Knowledge Representation

Lecture 6:

Part 1: Reasoning about Scenarios
Part 2: Propositional Calculus

dr Anna Maria Radzikowska
Wydział Matematyki i Nauk Informacyjnych
Pokój 504, gmach MiNI
E–mail: A.Radzikowska@mini.pw.edu.pl
Basic assumptions

In contrast to previous approaches with *branching time* model, now we will consider action domains with *linear time*.
In contrast to previous approaches with *branching time* model, now we will consider action domains with *linear time*.

- Inertia law.
- Linear model of time (discrete time).
- Actions with duration; during performance of the action, values of fluents changed by the actions are unknown.
- Dynamic effects of actions – one action can invoke another one(s).
- Situation can trigger actions — some states may cause executing some actions.
Basic assumptions

In contrast to previous approaches with *branching time* model, now we will consider action domains with *linear time*.

- Inertia law.
- Linear model of time (discrete time).
- Actions with duration; during performance of the action, values of fluents changed by the actions are unknown.
- Dynamic effects of actions – one action can invoke another one(s).
- Situation can trigger actions — some states may cause executing some actions.

To represent these dynamic systems we will use action languages of the class \mathcal{AL}. For simplicity we assume that each action is performed in 1 unit of time.
As before, a *signature* is a pair \((\mathcal{F}, \mathcal{A}_c)\), \(\mathcal{F} \cap \mathcal{A}_c = \emptyset\).
Action Language \mathcal{AL} – syntax

As before, a *signature* is a pair $(\mathcal{F}, \mathcal{A}c)$, $\mathcal{F} \cap \mathcal{A}c = \emptyset$.

We have 5 types of statements:

- **fluent effect statement:**

$$A \text{ causes } \alpha \text{ if } \pi$$
As before, a *signature* is a pair \((\mathcal{F}, \mathcal{Ac}), \mathcal{F} \cap \mathcal{Ac} = \emptyset\).

We have 5 types of statements:

- **fluent effect statement:**

 \[A \text{ causes } \alpha \text{ if } \pi \]

- **action effect statement:**

 \[A \text{ invokes } B \text{ after } d \text{ if } \pi \]

where \(A, B \in \mathcal{Ac}, \pi \in Forms(\mathcal{F}), \text{ and } d \in \mathbb{N}\).

Intuitively, this statement says that the action \(B\) starts after \(d\) timepoints since the action \(A\) is completed, provided that the condition \(\pi\) holds when \(A\) starts.
release statement:

\[A \text{ releases } f \text{ if } \pi \]
Action Language \mathcal{AL} (cont.)

- **release statement:**

 \[A \text{ releases } f \text{ if } \pi \]

- **trigger statement:**

 \[\pi \text{ triggers } A \]

Intuitively, this statement says that the action A starts at any timepoint when the condition π holds.
Action Language \mathcal{AL} (cont.)

- **release statement:**

 A releases f if π

- **trigger statement:**

 π triggers A

Intuitively, this statement says that the action A starts at any timepoint when the condition π holds.
Action Language \mathcal{AL} (cont.)

- **release statement:**

 \[A \text{ releases } f \text{ if } \pi \]

- **trigger statement:**

 \[\pi \text{ triggers } A \]

Intuitively, this statement says that the action A starts at any timepoint when the condition π holds.

A set of statements is called a *domain description*.
By an action scenario \((\text{scenario}) \), for short) we mean a pair \(Sc = (OBS, ACS) \), where

- \(OBS \) is the set of observations: \(OBS = \{ (\alpha_1, t_1), \ldots, (\alpha_n, t_n) \} \), where \(\alpha_i \in Forms(F) \) and \(t_i \in \mathbb{N} \), \(i = 1, \ldots, n \)

- \(ACS \) is the set of action occurrences: \(ACS = \{ (A_1, t_1), \ldots, (A_n, t_k) \} \), where \(A_i \in Ac \) and \(t_i \in \mathbb{N} \), \(i = 1, \ldots, k \).
A query in \mathcal{AL} is an expression either of the form:

\[
\begin{align*}
\alpha & \text{ at } t \text{ when } Sc \\
A & \text{ at } t \text{ when } Sc.
\end{align*}
\]

Intuitively, the 1^{st} query states that the condition α holds at timepoint t when the scenario is carrying out, whereas the 2^{nd} query says that the action A is executed at timepoint t when the scenario Sc is carrying out.
Definition 5.1 A structure for \mathcal{AL} is a system $S = (H, O, E)$ such that

$H : \mathcal{F} \times \mathbb{N} \rightarrow \{0, 1\}$ is a history function
Definition 5.1 A structure for \mathcal{AL} is a system $S = (H, O, E)$ such that

- $H : \mathcal{F} \times \mathbb{N} \rightarrow \{0, 1\}$ is a history function
- $O : \mathcal{Ac} \times \mathbb{N} \rightarrow 2^\mathcal{F}$ is an occlusion function; for any action $A \in \mathcal{Ac}$ and for any timepoint $t \in \mathbb{N}$, $O(A, t)$ is the set of fluents under influence of the performance of A when executed from timepoint $t - 1$ to t
Definition 5.1 A **structure** for \(\mathcal{AL} \) is a system \(S = (H, O, E) \) such that

- \(H : \mathcal{F} \times \mathbb{N} \rightarrow \{0, 1\} \) is a **history function**

- \(O : \mathcal{Ac} \times \mathbb{N} \rightarrow 2^{\mathcal{F}} \) is an **occlusion function**; for any action \(A \in \mathcal{Ac} \) and for any timepoint \(t \in \mathbb{N} \), \(O(A, t) \) is the set of fluents under influence of the performance of \(A \) when executed from timepoint \(t - 1 \) to \(t \)

- \(E \subseteq \mathcal{Ac} \times \mathbb{N} \) is an **actions occurrences relation**; if \((A, t) \in E \) then \(A \) occurs at timepoint \(t \). We assume that for all \(A, B \in \mathcal{Ac} \) and every \(t \in \mathbb{N} \),

\[
(A, t) \in E \land (B, t) \in E \implies A = B. \quad (1)
\]
Definition 5.1 A **structure** for \mathcal{AL} is a system $S = (H, O, E)$ such that

- $H : \mathcal{F} \times \mathbb{N} \rightarrow \{0, 1\}$ is a **history function**
- $O : \mathcal{Ac} \times \mathbb{N} \rightarrow 2^\mathcal{F}$ is an **occlusion function**; for any action $A \in \mathcal{Ac}$ and for any timepoint $t \in \mathbb{N}$, $O(A, t)$ is the set of fluents under influence of the performance of A when executed from timepoint $t - 1$ to t
- $E \subseteq \mathcal{Ac} \times \mathbb{N}$ is an **actions occurrences relation**; if $(A, t) \in E$ then A occurs at timepoint t. We assume that for all $A, B \in \mathcal{Ac}$ and every $t \in \mathbb{N}$,

$$ (A, t) \in E \& (B, t) \in E \implies A = B. $$

(1)

Note that the condition (1) guarantees that at most one action is executed at a time.
For any structure $S = (H, O, E)$ for \mathcal{AL}, the history function H are extended for the set of all formulas according to rules well–known in propositional logic, i.e. for every timepoint $t \in \mathbb{N}$,

$$H^*(f, t) = H(f, t) \text{ for any } f \in \mathcal{F}$$

$$H^*(\neg \alpha, t) = 1 - H^*(\alpha, t)$$

$$H^*(\alpha \land \beta, t) = \min(H^*(\alpha, t), H^*(\beta, t))$$

$$H^*(\alpha \lor \beta, t) = \max(H^*(\alpha, t), H^*(\beta, t))$$

$$H^*(\alpha \rightarrow \beta, t) = \begin{cases} 0 & \text{iff } H^*(\alpha, t) = 1 \& H^*(\beta, t) = 0 \\ 1 & \text{otherwise} \end{cases}$$

$$H^*(\alpha \equiv \beta, t) = \begin{cases} 1 & \text{iff } H^*(\alpha, t) = H^*(\beta, t) \\ 0 & \text{otherwise} \end{cases}$$
Let $S = (H, O, E)$ be a structure for \mathcal{AL}, let $S_c = (OBS, ACS)$ be a scenario, and let D be a domain description. We say that S is a *structure for S_c wrt D* iff

\[\text{for each observation } (\alpha, t) \in OBS, \ H(\alpha, t) = 1 \]
Let $S = (H, O, E)$ be a structure for \mathcal{AL}, let $Sc = (OBS, ACS)$ be a scenario, and let D be a domain description. We say that S is a structure for Sc wrt D iff

- for each observation $(\alpha, t) \in OBS$, $H(\alpha, t) = 1$
- $ACS \subseteq E$
Denote: $\text{fl}(\alpha)$ – the set of fluents occurring in α.

- for each statement $(A \text{ causes } \alpha \text{ if } \pi) \in D$ and for each timepoint $t \in \mathbb{N}$, if $H(\pi, t) = 1$ and $(A, t) \in E$, then $H(\alpha, t + 1) = 1$ and $\text{fl}(\alpha) \subseteq O(A, t + 1)$
Semantics of \mathcal{AL} (cont.)

Denote: $fl(\alpha)$ – the set of fluents occurring in α.

- for each statement $(A \text{ causes } \alpha \text{ if } \pi) \in D$ and for each timepoint $t \in \mathbb{N}$, if $H(\pi, t) = 1$ and $(A, t) \in E$, then $H(\alpha, t + 1) = 1$ and $fl(\alpha) \subseteq O(A, t + 1)$

- for each statement $(A \text{ releases } f \text{ if } \pi) \in D$ and for each timepoint $t \in \mathbb{N}$, if $H(\pi, t) = 1$ and $(A, t) \in E$, then $f \in O(A, t + 1)$
Denote: \(fl(\alpha) \) – the set of fluents occurring in \(\alpha \).

- for each statement \((A \text{ causes } \alpha \text{ if } \pi) \in D \) and for each timepoint \(t \in \mathbb{N} \), if \(H(\pi, t) = 1 \) and \((A, t) \in E \), then \(H(\alpha, t + 1) = 1 \) and \(fl(\alpha) \subseteq O(A, t + 1) \)

- for each statement \((A \text{ releases } f \text{ if } \pi) \in D \) and for each timepoint \(t \in \mathbb{N} \), if \(H(\pi, t) = 1 \) and \((A, t) \in E \), then \(f \in O(A, t + 1) \)

- for each statement \((\pi \text{ triggers } A) \in D \) and for each timepoint \(t \in \mathbb{N} \), if \(H(\pi, t) = 1 \), then \((A, t) \in E \)
Denote: \(fl(\alpha) \) – the set of fluents occurring in \(\alpha \).

- for each statement \((A \textit{ causes } \alpha \textit{ if } \pi) \in D\) and for each timepoint \(t \in \mathbb{N}\), if \(H(\pi, t) = 1\) and \((A, t) \in E\), then \(H(\alpha, t + 1) = 1\) and \(fl(\alpha) \subseteq O(A, t + 1)\)

- for each statement \((A \textit{ releases } f \textit{ if } \pi) \in D\) and for each timepoint \(t \in \mathbb{N}\), if \(H(\pi, t) = 1\) and \((A, t) \in E\), then \(f \in O(A, t + 1)\)

- for each statement \((\pi \textit{ triggers } A) \in D\) and for each timepoint \(t \in \mathbb{N}\), if \(H(\pi, t) = 1\), then \((A, t) \in E\)

- for each statement \((A \textit{ invokes } B \textit{ after } d \textit{ if } \pi) \in D\) and for each timepoint \(t \in \mathbb{N}\), if \(H(\pi, t) = 1\) and \((A, t) \in A\), then \((B, t + d + 1) \in E\).
Semantics of AL (cont.)

Observe:

- Any change (in fluents’ values) are allowed *only* in occlusion regions.
Observe:

- Any change (in fluents’ values) are allowed only in occlusion regions.
- Consequently, we will be interested in structures $S = (H, O, E)$ for $Sc = (OBS, ACS)$ wrt D, which occlusion functions O determine the smallest occlusion regions.
Denote

Let $O_1, O_2 : X \rightarrow 2^Y$. We write

$O_1 \preceq O_2$ iff $O_1(x) \subseteq O_2(x)$ for every $x \in X$.
Denote

Let $O_1, O_2 : X \to 2^Y$. We write

- $O_1 \preceq O_2$ iff $O_1(x) \subseteq O_2(x)$ for every $x \in X$.
- $O_1 \prec O_2$ iff $O_1 \preceq O_2$ and $O_1 \neq O_2$.
Denote

Let $O_1, O_2 : X \rightarrow 2^Y$. We write

- $O_1 \preceq O_2$ iff $O_1(x) \subseteq O_2(x)$ for every $x \in X$.
- $O_1 \prec O_2$ iff $O_1 \preceq O_2$ and $O_1 \neq O_2$.

Definition 5.2 Let $S = (H, O, E)$ be a structure for a scenario $Sc = (OBS, ACS)$ wrt a domain description D. We say that S is O–minimal iff there is no structure $S' = (H', O', E')$ for Sc wrt D such that $O' \prec O$.
Definition 5.3 Let $S = (H, O, E)$ be a structure for a scenario $Sc = (OBS, ACS)$ wrt a domain description D. We say that S is a model of Sc wrt D iff

(M.1) S is O–minimal
Definition 5.3 Let $S = (H, O, E)$ be a structure for a scenario $Sc = (OBS, ACS)$ wrt a domain description D. We say that S is a model of Sc wrt D iff

(M.1) S is O–minimal

(M.2) for every timepoint $t \in \mathbb{N}$,

$$\{ f \in F : H(f, t) \neq H(f, t + 1) \} \subseteq O(A, t + 1)$$

for some action $A \in Ac$
Definition 5.3 Let $S = (H, O, E)$ be a structure for a scenario $Sc = (OBS, ACS)$ wrt a domain description D. We say that S is a model of Sc wrt D iff

(M.1) S is O–minimal

(M.2) for every timepoint $t \in \mathbb{N}$,

$$\{ f \in \mathcal{F} : H(f, t) \neq H(f, t + 1) \} \subseteq O(A, t + 1) \}$$

for some action $A \in Ac$

(M.3) there is no structure $S' = (H', O', E')$ for Sc wrt D satisfying (M.1)–(M.2) such that $E' \subset E$.
Definition 5.3 Let $S = (H, O, E)$ be a structure for a scenario $Sc = (OBS, ACS)$ wrt a domain description D. We say that S is a model of Sc wrt D iff

(M.1) S is O–minimal

(M.2) for every timepoint $t \in \mathbb{N}$,

$$\{ f \in \mathcal{F} : H(f, t) \neq H(f, t + 1) \} \subseteq O(A, t + 1)$$

for some action $A \in Ac$

(M.3) there is no structure $S' = (H', O', E')$ for Sc wrt D satisfying (M.1)–(M.2) such that $E' \subset E$.

We say that a scenario Sc is **consistent** wrt a domain description D iff there exists a model S of Sc wrt D; otherwise it is called **inconsistent**.
Example 1: Inconsistency

Let D be a domain description with two actions, A and B, and let a scenario $Sc = (OBS, ACS)$ be given as

- $OBS = \emptyset$
- $ACS = \{(A, 1), (B, 1)\}$.
Example 1: Inconsistency

Let D be a domain description with two actions, A and B, and let a scenario $Sc = (OBS, ACS)$ be given as

- $OBS = \emptyset$
- $ACS = \{(A, 1), (B, 1)\}$.

Since A and B are to be executed parallel, Sc is inconsistent wrt any D (with the actions A and B) – there is no structure for Sc wrt any D.
Example 2: (In)consistency

Consider the following domain description D and two scenarios: $Sc_1 = (OBS_1, ACS_1)$ and $Sc_2 = (OBS_2, ACS_2)$, given by

- A causes f;
- B causes $\neg f$;
- C causes g;
- A invokes C after 1.

- $OBS_1 = OBS_2 = \emptyset$
- $ACS_1 = \{(A, 1), (B, 3)\}$
- $ACS_2 = \{(A, 1), (B, 2)\}$.
Example 2: (In)consistency

Consider the following domain description D and two scenarios:
$Sc_1 = (OBS_1, ACS_1)$ and $Sc_2 = (OBS_2, ACS_2)$, given by

- A causes f;
- B causes $\neg f$;
- C causes g;
- A invokes C after 1.

- $OBS_1 = OBS_2 = \emptyset$
- $ACS_1 = \{(A, 1), (B, 3)\}$
- $ACS_2 = \{(A, 1), (B, 2)\}$.

For any $S = (H, O, E)$ for Sc_1 wrt D, we have $(A, 1), (B, 3) \in E$. Since $(C, 3) \in E$, Sc_1 is inconsistent wrt D.
Example 2: (In)consistency

Consider the following domain description D and two scenarios:
$S_{c1} = (OBS_1, ACS_1)$ and $S_{c2} = (OBS_2, ACS_2)$, given by

- A causes f;
- B causes $\neg f$;
- C causes g;
- A invokes C after 1.

- $OBS_1 = OBS_2 = \emptyset$
- $ACS_1 = \{(A, 1), (B, 3)\}$
- $ACS_2 = \{(A, 1), (B, 2)\}$.

For any $S = (H, O, E)$ for S_{c1} wrt D, we have $(A, 1), (B, 3) \in E$. Since $(C, 3) \in E$, S_{c1} is inconsistent wrt D.

For any $S = (H, O, E)$ for S_{c2} wrt D, $(A, 1), (B, 2), (C, 3) \in E$, so no inconsistency occurs.
Example 3: Modification of YSP

Consider the following domain description D:

- **LOAD** causes loaded;
- **SHOOT** causes $\neg\text{loaded}$;
- **SHOOT** causes $\neg\text{alive}$ if $\text{loaded} \land \neg\text{hidden}$;
- **LOAD** invokes **ESCAPE**;
- **ESCAPE** releases hidden.

and a scenario $Sc = (OBS, ACS)$, where

\[
OBS = \{(\text{alive} \land \neg\text{loaded} \land \neg\text{hidden}, 0)\}
\]
\[
ACS = \{(\text{LOAD}, 1), (\text{SHOOT}, 3)\}.
\]
There are two main classes of structures for Sc wrt D. Namely,

Class 1:

\[
\begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 \\
\text{Load} & \text{Escape} & \text{Shoot} \\
a & a? & a? & a? & a? \\
\neg l & l? & l* & l? & \neg l* \\
\neg h & h? & h? & h* & h? \\
\end{array}
\]

Occlusion regions:
\[
\{l\} \subseteq Occlude(\text{LOAD}, 2) \\
\{h\} \subseteq Occlude(\text{ESCAPE}, 3) \\
\{l\} \subseteq Occlude(\text{SHOOT}, 4).
\]

Occurrences of actions: \[\{(\text{LOAD}, 1), (\text{ESCAPE}, 2), (\text{SHOOT}, 3)\} \subseteq E.\]
Class 2:

\[
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 \\
\text{Load} & \text{Escape} & \text{Shoot} \\
\{a\} & \{a?\} & \{a?\} & \{a?\} & \{a?\} \\
\{\neg l\} & \{l?\} & \{l?\} & \{\neg l^*\} & \{\neg l^*\} \\
\{\neg h\} & \{h?\} & \{h?\} & \{\neg h^*\} & \{h?\} \\
\end{array}
\]

\[
\{l\} \subseteq \text{Occlude}(\text{LOAD}, 2) \\
\{h\} \subseteq \text{Occlude}(\text{ESCAPE}, 3) \\
\{l\} \subseteq \text{Occlude}(\text{SHOOT}, 4).
\]

\[\text{Occurrences of actions: } \{(\text{LOAD}, 1), (\text{ESCAPE}, 2), (\text{SHOOT}, 3)\} \subseteq E.\]
Class 2 has two subclasses:

Subclass 1:

\[
\begin{array}{ccccccc}
0 & 1 & 2 & 3 & 4 \\
\hline
a & a? & a? & a? & \neg a^* \\
\neg l & l? & l^* & l & \neg l^* \\
\neg h & h? & h? & \neg h^* & h?
\end{array}
\]

Occlusion regions:
\[\{l\} \subseteq Occlude(\text{LOAD}, 2)\]

\[\{h\} \subseteq Occlude(\text{ESCAPE}, 3)\]

\[\{a, l\} \subseteq Occlude(\text{SHOOT}, 4)\]

Occurrences of actions:
\[\{(\text{LOAD}, 1), (\text{ESCAPE}, 2), (\text{SHOOT}, 3)\} \subseteq E\]
Subclass 2:

\[
\begin{array}{cccc}
0 & 1 & 2 & 3 & 4 \\
a & a? & a? & a? & a? \\
\neg l & l? & l* & \neg l & \neg l* \\
\neg h & h? & h? & \neg h* & h? \\
\end{array}
\]

Occlusion regions:
\[
\{l\} \subseteq Oclude(LOAD, 2) \\
\{h\} \subseteq Oclude(ESCAPE, 3) \\
\{l\} \subseteq Oclude(SHOOT, 4).
\]

Occurrences of actions:
\[
\{(LOAD, 1), (ESCAPE, 2), (SHOOT, 3)\} \subseteq E.
\]
Two main classes of O–minimal structures for $Sc \text{ wrt } D$:

Class 1:

\[
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 \\
\text{Load} & \text{Escape} & \text{Shoot} \\
\ \quad a \quad & \quad a? \quad & \quad a? \quad & \quad a? \quad & \quad a? \\
\neg l & l? & l* & l? & \neg l* \\
\neg h & h? & h? & h* & h? \\
\end{array}
\]

Oclusion regions:

\[
\text{Occlude} (\text{LOAD}, 2) = \{l\} \\
\text{Occlude} (\text{ESCAPE}, 3) = \{h\} \\
\text{Occlude} (\text{SHOOT}, 4) = \{l\}.
\]

Occurrences of actions: \{ (\text{LOAD}, 1), (\text{ESCAPE}, 2), (\text{SHOOT}, 3) \} \subseteq E.
And two subclasses of the 2nd class:

\textbf{1st subclass:}

\begin{itemize}
 \item \textit{Load}:
 \begin{itemize}
 \item $t=0$: a
 \item $t=1$: $a^?$
 \end{itemize}
 \item \textit{Escape}:
 \begin{itemize}
 \item $t=2$: $a^?$
 \item $t=3$: $a^?
 \item $t=4$: $\neg a^*$
 \end{itemize}
 \item \textit{Shoot}:
 \begin{itemize}
 \item $t=0$: $\neg l$
 \item $t=1$: l^*
 \item $t=3$: l
 \item $t=4$: $\neg l^*$
 \end{itemize}
 \item \textit{Occlusion regions:}
 \begin{itemize}
 \item $\text{Occlude}(\text{LOAD}, 2) = \{l\}$
 \item $\text{Occlude}(\text{ESCAPE}, 3) = \{h\}$
 \item $\text{Occlude}(\text{SHOOT}, 4) = \{a, l\}$
 \end{itemize}
\end{itemize}

\textbf{Occurrences of actions:} $\{(\text{LOAD}, 1), (\text{ESCAPE}, 2), (\text{SHOOT}, 3)\} \subseteq E$.
Structures for $S_c \text{ wrt } D$ (cont.)

And the 2^{nd} subclass of the class 1:

\[
\begin{array}{cccc}
0 & 1 & 2 & 3 & 4 \\
\text{Load} & \text{Escape} & \text{Shoot} \\
\hline
a & a? & a? & a? & a? \\
\neg l & l? & l^* & \neg l & \neg l^* \\
\neg h & h? & h? & \neg h^* & h? \\
\end{array}
\]

\[\text{Occlude}(\text{Load}, 2) = \{l\} \]

\[\text{Occlusion regions: } \text{Occlude}(\text{Escape}, 3) = \{h\} \]

\[\text{Occlude}(\text{Shoot}, 4) = \{l\}.\]

\[\text{Occurrences of actions: } \{(\text{Load}, 1), (\text{Escape}, 2), (\text{Shoot}, 3)\} \subseteq E.\]
There are two models of Sc wrt D:

1^{st} model S_1:

\[\text{Occurrences of actions: } \{ (\text{LOAD}, 1), (\text{ESCAPE}, 2), (\text{SHOOT}, 3) \} = E. \]

\[\text{Occlusion regions: } \text{Occlude}(\text{LOAD}, 2) = \{ l \} \]

\[\text{Occlude}(\text{ESCAPE}, 3) = \{ h \} \]

\[\text{Occlude}(\text{SHOOT}, 4) = \{ l \}. \]
2^{nd} model S_2:

\[\begin{align*}
\text{Load} & : a, a, a, a, \neg a^* \\
\text{Escape} & : \neg l, a, l^*, a, \neg a^* \\
\text{Shoot} & : \neg h, \neg h, \neg h, l, \neg l^* \\
\end{align*}\]

Occclusion regions:
- $\text{Occlude}(\text{LOAD}, 2) = \{l\}$
- $\text{Occlude}(\text{ESCAPE}, 3) = \{h\}$
- $\text{Occlude}(\text{SHOOT}, 4) = \{a, l\}$.

Occurrences of actions: $\{(\text{LOAD}, 1), (\text{ESCAPE}, 2), (\text{SHOOT}, 3)\} = E.$
Let Sc be a scenario and let D be a domain description. We say that a query Q is a consequence of $Sc \text{ wrt } D$, in symbols $D, Sc \models Q$, iff

if Q is of the form $\alpha \text{ at } t \text{ when } Sc$, then for every model $S = (H, O, E)$ of $Sc \text{ wrt } D$, it holds $H(\alpha, t) = 1$
Let Sc be a scenario and let D be a domain description. We say that a query Q is a consequence of Sc wrt D, in symbols $D, Sc \models Q$, iff

- if Q is of the form $\alpha \text{ at } t \text{ when } Sc$, then for every model $S = (H, O, E)$ of Sc wrt D, it holds $H(\alpha, t) = 1$.

- if Q is of the form $A \text{ at } t \text{ when } Sc$, then for every model $S = (H, O, E)$ of Sc wrt D, it holds $(A, t) \in E$.
Example 3 (cont.)

Load	Escape	Shoot
0 | 1 | 2 | 3 | 4

\[
\begin{array}{c}
\text{Load} \\
\text{Escape} \\
\text{Shoot}
\end{array}
\]

\[
\begin{array}{cccc}
0 & 1 & 2 & 3 & 4 \\
\text{a} & \text{a} & \text{a} & \text{a} & \text{a} \\
\neg\text{l} & \neg\text{l} & \text{l} & \text{l} & \neg\text{l} \\
\neg\text{h} & \neg\text{h} & \neg\text{h} & \text{h} & \neg\text{h}
\end{array}
\]
Example 3 (cont.)

\[S_c, D \models \neg \text{loaded at } t \text{ when } S_c \text{ for } t \geq 4 \]
$Sc, \bar{D} \models \neg \text{loaded at } t \text{ when } Sc \text{ for } t \geq 4$

$Sc, \bar{D} \models \text{ESCAPE at } 2 \text{ when } Sc$
Example 3 (cont.)

\[\text{Load} \quad \text{Escape} \quad \text{Shoot} \]

\[
\begin{array}{cccc}
0 & 1 & 2 & 3 & 4 \\
\text{a} & \text{a} & \text{a} & \text{a} & \text{a} \\
\neg \text{l} & \neg \text{l} & \text{l} & \text{l} & \neg \text{l} \\
\neg \text{h} & \neg \text{h} & \neg \text{h} & \text{h} & \text{h} \\
\end{array}
\]

\[
\begin{array}{cccc}
0 & 1 & 2 & 3 & 4 \\
\text{a} & \text{a} & \text{a} & \text{a} & \neg \text{a} \\
\neg \text{l} & \neg \text{l} & \text{l} & \text{l} & \neg \text{l} \\
\neg \text{h} & \neg \text{h} & \neg \text{h} & \neg \text{h} & \text{h} \\
\end{array}
\]

\[\text{Sc}, \text{D} \models \neg \text{loaded at } t \text{ when } \text{Sc for } t \geq 4 \]

\[\text{Sc}, \text{D} \models \text{ESCAPE at } 2 \text{ when } \text{Sc} \]

\[\text{Sc}, \text{D} \not\models \text{alive at } 4 \text{ when } \text{Sc} \]
Example 3 (cont.)

\[
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 \\
\hline
\text{Load} & \text{Escape} & \text{Shoot} \\
\hline
a & a & a & a & a \\
\neg l & \neg l & l^* & l & \neg l^* \\
\neg h & \neg h & \neg h & h^* & h \\
\end{array}
\]

\[
\begin{array}{cccccc}
0 & 1 & 2 & 3 & 4 \\
\hline
\text{Load} & \text{Escape} & \text{Shoot} \\
\hline
a & a & a & a & \neg a^* \\
\neg l & \neg l & l^* & l & \neg l^* \\
\neg h & \neg h & \neg h & \neg h^* & \neg h \\
\end{array}
\]

\[
\begin{align*}
\text{Sc, } D & \models \neg \text{loaded at } t \text{ when } \text{Sc for } t \geq 4 \\
\text{Sc, } D & \models \text{Escape at } 2 \text{ when } \text{Sc} \\
\text{Sc, } D & \not\models \text{alive at } 4 \text{ when } \text{Sc} \\
\text{Sc, } D & \not\models \neg \text{alive at } 4 \text{ when } \text{Sc.}
\end{align*}
\]
Foundations to Classical Logic
The notion of logic

By a *logic* we mean a triple $\text{Log} = (\mathcal{L}, \Sigma, \models)$, where

- \mathcal{L} is a *language* of Log (i.e. the set of all formulas in Log)
The notion of logic

By a *logic* we mean a triple \(\text{Log} = (\mathcal{L}, \Sigma, \models) \), where

- \(\mathcal{L} \) is a *language* of \(\text{Log} \) (i.e. the set of all formulas in \(\text{Log} \))
- \(\Sigma \) is the class of all frames used for interpretation of formulas
The notion of logic

By a *logic* we mean a triple $Log = (\mathcal{L}, \Sigma, |=)$, where

- \mathcal{L} is a *language* of Log (i.e. the set of all formulas in Log)
- Σ is the class of all frames used for interpretation of formulas
- $|= : 2^\Sigma \rightarrow 2^\mathcal{L}$ is the consequence mapping which for each set \mathcal{M} of frames determines the set of formulas *satisfied* in every frame from \mathcal{M}.
The notion of logic

By a logic we mean a triple $Log = (\mathcal{L}, \Sigma, |=)$, where

- \mathcal{L} is a language of Log (i.e. the set of all formulas in Log)
- Σ is the class of all frames used for interpretation of formulas
- $|= : 2^\Sigma \to 2^\mathcal{L}$ is the consequence mapping which for each set \mathcal{M} of frames determines the set of formulas satisfied in every frame from \mathcal{M}.

Classical logic:

- Propositional logic
- First order propositional calculus.
A language of a propositional logic (PC) is determined by the following disjoint sets of symbols:

- a set Var of propositional variables
- the truth constant \top
- logical connectives \neg and \rightarrow
- parentheses (and).
Propositional Calculus

A language of a propositional logic (PC) is determined by the following disjoint sets of symbols:

- a set Var of propositional variables
- the truth constant \top
- logical connectives \neg and \rightarrow
- parentheses (and).

The set of all propositional formulas \mathcal{L} (language) is the smallest set of the following expressions:

- $\text{Var} \subseteq \mathcal{L}$
- $\top \in \mathcal{L}$
- if α, β are formulas, then so are $\neg \alpha$ and $\alpha \rightarrow \beta$.
Propositional Calculus (cont.)

The remaining symbols are defined as:

- the truth constant $\bot : \bot \overset{def}{=} \neg T$
The remaining symbols are defined as:

- The truth constant \bot: $\bot \overset{def}{=} \neg \top$

- Logical connectives:
 - Disjunction: $\alpha \lor \beta \overset{def}{=} \neg \alpha \rightarrow \beta$
 - Conjunction: $\alpha \land \beta \overset{def}{=} \neg (\neg \alpha \lor \neg \beta)$
 - Equivalence: $\alpha \equiv \beta \overset{def}{=} (\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)$.
The remaining symbols are defines as:

- the truth constant \bot: $\bot \overset{\text{def}}{=} \neg \top$

- logical connectives:
 - disjunction: $\alpha \lor \beta \overset{\text{def}}{=} \neg \alpha \to \beta$
 - conjunction: $\alpha \land \beta \overset{\text{def}}{=} \neg (\neg \alpha \lor \neg \beta)$
 - equivalence: $\alpha \equiv \beta \overset{\text{def}}{=} (\alpha \to \beta) \land (\beta \to \alpha)$.
The remaining symbols are defined as:

- the truth constant \(\bot \): \(\bot \overset{\text{def}}{=} \neg \top \)

- logical connectives:
 - disjunction: \(\alpha \lor \beta \overset{\text{def}}{=} \neg \alpha \rightarrow \beta \)
 - conjunction: \(\alpha \land \beta \overset{\text{def}}{=} \neg (\neg \alpha \lor \neg \beta) \)
 - equivalence: \(\alpha \equiv \beta \overset{\text{def}}{=} (\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha) \).
Propositional Calculus (cont.)

The remaining symbols are defined as:

- the truth constant \bot : $\bot \overset{def}{=} \neg \top$

- logical connectives:
 - disjunction : $\alpha \lor \beta \overset{def}{=} \neg \alpha \rightarrow \beta$
 - conjunction : $\alpha \land \beta \overset{def}{=} \neg (\neg \alpha \lor \neg \beta)$
 - equivalence : $\alpha \equiv \beta \overset{def}{=} (\alpha \rightarrow \beta) \land (\beta \rightarrow \alpha)$.
Let \(\mathcal{L} \) be a language of propositional logic. An interpretation of \(\mathcal{L} \) is a mapping

\[
m : \text{Var} \rightarrow \{0, 1\}
\]

The mapping \(m \) is easily extended for the set \(\mathcal{L} \) of all formulas.
Semantics of PC

Let \mathcal{L} be a language of propositional logic. An *interpretation* of \mathcal{L} is a mapping

$$m : Var \rightarrow \{0, 1\}$$

The mapping m is easily extended for the set \mathcal{L} of all formulas.

A formula $\alpha \in \mathcal{L}$ is **true in** m (m is a **model** of α), in symbols $m \models \alpha$, iff $m(\alpha) = 1$.
Let \(\mathcal{L} \) be a language of propositional logic. An \textit{interpretation} of \(\mathcal{L} \) is a mapping

\[
m : \text{Var} \rightarrow \{0, 1\}
\]

The mapping \(m \) is easily extended for the set \(\mathcal{L} \) of all formulas.

A formula \(\alpha \in \mathcal{L} \) is \textit{true in} \(m \) (\(m \) is a \textit{model} of \(\alpha \)), in symbols \(m \models \alpha \), iff \(m(\alpha) = 1 \).

Let \(\alpha \in \mathcal{L} \) be a formula. We say that \(\alpha \) is

- \textit{satisfiable} iff it has a model
- \textit{tautology}, written \(\models \alpha \), iff every interpretation of \(\mathcal{L} \) is a model of \(\alpha \)
- \textit{unsatisfiable} if it has no model.
Most famous tautologies

	= \(\alpha \lor \neg \alpha \)	Excluded Middle Law
	= \(\neg (\alpha \land \beta) \equiv \neg \alpha \lor \neg \beta \)	De Morgan Law
	= \(\neg (\alpha \lor \beta) \equiv \neg \alpha \land \neg \beta \)	De Morgan Law
	= \(\neg \neg \alpha \equiv \alpha \)	Double Negation Law
	= \(\alpha \lor (\beta \land \gamma) \equiv (\alpha \lor \beta) \land (\alpha \lor \gamma) \)	Distributive Law
	= \(\alpha \land (\beta \lor \gamma) \equiv (\alpha \land \beta) \lor (\alpha \land \gamma) \)	Distributive Law
	= \(\alpha \land \beta \equiv \beta \land \alpha \)	Commutative Law
	= \(\alpha \lor \beta \equiv \beta \lor \alpha \)	Commutative Law
	= \(\alpha \to \beta \equiv \neg \beta \to \neg \alpha \)	Contraposition Law
The validity problem is the task to determine whether or not a given formula is a tautology.
The validity problem is the task to determine whether or not a given formula is a tautology.

In virtue of the truth–table method we have the following:

Theorem 5.1 The validity problem for classical propositional calculus is decidable.
Let \mathcal{L} be a language of (classical) propositional logic. Any subset $T \subseteq \mathcal{L}$ is called a *theory*.
Let \mathcal{L} be a language of (classical) propositional logic. Any subset $T \subseteq \mathcal{L}$ is called a \textit{theory}.

For a set $T \subseteq \mathcal{L}$ of formulas and the set \mathcal{M} of interpretations of \mathcal{L}, $\mathcal{M} \models T$, means that every formula $\alpha \in T$ is true in every interpretation $m \in \mathcal{M}$.
Let \mathcal{L} be a language of (classical) propositional logic. Any subset $T \subseteq \mathcal{L}$ is called a **theory**.

For a set $T \subseteq \mathcal{L}$ of formulas and the set \mathcal{M} of interpretations of \mathcal{L}, $\mathcal{M} \models T$, means that every formula $\alpha \in T$ is true in every interpretation $m \in \mathcal{M}$.

Two theories $T_1, T_1 \subseteq \mathcal{L}$ are called **equivalent**, written $T_1 \iff T_2$, iff $\text{Mod}(T_1) = \text{Mod}(T_2)$, where $\text{Mod}(T)$ is a set of all models of T.
A reasoning rule

\[r = \frac{\alpha_1, \ldots, \alpha_n}{\gamma} \]

is a partial mapping \(r : \mathcal{L}^n \rightarrow \mathcal{L} \). For \(\alpha_1, \ldots, \alpha_n \) from the domain of \(r \), \(\alpha_1, \ldots, \alpha_n \) are premises of \(r \) and \(\gamma = r(\alpha_1, \ldots, \alpha_n) \) is the consequence of \(r \).
A reasoning rule

\[
 r = \frac{\alpha_1, \ldots, \alpha_n}{\gamma}
\]

is a partial mapping \(r : \mathcal{L}^n \to \mathcal{L} \). For \(\alpha_1, \ldots, \alpha_n \) from the domain of \(r \), \(\alpha_1, \ldots, \alpha_n \) are \textit{premises} of \(r \) and \(\gamma = r(\alpha_1, \ldots, \alpha_n) \) is the \textit{consequence} of \(r \).

A reasoning rule \(\frac{\alpha_1, \ldots, \alpha_n}{\gamma} \) is called \textit{sound} iff \(\{\alpha_1, \ldots, \alpha_n\} \models \gamma \).
A *deduction system* (*axiomatization*) is a triple $DS = (\mathcal{L}, A, R)$, where

- \mathcal{L} is a language of propositional logic,
- $A \subseteq \mathcal{L}$ is the set of *logical axioms*, and
- R is the set of reasoning rules.
A **deduction system (axiomatization)** is a triple $DS = (\mathcal{L}, \mathcal{A}, \mathcal{R})$, where

- \mathcal{L} is a language of propositional logic,
- $\mathcal{A} \subseteq \mathcal{L}$ is the set of **logical axioms**, and
- \mathcal{R} is the set of reasoning rules.

DS is called **sound** iff

- each formula $\alpha \in \mathcal{A}$ is a tautology
- each reasoning rule $r \in \mathcal{R}$ is sound.
Let $DS = (\mathcal{L}, \mathcal{A}, \mathcal{R})$ be an axiomatization, $T \subseteq \mathcal{L}$, and let $\alpha \in \mathcal{L}$.

A **formal proof** of α in DS from T is a sequence $(\alpha_0, \ldots, \alpha_k)$ of formulas such that

- $\alpha_0 \in \mathcal{A} \cup T$
- $\alpha_n = \alpha$
- for every $i = 1, \ldots, k$, either $\alpha_i \in \mathcal{A} \cup T$ or α_i is a direct consequence of $\alpha_0, \ldots, \alpha_{i-1}$ wrt some reasoning rule $r \in \mathcal{R}$.
Let $DS = (L, A, R)$ be an axiomatization, $T \subseteq L$, and let $\alpha \in L$.

A **formal proof** of α in DS from T is a sequence $(\alpha_0, \ldots, \alpha_k)$ of formulas such that

- $\alpha_0 \in A \cup T$
- $\alpha_k = \alpha$
- for every $i = 1, \ldots, k$, either $\alpha_i \in A \cup T$ or α_i is a direct consequence of $\alpha_0, \ldots, \alpha_{i-1}$ wrt some reasoning rule $r \in R$.

α is called **derivable** from T wrt DS, written $T \vdash_{DS} \alpha$, iff there exists a formal proof of α from T in DS.

Derivability
Derivability

Let $DS = (\mathcal{L}, \mathcal{A}, \mathcal{R})$ be an axiomatization, $T \subseteq \mathcal{L}$, and let $\alpha \in \mathcal{L}$.

- A **formal proof** of α in DS from T is a sequence $(\alpha_0, \ldots, \alpha_k)$ of formulas such that
 1. $\alpha_0 \in \mathcal{A} \cup T$
 2. $\alpha_n = \alpha$
 3. for every $i = 1, \ldots, k$, either $\alpha_i \in \mathcal{A} \cup T$ or α_i is a direct consequence of $\alpha_0, \ldots, \alpha_{i-1}$ wrt some reasoning rule $r \in \mathcal{R}$.

- α is called **derivable** from T wrt DS, written $T \vdash_{DS} \alpha$, iff there exists a formal proof of α from T in DS.

- Derivability operator Th: for any $T \subseteq \mathcal{L}$, $Th(T) = \{ \alpha : T \vdash_{DS} \alpha \}$.
Derivability

Let $DS = (\mathcal{L}, A, R)$ be an axiomatization, $T \subseteq \mathcal{L}$, and let $\alpha \in \mathcal{L}$.

- A **formal proof** of α in DS from T is a sequence $(\alpha_0, \ldots, \alpha_k)$ of formulas such that
 - $\alpha_0 \in A \cup T$
 - $\alpha_n = \alpha$
 - for every $i = 1, \ldots, k$, either $\alpha_i \in A \cup T$ or α_i is a direct consequence of $\alpha_0, \ldots, \alpha_{i-1}$ wrt some reasoning rule $r \in R$.

- α is called **derivable** from T wrt DS, written $T \vdash_{DS} \alpha$, iff there exists a formal proof of α from T in DS.

- Derivability operator Th: for any $T \subseteq \mathcal{L}$, $Th(T) = \{\alpha : T \vdash_{DS} \alpha\}$.

- T is **consistent** iff $T \not\vdash \alpha$ for some formula α.

dr Anna M. Radzikowska, Knowledge Representation 6, – p. 38/41
Let $DS = (\mathcal{L}, \mathcal{A}, \mathcal{R})$ be an axiomatization, $T \subseteq \mathcal{L}$, and let $\alpha \in \mathcal{L}$.

A **formal proof** of α in DS from T is a sequence $(\alpha_0, \ldots, \alpha_k)$ of formulas such that

- $\alpha_0 \in \mathcal{A} \cup T$
- $\alpha_k = \alpha$
- for every $i = 1, \ldots, k$, either $\alpha_i \in \mathcal{A} \cup T$ or α_i is a direct consequence of $\alpha_0, \ldots, \alpha_{i-1}$ wrt some reasoning rule $r \in \mathcal{R}$.

α is called **derivable** from T wrt DS, written $T \vdash_{DS} \alpha$, iff there exists a formal proof of α from T in DS.

Derivability operator Th: for any $T \subseteq \mathcal{L}$, $Th(T) = \{ \alpha : T \vdash_{DS} \alpha \}$.

T is **consistent** iff $T \not\vdash \alpha$ for some formula α.
Let $DS = (L, A, R)$ be an axiomatization, $T \subseteq L$, and let $\alpha \in L$.

- A **formal proof** of α in DS from T is a sequence $(\alpha_0, \ldots, \alpha_k)$ of formulas such that
 - $\alpha_0 \in A \cup T$
 - $\alpha_n = \alpha$
 - for every $i = 1, \ldots, k$, either $\alpha_i \in A \cup T$ or α_i is a direct consequence of $\alpha_0, \ldots, \alpha_{i-1}$ wrt some reasoning rule $r \in R$.

- α is called **derivable** from T wrt DS, written $T \vdash_{DS} \alpha$, iff there exists a formal proof of α from T in DS.

- Derivability operator Th: for any $T \subseteq L$, $Th(T) = \{ \alpha : T \vdash_{DS} \alpha \}$.

- T is **consistent** iff $T \not\models \alpha$ for some formula α.
Derivability

Let $DS = (\mathcal{L}, \mathcal{A}, \mathcal{R})$ be an axiomatization, $T \subseteq \mathcal{L}$, and let $\alpha \in \mathcal{L}$.

- A formal proof of α in DS from T is a sequence $(\alpha_0, \ldots, \alpha_k)$ of formulas such that
 - $\alpha_0 \in \mathcal{A} \cup T$
 - $\alpha_n = \alpha$
 - for every $i = 1, \ldots, k$, either $\alpha_i \in \mathcal{A} \cup T$ or α_i is a direct consequence of $\alpha_0, \ldots, \alpha_{i-1}$ wrt some reasoning rule $r \in \mathcal{R}$.

- α is called derivable from T wrt DS, written $T \vdash_{DS} \alpha$, iff there exists a formal proof of α from T in DS.

- Derivability operator Th: for any $T \subseteq \mathcal{L}$, $Th(T) = \{ \alpha : T \vdash_{DS} \alpha \}$.

- T is consistent iff $T \not\vdash \alpha$ for some formula α.
Let $DS = (\mathcal{L}, A, R)$ be an axiomatization.

DS is **sound** iff for every theory $T \subseteq \mathcal{L}$ and for every $\alpha \in \mathcal{L}$,

\[T \vdash_{DS} \alpha \implies T \models \alpha \]
Soundness and Completeness

Let $DS = (\mathcal{L}, A, \mathcal{R})$ be an axiomatization.

- DS is **sound** iff for every theory $T \subseteq \mathcal{L}$ and for every $\alpha \in \mathcal{L}$,
 \[T \vdash_{DS} \alpha \implies T \models \alpha \]

- DS is called **complete** iff for every theory $T \subseteq \mathcal{L}$ and for every formula $\alpha \in \mathcal{L}$,
 \[T \models \alpha \implies T \vdash_{DS} \alpha. \]
The most popular (sound and complete) axiomatization of propositional logic:

- logical axioms:
 - \top
 - $\alpha \rightarrow (\beta \rightarrow \alpha)$
 - $(\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma))$
 - $(\alpha \rightarrow \beta) \rightarrow ((\alpha \rightarrow \neg \beta) \rightarrow \neg \alpha)$
Axiomatization (cont.)

The most popular (sound and complete) axiomatization of propositional logic:

- logical axioms:
 - \top
 - $\alpha \rightarrow (\beta \rightarrow \alpha)$
 - $(\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma))$
 - $(\alpha \rightarrow \beta) \rightarrow ((\alpha \rightarrow \neg \beta) \rightarrow \neg \alpha)$

- Reasoning rule: *Modus Ponens* $\frac{\alpha, \alpha \rightarrow \beta}{\beta}$.
The most popular (sound and complete) axiomatization of propositional logic:

- logical axioms:
 - \(\top \)
 - \(\alpha \rightarrow (\beta \rightarrow \alpha) \)
 - \((\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma)) \)
 - \((\alpha \rightarrow \beta) \rightarrow ((\alpha \rightarrow \neg \beta) \rightarrow \neg \alpha) \)

- Reasoning rule: *Modus Ponens* \(\alpha, \alpha \rightarrow \beta \rightarrow \beta \).
The most popular (sound and complete) axiomatization of propositional logic:

- Logical axioms:
 - \top
 - $\alpha \rightarrow (\beta \rightarrow \alpha)$
 - $(\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma))$
 - $(\alpha \rightarrow \beta) \rightarrow ((\alpha \rightarrow \neg \beta) \rightarrow \neg \alpha)$

- Reasoning rule: **Modus Ponens**
 $$\frac{\alpha, \alpha \rightarrow \beta}{\beta}.$$
Axiomatization (cont.)

The most popular (sound and complete) axiomatization of propositional logic:

- logical axioms:
 - \top
 - $\alpha \rightarrow (\beta \rightarrow \alpha)$
 - $(\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma))$
 - $(\alpha \rightarrow \beta) \rightarrow ((\alpha \rightarrow \neg \beta) \rightarrow \neg \alpha)$

- Reasoning rule: **Modus Ponens**

\[
\frac{\alpha, \alpha \rightarrow \beta}{\beta}
\]
The most popular (sound and complete) axiomatization of propositional logic:

- **logical axioms:**
 - \top
 - $\alpha \rightarrow (\beta \rightarrow \alpha)$
 - $(\alpha \rightarrow (\beta \rightarrow \gamma)) \rightarrow ((\alpha \rightarrow \beta) \rightarrow (\alpha \rightarrow \gamma))$
 - $(\alpha \rightarrow \beta) \rightarrow ((\alpha \rightarrow \neg \beta) \rightarrow \neg \alpha)$

- **Reasoning rule:** *Modus Ponens* $\frac{\alpha, \alpha \rightarrow \beta}{\beta}$.
Thank you for your attention!

Any questions are welcome.