern of changes in a given row (say the middle one) is
calculated by applying the above-described pair-based com-
parison twice: for cells (2, 1) and (2, 2), and cells (2, 2) and
(2, 3) of a given RM, using the rotation-related MLP.

Formally, let fk(xi1j1 , xi2j2) be the output neuron with
the highest activation value in the k-th feature related MLP
(where k ∈ {p, r, s, h}, p denotes shape) in response to
the compressed representation of images at positions (i1, j1)
and (i2, j2) in the RM, respectively. fk is interpreted as a
distance of feature k between these two images. Scoring sai
of candidate answer ai, i = 1, . . . , 5 is computed as follows.
Image ai is placed in the blank field of RM (position (3, 3))
and the following procedure is executed:
sai := 0
if fk(x11, x12) = fk(x12, x13) and
fk(x21, x22) = fk(x22, x23) then
if fk(x31, x32) = fk(x32, x33) then

sai := sai + 1
else

sai := sai − 1

In the above listing, first the consistency of changes, related
to feature k, between the left and middle vs. middle and right
elements in the first two rows is verified. If the changes are



Generated tests. Sandia tests.

Fig. 6: Example G-set and S-set instances.

consistent, the same pattern of changes is expected to appear
also in the last row. If this expectation is confirmed, the
scoring is incremented, otherwise, it is decremented. In the
case the changes tested in either of the two if statements are
inconsistent, the score does not change, as it is assumed that
the rules defining this particular RM are not applied in rows
but in other direction(s).

The above procedure is repeated for each of the 4 features.
Analogous procedures are also executed for columns, right
and left diagonals and the scores sai are summed up. Conse-
quently, the final score is an integer from interval [−16, 16].
The highest possible score would mean a consistence of
monotonicity of all 4 features in all 4 directions. A candidate
answer with the highest score is selected as the RM solution.

In summary, the proposed system is motivated by design
principles of IQ test problems and furthermore inspired by the
human way of solving these puzzles. First of all, people are
very efficient in extraction of plain features from the images.
In DeepIQ this task is accomplished by the first module - deep
AE. In the next step, humans determine differences between
particular figures with respect to the extracted features what
corresponds to the MLP-based feature comparison. The last
module (a scoring method) is motivated by the results of an
experiment with the gaze focus movement tracing of humans
solving IQ tests [23], which revealed that in most of the cases
people first examine an RM by rows, columns and diagonals,
and only then select an answer.

IV. EXPERIMENTAL EVALUATION

As we have mentioned in the Introduction, one of the
biggest impediments when working on ML approaches to
solving human IQ tests is the lack of publicly available
representative sets of example problems. IQ tests are strictly
confidential and larger databases are only available to qualified
psychologists and kept in high secrecy by them. For this reason
we could not rely on real IQ test examples, and therefore,
training of DeepIQ was performed on a set of artificially
generated instances (denoted by G-set) that follow design
principles of IQ tests, but use a set of figures different from
that utilized in the real tests. In the test phase, two scenarios
were considered. In the first one, new examples from G-set
(unknown to the system) were used to test the in-domain
system efficiency. In the other one, an entirely different data
set (S-set), with figure images not related to the training data
and not presented to the system beforehand, was used.

Training data and training procedure
Training set was composed of 5000 figures with shapes

randomly sampled from a predefined set of 15 figures, pre-
sented in Figure 7 (top row). For each sampled figure, its
size, rotation and shading were randomly selected from the
following ranges: size (width and height) from 25 to 50 pixels,
rotation from [0, 2π) interval (a real value), and shading -
integer from [0, 255]. Each figure was then placed centrally
in a 50 × 50 pixels square cell to form the final figure
image. Deep AE was trained on 5000 samples of the above-
described through 1000 epochs. Examples of AE post-training
reconstruction quality are presented in Figure 8.

Fig. 7: A set of 15 figure images used to design artificially generated
RMs in the training phase (top row), and figure images from Sandia
tests (bottom row).

Fig. 8: Sample images (top row) and their autoencoder reconstruc-
tions (bottom row). High degree of pairwise similarity illustrates high
quality of AE compressed representation.

The second DeepIQ module, composed of 4 feature-related
MLPs, was trained on pairs of images. For each MLP a
training pair was generated in the following way. First, a new
image with randomly selected figure features was generated
according to the same procedure as in the case of AE training.
Then, the second image was obtained by copying the first one
and randomly changing the value of one particular feature to
which a given MLP was devoted. Images were presented in
the MLPs input layers in their compressed form, encoded by
AE. Each of the 4 MLPs was trained on 5000 pairs of images
through 250 epochs. These parameters were set experimentally
based on a couple of runs and error rate observation on a
validation data (a different set of 500 pairs). Yet another set of
1000 pairs was generated for post-training evaluation, whose
results are presented in Table I. As can be seen in the table,
differences between two input images with respect to each of
the 4 features were detected with high accuracy close to or
above 90%.

Feature shape rotation size shading
Training 92.2% ± .2% 94.3% ± .2% 93.8% ± .3% 95.7% ± .1%

Post-training 87.3% ± .4% 91.4% ± .5% 90.3% ± .3% 92.4% ± .4%

TABLE I: Averaged accuracy of feature-related MLPs in the training
and post-training evaluation.

Testing data
Two sources of RMs were used in the final evaluation of

the DeepIQ system.



G-set. The first set (G-set), already mentioned in the context
of AE training, was generated in accordance with the RM
design principles described in the literature [23], [14]. While
creating a new test instance, our RM generator randomly
sampled direction (rows, columns, or any of the two types
of diagonals) and type (increase, decrease) of a change and
then applied it to a randomly sampled feature. A total of 1500
RMs with different difficulty levels (500 for each number of
relations described previously and illustrated in Figure 2) were
generated [27]. Figure images in these tests were randomly
selected using the same procedure and the same set of 15
shapes depicted in the top row of Figure 7, as in the training
process.
S-set. Sandia matrices (denoted by S-set) were developed at
Sandia National Laboratory by [26] with the matrix generation
software. The set of figure shapes used for creating the S-
set is presented in the bottom row of Figure 7. A subset of
500 problems from this study was used in our experiments
for the evaluation of both the DeepIQ performance and the
transductive transfer learning properties of the system.

Please observe that although both sets refer to the same
base problem (solving RMs) their figure distributions are
completely different. Not only the S-set contains figures of
different shapes than in G-set, but also uses discrete sets of
possible feature values: 4 degrees of shading, 8 values of
rotation angle (multiples of π

4 ), and 5 predefined values for
size. On the contrary, feature values in G-set are within their
full-range, i.e. all 256 shading intensities, all rotation angles
between 0 and 2π (real values), as well as all sizes between
25 and 50 pixels in each dimension are possible.

Test results

Due to severely limited availability of the real IQ test data,
training procedure was performed on G-set instances, and both
G-set (its another part) and S-set were used for testing the
accuracy of the system and its transfer learning ability.

Experimental results of DeepIQ evaluation on both RM sets
with various problem difficulty levels are presented in Table II.
On G-set problems DeepIQ achieved the average accuracy of
74.7%, which dropped slightly to 71.8% on S-set instances.
Considering the fact that the shapes, as well as shadings,
rotations and sizes of G-set figures clearly differ from those
of Sandia set, we believe that qualitatively comparable perfor-
mance on both sets should be mainly attributed to the design of
the training procedure of the DeepIQ modules which facilitates
transfer learning. Universality of AE figure representation and
the focus on differences between feature attributes instead of
their absolute values in the MLPs training, are most probably
the decisive factors in the overall very promising performance.

The last row of Table II presents human results on Sandia
matrices [26]. Surprisingly, a correlation between a difficulty
level and accomplished results differs between humans and
DeepIQ. Intuitively, the more relations in the test, the more
difficult it is, and this rule clearly applies to humans. However,
for DeepIQ, the higher difficulty (in human standards) means
the higher correctness. A possible explanation is that in the

TR → TS 1 relation 2 relations 3 relations
DeepIQ G → G 73.3% ± .7% 74.1% ± .5% 76.0% ± .6%
DeepIQ G → S 70.2% ± .4% 71.9% ± .6% 73.2% ± .2%
Humans → S 87.0% 72.0% 55.0%

TABLE II: DeepIQ accuracy on the RMs generated by the authors
(G-set) and on Sandia RMs (S-set). The results are averaged over 10
independent runs, i.e. in each case the system was trained 10 times
on randomly generated training sets and tested on a common test set
to verify repeatability of the training process. The last row presents
human results on the S-set.

tests with more relations, a score calculated by the third
DeepIQ module is potentially higher, since the correct answer
fulfills more rules. Consequently, the gap between scores
assigned to correct and incorrect answers is bigger, what
results in greater tolerance of the system to potential errors
made in the lower modules.

To the best of our knowledge, there is only one work
devoted to solving RMs with deep learning techniques [17],
however relying on different RM difficulty categorization,
what makes a direct comparison infeasible. On a subset of 108
Sandia RMs including both 1-relation and 2-relation problems
(no results were reported for 3-relation RMs) the accuracy
reported in [17] reached the level of 78.7%, clearly higher than
that of DeepIQ. At the same time, it should be stressed that
while the system presented in [17] was particularly tuned to
solving S-set RMs with 1 or 2 relations, our approach allows
solving also more difficult RMs with 3 relations, for which
the system really demonstrates its strength and advantage
over humans. Furthermore, the range of feature changes in
DeepIQ design is continuous, as opposed to discrete steps
of changes implemented in [17]. Moreover, a design of the
proposed system allows its training on one data set and testing
on another data set, composed of figures of different shapes.
To the best of our knowledge such a property has not been
demonstrated in any of the previous works.

Supplementary tests

In order to make a comparison with [17] fair, the experiment
was repeated with a new D-set, created in exactly the same
way as G-set, except that possible values of features were
restricted to predefined small discrete sets - similarly to the S-
set generation. The results are presented in Table III. Clearly,
the restriction of feature values to discrete-valued subsets,
improved DeepIQ accuracy on test instances from both D-
set (out-of-sample) and S-set (whose design parameters were
restricted in a similar way).

While these results are encouraging and on par with those
of [17], we would like to emphasize that the main assets
of DeepIQ are transfer learning capability and the ability
of dealing with continuous ranges of features. Both these
aspects give promise for system application to other types of
IQ problems, as well as its utilization in other domains.

Due to continuous ranges of features, their certain com-
binations may lead to RMs which are very demanding, also
for humans. This is particularly the case when figure sizes in
the answer set are close to the threshold value and fall into



TR → TS 1 relation 2 relations 3 relations
DeepIQ D → D 78.1% ± .4% 79.2% ± .3% 80.3% ± .3%
DeepIQ D → S 76.7% ± .2% 78.2% ± .2% 79.4% ± .4%

TABLE III: Accuracy of DeepIQ on the generated RMs with re-
stricted feature ranges (D-set). In each case the results are averaged
over 10 independent runs - see caption of Table II.

different categories despite tiny size differences. Three test
instances of this kind are presented in Figure 9.

Fig. 9: Examples of challenging RM tests. A correct answer is
outlined with a solid line and the one proposed by DeepIQ with
a dashed line. In all three cases the differences are minute.

Odd-one-out

In order to support our claim about potential applicability of
DeepIQ to other types of IQ tests, the system was employed to
solving the odd-one-out (O1O) problem, which is less popular
than RMs, but still used in IQ tests [28]. The task in O1O
is to point the oddest figure image out of given n images,
i.e. the one which is the most distinct with respect to size,
shape, shading, rotation. Besides its usage in IQ tests, O1O has
certain practical applications, for instance in waste selective
sorting [29].

Due to the lack of formal definition of the problem, there
exist some ambiguity in interpretation of the oddest term [30].
In order to address this problem and eliminate the possibility
of ambiguous answers we adopted the following O1O con-
struction rule. In each O1O instance composed of n figures
yielded by our generator, there exists exactly one subset of
n− 1 figures with a common subset of c ∈ {1, 2, 3} features,
and these features are different in the remaining figure image.
Under such assumption the remaining figure is, by definition,
treated as the oddest one. Even though in certain cases the
above definition of the oddest figure may be disputable, it
was adopted in this work as it leads to well-defined problem
instances with solutions generally consistent with intuition.
The number of figures (n) and the value of c determine the
level of difficulty of an instance. Four examples of generated
O1O problems are presented in Figure 10.

Fig. 10: Example odd-one-out tests. a) the third image is an answer
(different shading - all the others are black). b): all figures but the
last one are big. c): a rectangle has a different shape and shading. d):
the answer is the 4th figure - all the others are gray.

Number of figures (n)
4 5 6

G-set S-set G-set S-set G-set S-set

c
1 93.2% ± .4% 91.5% ± .2% 93.1% ± .2% 91.3% ± .1% 93.3% ± .4% 91.1% ± .2%
2 95.2% ± .2% 91.2% ± .5% 95.5% ± .4% 92.1% ± .2% 95.2% ± .4% 92.1% ± .1%
3 96.2% ± .4% 92.5% ± .1% 96.4% ± .3% 92.7% ± .4% 96.3% ± .3% 92.9% ± .3%

TABLE IV: DeepIQ accuracy on G1-set and S1-set for various
problem sizes (n) and numbers of common features in the subset
of n − 1 figures (c). In each case the results are averaged over 10
independent runs - see caption of Table II.

The first two modules (deep AE and feature related MLPs)
of the trained instance of DeepIQ previously used to solving
RMs were applied to the O1O task, with no additional training
or tuning of any kind. Knowledge about relations between
pairs of images, learnt in the RM related experiment based
on G-set training figures, was used directly in the new type
of problem. Only the scoring module was adopted to address
specificity of the new problem.
Test results. Similarly to solving RMs, tests were executed
on two data sets - the instances generated based on the
shapes presented in the top row of Figure 7 (G1-set) and
Sandia-inspired shapes (S1-set) depicted in the bottom row
of Figure 7.

Table IV presents DeepIQ accuracy for various selections
of c and n, for both data sets - in each case based on 1000 test
images [27]. In all cases the results exceed 90%. Similarly to
the case of solving RMs, the accuracy on G1-set is slightly
higher (about 1−2%) than on the S1-set, and additionally, the
higher number of relations defining an instance (more features
in common and/or bigger problem size) results in higher
correctness. Despite our efforts, we could not find any other
AI system designed to solving O1O problems and therefore
cannot make any literature comparisons. We believe, however,
that the accuracy above 90% without any re-training or tuning
of the system, confirms potential of DeepIQ to solve other
types of relation-based IQ test problems, and consequently its
generality. Please recall that, similarly to the case of RMs,
continuous ranges of possible figure transformations may lead
to puzzles which are challenging even for humans. Three
examples of this kind are presented in Figure 11.

Fig. 11: Examples of challenging odd-one-out tests. A correct /
DeepIQ answer is outlined with a solid / dashed line, resp. a) all
triangles are right except for the 2nd one which is equilateral. b) a
distinctive feature is size (not shading as chosen by the system). c)
all figures but the 4th one are in the same size category (the 4th one
falls into smaller range).

V. CONCLUSIONS

The paper presents an ML approach to solving IQ test prob-
lems in a realistic scenario, in which the availability of training
samples is strictly limited and the exact design of figures



(shape, size, rotation and shading) is not known a priori. For
this reason, the first two components of the system (deep AE
and feature-related MLPs) are trained on artificially generated
images, with no knowledge about the appearance of target
images. The results of experimental evaluation of DeepIQ
indicate that the system is able to transfer feature-related
knowledge learnt in one set of images (G-set) to another set of
– significantly different – images (S-set). The first two system
components are to a large extent universal and could be applied
to other types of IQ test problems or to other tasks which are
based on discrimination between feature values, e.g. in Bio-
metrics. The above statement about universality of the system
was supported by additional experiments performed with odd-
one-out problems, whose underlying concept and specificity
are different from those of RMs. While solving RMs relies on
detection and quantification of similarities, the odd-one-out
tests are focused on feature based differences between figure
images. Both tasks are solved using the same system with one
common training phase and without any additional problem-
related tuning or re-training. The only changes are introduced
in the scoring module which, by definition, is devoted to reflect
specificity of the solved problem.

Promising results (accuracy above 90%) support the claim
about the system’s ability to transfer knowledge not only
between different data sets within the same IQ task, but also
between different types of IQ problems.

The paper demonstrates DeepIQ ability to detect differences
(and assess their range) in figure shapes, sizes, rotations and
shadings. On a general note, it seems reasonable to assume that
in a similar manner could it be applied to determine differences
between other image features (e.g. the number of figure edges
or the number of elements in multi-figure images). Verification
of this claim is one of our current research goals.
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