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1. INTRODUCTION

In a series of papers: Geisser and Roberts (1966), Roberts (1971), Geisser (1973),
relations between the normal distribution of random variables (r.v's) and the chi-
square distribution of linear forms in them were investigated - see also 4.2.4 in Patel
and Read (1982) and Ahsanullah (1989). The main result of these papers states that if
some linear statistics in independent r.v's are y2(1) (chi-square with one degree of
freedom) then the parent distribution is normal.

This note is a complement to the papers mentioned above. In Section 2 we show that
some of the results for the x2(1) law may be generalized not only to the gamma
distribution - this case is considered in Geisser and Roberts (1966) - but to an arbitrary
absolutely continuous distribution on (0, +=) - Theorem 1. A new characterization of
symmetry together with an extension of Theorem 5 from Roberts (1971) follows next. In
Section 3 we consider the special case of linear forms distributed according to the x2(1)
law. Some new characterizations of the normal law complementary to those from
Roberts (1971), Geisser (1973) and Ahsanullah (1989) are obtained.

A new contribution to this theme, involving the concept of sub-independence, is
contained in Ahsanullah et al. (1992).

2. GENERAL SCHEME AND SYMMETRY
The scheme used for the gamma law in Geisser and Roberts (1966) may also be
applied for an arbitrary positive absolutely continuous distribution.

For a random variable W define its symmetrization Wy by the formula

We=U W,
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where U is independent of W and P(U=1)=P(U=-1)= 1/2. The following distributional
relations involving W, W and W2 are obvious:

Let Fp and G be distribution functions of Wg and w2, respectively. Then

1-G(x2™ ) /2 f 0
F(x)= ( (x2 N/ orxc< 1)
(1+G(x2)) /2  forx20,

G(x)=2F,(¥x)-1 forxeR. 2)

Denote by ¢ and ¢ characteristic functions of W and W, respectively. Obviously ¢s
is determined by the distribution of W2 (by (1)). On the other hand

18+ 8(-01=0,. 1€R 3)

If W2 is absolutely continuous with the density g then W and W are also
absolutely continuous and their densities, f and f;, respectively, fulfill the relations

U@+ f0l= . xeR @)

f,(x) =Ixlg(x?). x € R(by(1)). (5)
Consequently, we have the following result:

Theorem 1. If W2 is absolutely continuous with density g then density f of W has the
form

f(x)=h(x)xlg(x?), h(x)+h(-x)=2, x€R. (6)

and its characteristic function ¢ fulfills the equation

o)+ @(~1)=2fe™1x g(x )dx. 1€R. (7)

R

Conversely, if the characteristic function ¢ of W fulfils (7) or its density f fulfils (6),
where g is a non-negative function, then g is the density of w2,

Proof: Assume that g and f are the densities of W2 and W, respectively. Define

f(x)/[1x1g(x?)] if only Ixlg(x2)# 0
h(x)=

if only Ixlg(x2)=0.

Then by (4) we have

f,(x)= -;-lxsg(ﬂ)[h(xnm-x)]. xeR




Distributional Properties of Squares of Linear Statistics 91

Now (6) follows from (5) and the above formula. Equation (7) is an immediate
consequence of (3) and (5).
Assume conversely that (6) holds. Then (4) yields

fi(x)= %leg(xz){h(xh h(-x)] =leg(12), x€R.
Similarly from (7) and (3) we have (5), too. Consequently by (2)
: v
PW’ <x)=G(x)=2 | f(w)ydu-1=

Vi x
(-u)g(uz)du +2 | ugu)du-1= |g(u)du,
- 0

—o

=2

for any positive x. Hence g is the density of W2.Q

Immediate consequences of Theorem 1 are Theorem and Corollary 1 from Geisser and
Roberts (1966) and Corollaries 1, 2 from Roberts (1971).

Now we work towards an extension of Theorem 5 from Roberts (1971). The
assumption of absolute continuity is relaxed.

Theorem 2. Let X, Y be i.i.d. r.v’s with the characteristic function ¢. Then

[Reo())” = [y (1)+ w2 (1]/2. (8)

[Im(b(t)]z=[wl(l)—v2(1)]/2. 1eR (9)
where 1 and 3 are the characteristic functions of (X+Y)s and (X-Y)s, respectively.

Proof: Observe that ¢2(t) and ¢(t)o(-t) are the characteristic functions of X+Y and X-Y,
respectively. Consequently by (3)

oX()+0% (- =2y, (1), (10)

ONO(=1) =y, (1), (11)

te R. Hence

4[Reo(] = [+ 0= = 2y, (1) + (1)
4(imo(n)|? =[oth-o(-n)? = 2y -y, ()]

te R. The above equations imply (8) and (9).

As a consequence of Theorem 2 we obtain an extension of Theorem 5 from Roberts
(1971).

Corollary 1. Let X, Y be ii.d. r.v's. The r.v's (X+Y)2 and (X-Y)2 are equidistributed iff X
is symmetric.
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Proof: Since (X+Y)24(X-Y)? then also (X+Y)dd(X-Y)s. Consequently in Theorem 2 we
have y1=y3 and by (9) the characteristic function of X is real. Hence X has a symmetric

distribution.
If X is symmetric then (10) and (11) imply equidistribution of (X+Y)s and (X-Y)s. By

(2) (X+Y)2 and (X-Y)? are also identically distributed.

Remark. Assume that (X+Y)24(X-Y)2. Observe that if the distribution of (X+Y)g is
uniquely determined by its moments or its characteristic function is non-vanishing then
by Theorem 2 the distribution of the X is uniquely determined by that of (X+Y)2. On the
other hand the distribution of X determines that of (X+Y)2 and (X-Y)? even without
the symmetry assumption.

In Theorem 5 from Roberts (1971) the special case
(X+Y)2d(x-v)2dx2(1)

was considered. Another straightforward generalization of this result is given in
Section 3.

3. THE NORMAL AND x? DISTRIBUTIONS.

In this section we study relations between the x2(1) and normal distributions via
properties of squares of lincar statistics in independent random variables. Only upon
introducing x2(1) law can we sharpen some of the previously known results.

A useful tool in such investigations is a result of Roberts (1971) (it is also a
consequence of our Theorem 1).

Proposition 1. The r.v. W2dx2(1) iff the characteristic function ¢ of W satisfies

02(D+02(-t)=2exp(-t2/2), teR. 1

The following extension of the Theorem from Geisser (1973) and Theorem 2 from
Ahsanullah (1989) relaxes the assumption of equidistribution of the r.v's involved.

Theorem 3. Let X and Y be independent r.v's. Then u’,z=(aX+bY)2/(a2+b2)§x2(1)9; W12=
(aX-bY)2/(a2+b2) for some a, b#0 iff at least one of the pair X, Y is N(0,1) and x2d
Y2dx2(1).

Proof: As in Geisser (1973) we have
expl—(a’ +b* )’ /2] = 6y (a0, (bl). 1€R (12)

Hence by the Cramer thecorem xngsgN(o,n. This fact implies ng__dezg__ x2(1). Since
W,2dx2(1) then by Proposition 1

2expl—(a’ +b2 )t [2) =0y (a)0y (bt)+ 6 (~ar)oy (-bi)
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te R. Now by (3) applied to X5 and Y from (12)

[¢x(al)—exp(—azlz)u¢,(b.')— exp(-—bztz)]=0, teR

Consequently, there is a sequence (t,), t, 0, such that

$x(t)=exp(=t}12) or ¢,(1,)=exp(-12/2), n21

By Corollary 1 to Lemma 1.2.1 in Kagan et al. (1973) at least one of the pair X, Y is
N(0,1) r.v.

The sufficiency part: Assume that X4N(0,1) and Y2dx2(1). Then by Proposition 1

Ox (a)oy (b1)+dx (-ar)oy (-bt) =
=exp(—a®t2 /2] 6y (b1)+ 6y (b)) = exp(-a2i? /2)

for te R. Consequently once again applying Proposition 1 we find that W2 is x2(1) r.v.
Similar computation proves the result for W2. 2

Corollary 3 from Geisser (1973) is a natural complement of Theorem 3. However the
proof of this Corollary seems to be unsatisfactory since the equation f()g(t)=0,te R, does
not yield f=0 or g=0, in general. Fortunately the argument based on a sequence (tp),
tn 0, from the proof of Theorem 3 works.

Also in Geisser (1973) the following interesting problem was stated: Assume that X
and Y are i.i.d. r.v's and (X+Y)2/2 has the x2(1) distribution. Is the distribution of X
normal N(0,1)? Seemingly slight modification: “-” instead of “+” makes the problem
very easy (see also Ahsanullah (1989)).

Proposition 2. Assume that X, Y are i.i.d. r.v's. The r.v. (X-Y)2/2 is x2(1) iff X is
N(0,1).

Observe that it is a straightforward generalization of Theorem 5 from Roberts
(1971), where it is assumed that (X+Y)2/2 is x2(1) additionally.

Proof: By Proposition 1
d(Dd(-t=exp(-t2), teR
and the result follows from the Cramer theorem. The sufficiency is obvious.

The original Geisser conjecture is answered positively in Ramachandran and Lau (1991).
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