Knowledge Representation and Reasoning

Lecture 7:
Classical Logic I

dr Anna Maria Radzikowska
Warsaw University of Technology
Faculty of Mathematics and Information Science
E–mail: annrad@mini.pw.edu.pl
The notion of logic

By a *logic* we mean a triple $\text{Log} = (\mathcal{L}, \Sigma, \models)$, where

- \mathcal{L} is the *language* of Log, i.e., the set of all formulas in Log
- Σ is the class of all frames used for interpretation of formulas
- $\models: 2^\Sigma \rightarrow 2^\mathcal{L}$ is the consequence mapping which for each set \mathcal{M} of frames determines the set of formulas *satisfied* in every frame from \mathcal{M}.

Classical logic:

- Propositional Calculus
- First Order Predicate Calculus.
Propositional Calculus
Propositional Calculus – Syntax

A language of a propositional calculus (PC) is determined by the following disjoint sets of symbols:

- a set Var of propositional variables
- the truth constant \top
- logical connectives \neg and \rightarrow
- parentheses (and).

The **language** of PC is the smallest set of the following expressions:

- $Var \subseteq \mathcal{L}$
- $\top \in \mathcal{L}$
- if α, β are formulas, then so are $\neg \alpha$ and $\alpha \rightarrow \beta$.
Propositional Calculus – Syntax (cont.)

The remaining symbols are defines as:

- the truth constant \(\bot : \bot \overset{def}{=} \neg \top \)

- logical connectives:
 - disjunction: \(\alpha \lor \beta \overset{def}{=} \neg \alpha \rightarrow \beta \)
 - conjunction: \(\alpha \land \beta \overset{def}{=} \neg(\neg \alpha \lor \neg \beta) \)
 - equivalence: \(\alpha \equiv \beta \overset{def}{=} (\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha) \).
Semantics of PC

Let \mathcal{L} be a language of propositional logic. An *interpretation* of \mathcal{L} is a mapping $m : Var \rightarrow \{0, 1\}$.

The mapping m are easily extended for the set \mathcal{L} of all formulas.

A formula $\alpha \in \mathcal{L}$ is *true in* m (m is a *model* of α), in symbols $m \models \alpha$, iff $m(\alpha) = 1$.

Let $\alpha \in \mathcal{L}$ be a formula. We say that α is

- **satisfiable** iff it has a model; otherwise it is called **unsatisfiable**
- **tautology**, written $\models \alpha$, iff every interpretation of \mathcal{L} is a model of α
Most famous tautologies

	= \(\alpha \lor \neg \alpha \)	**Excluded Middle Law**
	= \(\neg (\alpha \land \beta) \equiv \neg \alpha \lor \neg \beta \)	**De Morgan Law**
	= \(\neg (\alpha \lor \beta) \equiv \neg \alpha \land \neg \beta \)	**De Morgan Law**
	= \(\neg \neg \alpha \equiv \alpha \)	**Double Negation Law**
	= \(\alpha \lor (\beta \land \gamma) \equiv (\alpha \lor \beta) \land (\alpha \lor \gamma) \)	**Distributive Law**
	= \(\alpha \land (\beta \lor \beta) \equiv (\alpha \land \beta) \lor (\alpha \land \gamma) \)	**Distributive Law**
	= \(\alpha \land \beta \equiv \beta \land \alpha \)	**Commutative Law**
	= \(\alpha \lor \beta \equiv \beta \lor \alpha \)	**Commutative Law**
	= \(\alpha \rightarrow \beta \equiv \neg \beta \rightarrow \neg \alpha \)	**Contraposition Law**
The validity problem is the task to determine whether or not a given formula is a tautology.

In virtue of the truth-table method we have the following fact.

Theorem 7.1 The validity problem for classical propositional calculus is decidable.
Let \mathcal{L} be a language of (classical) propositional logic. Any subset $T \subseteq \mathcal{L}$ is called a \textit{theory}.

For a set $T \subseteq \mathcal{L}$ of formulas and the set \mathcal{M} of interpretations of \mathcal{L}, $\mathcal{M} \models T$ means that every formula $\alpha \in T$ is true in every interpretation $m \in \mathcal{M}$.

Two theories $T_1, T_1 \subseteq \mathcal{L}$ are called \textit{equivalent}, written $T_1 \Leftrightarrow T_2$, iff $\text{Mod}(T_1) = \text{Mod}(T_2)$, where $\text{Mod}(T)$ stands for the set of all models of T.

A reasoning rule

A reasoning rule

\[r = \frac{\alpha_1, \ldots, \alpha_n}{\gamma} \]

is a partial mapping \(r : \mathcal{L}^n \to \mathcal{L} \). For \(\alpha_1, \ldots, \alpha_n \) from the domain of \(r \), \(\alpha_1, \ldots, \alpha_n \) are premises of \(r \) and \(\gamma = r(\alpha_1, \ldots, \alpha_n) \) is the consequence of \(r \).

A reasoning rule \(\frac{\alpha_1, \ldots, \alpha_n}{\gamma} \) is called sound iff \(\{\alpha_1, \ldots, \alpha_n\} \models \gamma \).
A deduction system (axiomatization) is a triple \(DS = (L, A, R) \), where

- \(L \) is a language of propositional logic,
- \(A \subseteq L \) is the set of logical axioms, and
- \(R \) is the set of reasoning rules.

DS is called sound iff

- each formula \(\alpha \in A \) is a tautology
- each reasoning rule \(r \in R \) is sound.
Derivability

Let $DS = (\mathcal{L}, \mathcal{A}, \mathcal{R})$ be an axiomatization, $T \subseteq \mathcal{L}$, and let $\alpha \in \mathcal{L}$.

- A **formal proof** of α in DS from T is a sequence $(\alpha_0, \ldots, \alpha_k)$ of formulas such that:
 - $\alpha_0 \in \mathcal{A} \cup T$
 - $\alpha_n = \alpha$
 - for every $i = 1, \ldots, k$, either $\alpha_i \in \mathcal{A} \cup T$ or α_i is a direct consequence of $\alpha_0, \ldots, \alpha_{i-1}$ wrt some reasoning rule $r \in \mathcal{R}$.

- α is called **derivable** from T wrt DS, written $T \vdash_{DS} \alpha$, iff there exists a formal proof of α from T in DS.

- Derivability operator Th: for any $T \subseteq \mathcal{L}$, $Th(T) = \{ \alpha : T \vdash_{DS} \alpha \}$.

- T is **consistent** iff $T \not\vdash \alpha$ for some formula α.
Soundness and Completeness

Let $DS = (\mathcal{L}, \mathcal{A}, \mathcal{R})$ be an axiomatization.

- DS is **sound** iff for every theory $T \subseteq \mathcal{L}$ and for every $\alpha \in \mathcal{L}$,
 \[T \vdash_{DS} \alpha \implies T \models \alpha \]

- DS is called **complete** iff for every theory $T \subseteq \mathcal{L}$ and for every formula $\alpha \in \mathcal{L}$,
 \[T \models \alpha \implies T \vdash_{DS} \alpha. \]
The most popular (sound and complete) axiomatization of propositional logic:

- **Logical axioms:**
 - \top
 - $\alpha \to (\beta \to \alpha)$
 - $(\alpha \to (\beta \to \gamma)) \to ((\alpha \to \beta) \to (\alpha \to \gamma))$
 - $(\alpha \to \beta) \to ((\alpha \to \neg \beta) \to \neg \alpha)$

- **Reasoning rule:** *Modus Ponens* \[\frac{\alpha, \alpha \to \beta}{\beta} \]
First Order Predicate Calculus
First–Order Predicate Calculus FOPC

An alphabet \mathcal{A} of FOPC consists of:

- a denumerable set of variables Var
- a denumerable set of *function symbols* \mathcal{F}; for each $f \in \mathcal{F}$ there is uniquely assigned a non–negative integer called *arity* (number of arguments)
- a denumerable set \mathcal{R} of *predicate (relation) symbols*; to each predicate $R \in \mathcal{R}$, there is uniquely assigned a non–negative integer called *arity* (number of arguments)
- the truth–constant \top
- logical connectives \neg and \rightarrow
- a quantifier \forall
- parentheses $(,)$.

dr Anna M. Radzikowska, Knowledge Representation and Reasoning 7, – p.16/30
Abbreviations

- Another truth–constant \(\textit{falsity} \): \(\bot \overset{\text{def}}{=} \neg \top \)

- The remaining logical connectives:

 \[
 \begin{align*}
 \alpha \lor \beta & \overset{\text{def}}{=} \neg \alpha \rightarrow \beta \\
 \alpha \lor \beta & \overset{\text{def}}{=} \neg (\neg \alpha \land \neg \beta) \\
 \alpha \equiv \beta & \overset{\text{def}}{=} (\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)
 \end{align*}
 \]

- **Existential quantifier**: \(\exists x. \alpha(x) \overset{\text{def}}{=} \neg \forall x. \neg \alpha(x) \).
A term over \mathcal{A} is an expression of the form:

- each variable $x \in \text{Var}$ is a term
- if τ_1, \ldots, τ_n are terms, $n \geq 0$, and $f^{(n)} \in \mathcal{F}$ is a function symbol of the arity n, then $f^{(n)}(\tau_1, \ldots, \tau_n)$ is a term
- no other symbols are terms.

E.g. $x, x + y, \text{father}(x), \text{Child}(\text{John}, \text{Mary})$.
Formulas of FOPC

- An **atomic formula** (atom) is an expression of the form:
 - \top is an atom
 - if τ_1, \ldots, τ_n are terms and $R^{(n)} \in \mathcal{R}$ is a predicate symbol of arity n, then $R^{(n)}(\tau_1, \ldots, \tau_n)$ is an atom
 - no other expressions are atoms.

- A **formula** is an expression of the form:
 - each atom is a formula
 - if α and β are formulas, then so are $\neg\alpha$, $\alpha \land \beta$, $\alpha \lor \beta$, $\alpha \rightarrow \beta$, $\alpha \equiv \beta$, $\forall x.\alpha$
 - no other expressions are formulas.
For example,

\[\text{Student(Brother}(x)\text{)} \]
\[\forall x, y. \text{Likes}(x, y) \land \text{HasBirthday}(y) \rightarrow \text{GivesPresent}(x, y). \]

A formula is called **closed** (a sentence) iff all variables occurring in \(\alpha \) are bound by some quantifier in \(\alpha \); otherwise it is called **open**.

A variable \(x \) is **free** in a formula \(\alpha \) iff \(x \) is not bound by any quantifier in \(\alpha \).

For example,

\[\forall x. \exists y. \text{Likes}(x, y) \quad \text{closed formula} \]
\[\forall x. \text{IsFriend}(x, John) \rightarrow \text{Likes}(x, y) \quad \text{open formula}. \]

A **theory** of FOPC is a set of closed formulas.
Examples: Representation issues

Consider sentences:

- All students are adults.
- Some children do not learn English
- Each student of Computer Science is examined by a computer science researcher.

Representation in FOPC:

- $\forall x. \text{Student}(x) \rightarrow \text{Adult}(x)$
- $\exists x. \text{Child}(x) \land \text{LearnsEnglish}(x)$
- $\forall x. \text{StudentCS}(x) \rightarrow (\exists y. \text{Examines}(x, y) \land \text{ReasercherCS}(y))$.
Semantics of FOPC

Let \mathcal{L} be a language of FOPC. A *frame* for \mathcal{L} is a structure $\Phi = (D, m)$ where

- D is a nonempty domain
- m is a mapping which assigns:
 - to each function symbol $f \in \mathcal{F}$ of arity n, a mapping $m(f) : D^n \to D$
 - to each predicate symbol $R \in \mathcal{R}$ of arity n, a relation $m(R) \subseteq D^n$.
Valuation of terms

Let $\Phi = (D, m)$ be a frame for \mathcal{L}.

- An assignment over Φ is a mapping $a : Var \rightarrow D$.
 The set of all assignments over Φ will be denoted by $As(\Phi)$.

- Given a term τ, a valuation of τ over Φ wrt $a \in As(\Phi)$, written $val^\Phi_a(\tau)$, is defined as:
 - if τ is a variable x, then $val^\Phi_a(x) = a(x)$
 - if τ_1, \ldots, τ_n are terms, $f \in \mathcal{F}$ is a function symbol of arity n, and $\tau = f(\tau_1, \ldots, \tau_n)$, then
 $$val^\Phi_a(f(\tau_1, \ldots, \tau_n)) = m(f)(val^\Phi_a(\tau_1), \ldots, val^\Phi_a(\tau_n))$$

E.g., for $D = \mathbb{N}$, $+$ interpreted as usual addition, and a given by $a(x) = 5$, $a(y) = 7$, we have:

$$val^\Phi_a(x + y) = val^\Phi_a(x) + val^\Phi_a(y) = 5 + 7 = 12.$$
Valuation of formulas

Let $\Phi = (D, m)$ be a frame for \mathcal{L}, $a \in As(\phi)$, and let $\alpha \in \mathcal{L}$.

Denote: $a_x = \{a' \in As(\Phi) : a(y) = a'(y) \text{ for any } y \neq x\}$.

A **valuation of α in Φ wrt a** is defined as follows:

- $\text{val}_a^\Phi(\top) = 1$
- $\text{val}_a^\Phi(R(\tau_1, \ldots, \tau_n)) = 1$ iff $(\text{val}_a^\Phi(\tau_1), \ldots, \text{val}_a^\Phi(\tau_n)) \in m(R)$
- $\text{val}_a^\Phi(\forall x.\alpha) = \min_{a_x \in As(\Phi)} \text{val}_{a_x}^\Phi(\alpha)$
For the remaining formulas their valuations are defined by:

- \(\text{val}_a^\Phi (\neg \alpha) = 1 - \text{val}_a^\Phi (\alpha) \)
- \(\text{val}_a^\Phi (\alpha \land \beta) = \min(\text{val}_a^\Phi (\alpha), \text{val}_a^\Phi (\beta)) \)
- \(\text{val}_a^\Phi (\alpha \lor \beta) = \max(\text{val}_a^\Phi (\alpha), \text{val}_a^\Phi (\beta)) \)
- \(\text{val}_a^\Phi (\alpha \rightarrow \beta) = 1 \text{ iff } \text{val}_a^\Phi (\alpha) = 0 \text{ or } \text{val}_a^\Phi (\beta) = 1 \)
- \(\text{val}_a^\Phi (\alpha \equiv \beta) = 1 \text{ iff } \text{val}_a^\Phi (\alpha) = \text{val}_a^\Phi (\beta) \)
- \(\text{val}_a^\Phi (\exists x. \alpha) = \max_{a, x \in As(\Phi)} \text{val}_a^\Phi (\alpha) \).
Satisfiability

Let $\Phi = (D, m)$ be a frame for \mathcal{L} and let $a \in As(\Phi)$.

A formula $\alpha \in \mathcal{L}$ is called

- **satisfiable in Φ wrt a** iff $val^\Phi_a(\alpha) = 1$
- **satisfiable in Φ** iff $val^\Phi_a(\alpha) = 1$ for every $a \in As(\Phi)$; if α is satisfiable in Φ, then Φ is called a **model of α**
- **tautology** iff for every frame Φ, α is satisfiable in Φ.

Accordingly, α is **unsatisfiable** iff it has no model.
Axiomatization of FOPC

Logical axioms:

- \(\top \)
- \(\alpha \rightarrow (\beta \rightarrow \alpha) \)
- \((\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow (\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma) \)
- \((\alpha \rightarrow \beta) \rightarrow ((\alpha \rightarrow \neg \beta) \rightarrow \neg \beta) \)
- \(\forall x. (\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \forall x. \beta) \), provided that there is no free occurrences of \(x \) in \(\alpha \)
- \(\forall x. \alpha(x) \rightarrow \alpha(\tau) \), where \(\tau \) is free for \(x \) in \(\alpha(x) \).

E.g., \(y \) is free for \(x \) in \(P(x) \), but if not free for \(x \) in \(\exists y. P(x, y) \).

Reasoning rules:

- (MP) \(\frac{\alpha, \alpha \rightarrow \beta}{\beta} \)
- (GEN) \(\frac{\alpha}{\forall x. \alpha} \), where \(x \) is not free in \(\alpha \).
Main theorems

- **Soundness:** \(T \vdash \alpha \iff T \models \alpha. \)
- **Completeness:** \(T \models \alpha \iff T \vdash \alpha. \)
- **Deduction:** \(T, \alpha \vdash \beta \iff T \vdash (\alpha \rightarrow \beta). \)
- **Monotonicity:** \(T_1 \subseteq T_2 \iff Th(T_1) \subseteq Th(T_2). \)
- **Compactness:** \(T \) is consistent iff each finite subtheory of \(T \) is consistent.

- \(\{\alpha_1, \ldots, \alpha_n\} \models \beta \iff \models \alpha_1 \land \ldots \land \alpha_n \rightarrow \beta \)
- \(T \models \alpha \iff T \cup \{\neg \alpha\} \) is unsatisfiable.
Recall:

The validity problem is the task to determine whether or not a given formula is a tautology.

Theorem 7.2 The validity problem for FOPC is not decidable, but partly decidable.

In view of the above theorem, there exists an algorithm such that

- for every tautology it returns the answer **YES**,
- for some formula, which is not a tautology, it runs into infinite loop.
Thank you for your attention!

WARSZAWSKA UNIWERSITY OF TECHNOLOGY
DEVELOPMENT PROGRAMME

Project is co-financed by European Union within European Social Fund