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M U L T I V A R I A T E  I N F I N I T E L Y  D I V I S I B L E  D I S T R I B U T I O N S  W I T H  

T H E  G A U S S I A N  S E C O N D  O R D E R  C O N D I T I O N A L  S T R U C T U R E  

1. Introduct ion.  
Univariate infinitely divisible laws are widely investigated. However the number of papers 

devoted to the multivariate infinitely divisible distributions is considerably lower. These by 
Dwass and Teicher [4], Horn and Steutel [5] and Veeh [8] are among the most interest ing.  

In this note we observe that multivariate infinetly divisible distribution with all the 
univariate marginals Gaussian is a Gaussian distribution. This, quite simple fact, seems 
to have wide applications. We use it to simplify a characterization of the multivariate 
Gaussian law by properties of fourth cumulants obtained by Talwalker [7]. The main result 
is a characterization of the Gaussian distribution among multivariate infinitely divisible 
laws with the Gaussian second order conditional structure. 

2. Univariate  G a u s s i a n  m a r g i n a l s .  
The characteristic function of a n-variate square integrable infinitely divisible distribution 

has the form 

(1) ~o(t) = e x p { i t ' r n -  ½ t ' ~  t + / ( e  it'x - 1 - it 'x)Hxll -= dI((x)}, 
R~ 

where t and m are n-dimensional real vector , P. is a symmetric positive definite n × n 
matrix, #K(') = f d I ( ( x )  is a finite Lebesgue - Stjeltjes measure on the Borel sets of R n 
such that #K ({0}) = 0 and H" II is the standard Euclidean norm. The triple (m, P,, K)  is 
uniquely determined by ~,. This multivariate version of the Kolmogorov's representation 
was obtained by Talwalker [7]. We use the above formula since we investigate the case of 
Gaussian univariate marginals. Consequently the second moments are finite. 

Propos i t ion  1. I f  X = ( X I , . . .  ,X,~) is an infinitely divisible random vector and X k  is 
a Gaussian random variable for  all k = 1 , . . .  ,n ,  then X is a Gaussian random vector. 

Proo f .  For any k = 1 , . . .  , n  we put in (1) tk = t and t j  = 0 for all j E {1 , . . .  ,n} \ {k}. 
From the uniqueness of the Kolmogorov's representation we have 

f dI;(:q,... , a : , )  (e it*k - - 1 - -  i t zk  ) 7 2 - - . . - . - - 7  = 0 .  
a, 1 + + a .  

Let us assume that #,¢ ~ 0. Hence fl~, d K  = A > 0 and G = K / A  is a n-variate distribution 
function. The above equation yields 

( e i*Y~ - 1 - i tYk ) 
(2) E = o ,  
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where G is the d i s t r ibu t ion  funct ion of a r a n d o m  vector (Y], • • • , )~,). Since Xk, k = 1 , . . .  , n 
are Gauss ian  r a n d o m  variables then  we can differentiable (2) twice (2) with respect to t. 
T h e n  we pu t  t = 0 and  get 

E Y ? + . . . + Y ~  

Consequent ly,  in  cont radic t ion  to our  assumpt ion ,  we have #K = O. [] 
Now we apply Propos i t ion  1 to simplify a character izat ion of the mul t ivar ia te  normal  

d i s t r ibu t ion  ob ta ined  by Taiwalker [7]: 
I f  a random vector has infinitely divisible distribution and all its fourth cumulants are 

equal zero then it is a Gaussian random vector. 
It  is an extension of the earlier univar ia te  result  proved by Borges [1]. As an immedia te  

consequence of the la t te r  character izat ion we get 

P r o p o s i t i o n  2. I f  X = ( X 1 , . . .  , X ~ )  is an infinitely divisible random vector and for 
any k = 1 , . . .  ,n ,  the fourth eumulant  of Xk  i~ equal zero then X is Gaussian random 
vector.  

Proof.From Borges [1] it  follows tha t  Xk is a normal  r a n d o m  variable for every k = 
1 , . . .  ,n .  Hence the result  is a consequence of Proposi t ion  1. [] 

3. G a u s s i a n  s e c o n d  o r d e r  c o n d i t i o n a l  s t r u c t u r e  . 
In this Section we invest igate  mul t ivar ia te  infini tely divisible r a n d o m  vectors with l inear 

condi t ional  expecta t ions  and  cons tan t  condi t ional  variances. Such a condi t ional  s t ruc ture  is 
a proper ty  of the mul t ivar ia te  Gauss ian  dis t r ibut ion.  It explains our title. It is known that  
a cont inuous  t ime pa ramete r  stochastic process with the Gauss ian  second order condi t ional  
s t ruc ture  is a Gauss ian  process. Details may  be found in Plucifiska [6], Wesotowski [9] and 
Bryc [3]. A similar  result  holds also for infinite sequences of r a n d o m  variables ( see Bryc and 
Plucifiska [3] ). However it does not  remain  t rue in a finite d imens ional  case. A bivar ia t re  
counter  example  is given in Bryc and  Plucifiska [3]. Some other  observat ions are gathered 
in Bryc [2]. 

In this Section we show that  if we l imit  a class of mul t ivar ia te  d i s t r ibu t ions  involved to 
infini tely divisible laws then three-dimensional  Gauss ian  second order condi t ional  s t ruc ture  
implies normal i ty .  

Let X = (X1, X2, X~) be a square in tegrable  vector with the following propert ies  

(3) E (Xi I X , )  = ai l jX  j + c~ilj, 

(4) V a r  (Xi ] X j )  = bilj, 

(5) 

(6) V a r  (Xi  I X j , X k )  = bil.i,~., 

where i, j ,  k = 1, 2, 3 ,  (i ¢ j ¢ k :~ i). T h u s  X has the Gauss ian  second order condi t ional  
s t ructure .  To avoid the tr ivial  cases we should assume that  the componen ts  of X are l inearly 
i ndependen t  and  tha t  they have non-zero correlat ion in pairs.  Our  ma in  result  is given in 
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T h e o r e m .  Let  Y = (Y~ . . . .  , Y , )  be an inf ini te ly  divisible, square integrable r a n d o m  
vector  with l inearly independent  componen t s  pairwisely  non . zero  correlated. I f  f o r  any i = 
1 . . . .  , n ,  there are some  j ,  k = 1 , . . .  , n , ( i  7£ j ~ k 7£ i), such that  for  the vector  

the condi t ions  (3) - (6) hold, then Y is a a a u s s i a ~  random vector. 
P r o o f .  W i t h o u t  any  loss of general i ty  we can addi t ionaly  assume 

E X i = 0  and  E X ~  = 1; i = l ,  2 , 3  

It is easy to observe that  then  

ctil j = o q l j ,  k = O, all3 = Pij , bib = 1 - [)~ 

flij -- Pik fl)k Dik - -  P ' 3  Pjk 
aj(ilj 'k) -- 1 -- D 2 ' ak(ilj'k) -- 1 2 jk - -  Pjk 

bilj,k = II;I/(1 - p~k), 

where Pij is a correlat ion coefficient of Xi and  X j ,  i, j = 1, 2, 3 ; i  ¢; j ;  and  ]Is?] is the 
de t e rminan t  of the covariance ma t r ix  of the X. Obviously from the assumpt ions  we have 
IKI 7£ 0 and 0 < [pij] < 1. 

In Bryc and  Plucifiska [3] it was proved that  (3) and  (4) imply  existence of the moments  
of any order of X.  We are interested here in the third and four th  moments .  At first we 
compute  the condi t ional  moments  of the order three. 

We apply (3) - (6) to the formulas 

E ( E ( X ?  I X j , X ~ ) X ~ l X ~ ) =  E ( X ? E ( X j  x . x ~ )  I x ~ )  

E ( E ( X i  I X j , X k ) X ~  I X k ) = E ( X i E ( X ?  ] X , , X k )  I X k ) ,  

As a result  we have a sys tem of l inear  equat ions  

{ a,(jl, ~)x - %lJ ~) ~ = ~(x~) 
(7) --a2(jii,k ) x + aj(iLi k) Y = Q(xt.) , 

where x = E ( X ~  I X k ) , y  = E ( X ]  I X k )  and  ~ , Q  are some polynomials  of the order 
three. The  de t e rminan t  of the system takes the form 

W = ai(jii,k) aj(ilj, k) (1 -- ai(jli,k) aj(il j ,k)) 

II~:lCpij - p,k p j~ ) :  

[(1 p~.)(i ~ ~ 

Now let us observe that  from three expressions: 

ill2 -- P23fl13, P23 -- P13f112~ fl13 --i l l2 P23 
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only one may be equal zero. Let us assume that  

P12 =P2aP13 and P2a =P13P12, 

say. Hence 
= ph a n d  = 1 

which is a contradiction. Consequently (7) has unique solution in one of the following cases: 
i = 1, j = 2, k = 3 or i = 1, j = 3, k = 2. Without  any loss of generality we can consider 
only the la t te r  case. The uniqueness of the solution of (7) yields the form of E (213 [ X2) 
being as for the Gaussian random vector, i.e. 

Hence E X~ = 0. 
Now we compute in the similar way E X~. The assumptions (3) - (6) and the equation 

(8) we apply this t ime to 

E (E (X~ ] X~)X~)  = r, (X~E (X~ ] X , ) ) ,  

n (E (X~ I X , ) X ~ )  : E (X~E (X~ I X , ) )  

and get 

Consequently E X~ = 3. 
Hence it follows that  the fourth cumulant  of Yi = X1 is equal zero since 

EY, = O, EY/2 = 1, E ~  3 = 0, E ~  4 = 3, 

for any i = 1 , . . .  ,n.  Now the result follows from Proposit ion 2. [] 
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