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Multivariate normality via conditional normality 
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Abstract 

A new characterization of the multivariate normal distribution using conditional normality is given. 

1. Introduction 

Problems of characterizing multivariate Gaussian measures by their conditional structures have attracted 
more attention in recent years. One method of dealing with this question is by assuming some normal 
conditional(s), see Hamedani (1992) for a recent review of the subject. The other approach is by investigation 
of measures with Gaussian conditional structure of the second-order (linear conditional expectations and 
non-random conditional variances), see Wesolowski (1991) for a brief survey and some new results. There is 
also a very recent interest in combining these two ideas (Arnold, 1993). In this paper we are concerned with 
the first approach. 

For some n > 2, consider the following two conditions. 
(1) The conditional distribution of X, given X1, . . ,X,_ 1 is normal N(CQ + xj”Z: “jXj, 02), where 

UO,Mlr . ..>@kl. o2 are some real constants and o2 > 0. 
(2) The r.v.‘s X,, . . . ,X, are identiially distributed. 
In the case n = 2, Ahsanullah (1985) proved that (1) and (2) imply joint normality. 

For n > 2, (1) and (2) do not characterize the joint normality of the X’s, Counterexamples were given for 
n = 3 in Ahsanullah and Sinha (1986).and independently in Arnold and Pourahmadi (1988) (in the sequel we 
refer to this paper by AP). 

The main problem, we address here, is to change (2) to some other equidistribution relation to obtain 
a characterization of the multivariateqormal distribution by (1). This new relation is discussed in Section 2, 
while the characterization is given in Section 3. An example of such a result was presented in Ahsanullah and 
Sinha (1986), where instead of (l), a very strong condition of exchangeability was assumed. The proof was 
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based on considering the form of the joint density. A much stronger result of this kind was obtained in 
APwith(2)changedinto(X,, . . . . X,-i) s(X,, . . . , X,). The general approach they applied refers to existence 
and uniqueness of stationary distributions for indecomposable Markov processes. Our result, being parallel 
to that from AP, since we assume some other version of condition (2), is also another straightforward 
extension of both the results from Ahsanullah (1985) (n = 2) and Ahsanullah and Sinha (1986) (exchangeabil- 
ity). The method of the proof lies in applying an idea from Ahsanullah (1985) to conditional characteristic 
functions. 

It should be emphasized that the Markov approach is not valid for the equidistribution condition, we 
consider, since the resulting process is not indecomposable. 

All the problems discussed in this paper are invariant under univariate changes of scale or location. 

2. Discussion of equidistribution conditions 

Instead of (2) we are interested here in the following condition. 

(3) (Xo,Xi, . . . . X,)A(Xo,Xi, . . . . Xk-i,Xk+i), k= 1,2, . . . . n- 1, 

where X0 = 0 a.s. At first glance it looks like (3) is stronger than the AP assumption. 

(4) (Xi, . . ..XFi) z (X,, . . ..XJ. 

However they are actually of similar nature. To see this take n = 4. Then both of the conditions yield 
identical distribution of all univariate marginals (it is fulfilled for any n > 2) and additionally from (3) we 
have 

(Xi, X,) z (Xi, X,) A (Xi, X,) (X,, X,) s (X,, X,), (Xi, XZ, X,) 2 (X1, XZ, X,), 

while (4) implies 

(Xi > X2) 5 (X2, X3) s (X3, X4) (Xl, X3) A (X2, X4), (Xl, xz, X3) A (X2, x3, X4), 

Hence the conditions (3) and (4) have parallel forms. 
It is not difficult to see that they are essentially different. To this end take 

xi = u, x* = (U + V)/2, x3 = (U + W)/2, 

where U, V, W are i.i.d. standard Cauchy r.v.‘s. Then (Xi, X,) s (Xi, X,), Xi A XZ 9 X3 and no renumer- 
ation is possible to obtain the AP combination. To see it observe that characteristic functions ~ij of 
(Xi, Xj), i, j = 1,2,3, i # j, have the following forms: 

&2(s, r) = &3(s, r) = exp(I - +(12s + rl + Ifl)lT 

bl@, t) = $J~~(s, t) = expC - f(ls + 24 + Itl)l, 

4& 0 = &(s, t) = expC - &Is + tl + Is I + Itl)l. 

Similarly, one can easily construct measures which have property (4) but not (3). 
To emphasize the difference between both the combinations again take n = 4. In this case, the only 

Gaussian measures which are characterized in AP are those which have the following properties: 
pi2 = ~23 = ~34, ~13 = ~24 while we are interested in those fulfilling: pi2 = pi3 = pi4, ~23 = ~24, where pij is 
the correlation coefficient of Xi and Xj. 
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3. Characterizations 

Our main result allows one to replace the equidistribution condition (2) by (3). 

Theorem 3.1. If the conditions (1) and (3) are fuljilled for some n 2 2, then (Xl, . . ,X,J has a multivariate 
normal distribution. 

Proof. Without any loss of generality we assume that CI e = 0. Consider the conditional characteristic 

functions &(s) = E(eisX*lXO, . . . ,X,_ r), k = 1,2, . . . ,n, s E R. Observe that it suffices to show that $Q is 

normal with mean Q~X,, + cr,,,X, + ... + ~~_r.~X~_r and non-random variance oi, where 

aO,k, . ..> ak_ l,k, ok are some real numbers and dk > 0, k = 1, . . , n. It is an obvious consequence of the fact 

that one can rebuild the joint distribution knowing X,, X2 1 X1, . . . , X, 1 X1, . , X,, _ r . 

To prove that the conditional distributions have the required form, we apply backward induction with 
respect to k. For k = n, the result holds by assumption (1). Assume now that Xk( X0, XI, . . . , xk- 1 is 

~(~,,k& + ‘.’ + ak- I,kXk-I, 0:) for some k = 2, . , n. Then by (3), we have 

E(e isXr-lIXO, . . . . X,_,) = E(eisxkl&, . . . . &-,) 

and consequently 

4k- 16) = E(M4l&t ... >xk-2). 

By induction, we obtain 

4k-16) = d)k- 1(Olk-I,kS)exp[is(rO,kX, + ..’ + C(kp2,kXk-2)]exp( - fakZs2h 

After m iterations of the above formula, we have 

(5) 6k-lb) = ~k-l(&~l,kS) 

‘exp[is(%,kXg + .‘. + xk-Z,kX~_&l + C(k_r,k + “’ + urIrr,k)] 

‘exp[ - fai.?(l + C(z_r,k + “. + (Y:!mITkl))]. 

Assume now that Ic(k _ r,k I < 1 and take in (5) limit for m + CC . Then 

4k-16) = exp[is(CcO,k-lXO + “’ + uk-2,kp1Xk-2)]exp( -f&1s2), 

where 

1 
“j-k- 1 = clj.k 1 _ c(k_ l,k 3 j = 0,l , . . ..k-2. 

1 
%-l = Gk’ 1 _ C(;_l,k > 0. 

Hence Xk _ I I X0, . . , Xk 2 is normal. 
Finally observe that 1 xk _ 1, k I 2 1 is impossible since then upon taking limit in (5) we obtain & r (s) = 0 for 

any s # 0 which contradicts the non-degeneracy assumption imposed on Xk ( x0, . . . , xk 1. 0 

Remarks. (1) As a by product in the course of the proof we have obtained the following bounds 1 tlil < 1, 
i= 1,2, . . . . n- 1. 

(2) Observe that if all Cos in (1) are equal to zero, then X, has N(0, a2) distribution and is independent of 
(XI, . ,X,- r). Hence by (3) it follows easily that X,, . . . , X, are i.i.d. The same observation holds also for the 
pair (1, 4). 
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(3) Note that you cannot weaken the assumption (3) by considering only k = n - 1. To see that take n = 3. 
Let a non-normal r.v. X1 be independent of a bivariate normal vector (X,, X,), such that XZ A X3. Then 
(X,, X,) 9 (X1, X,). Since X3 1 Xi, X2 s X3 1X2 then the condition (1) is also fulfilled. However (X1, XZ, X,) is 
not normal jointly. 

(4) All three pairs of conditions (1,2), (1,3) and (1,4) have for n = 2 the same form and are not only 
sufficient but also necessary. For n > 2 (1,2) is not sufficient (while, obviously, remains necessary) and the 
pairs (1,3) and (1,4) are no longer necessary (being sufficient). Hence we come to an interesting open problem 
of complementing (1) by some equidistribution assumption to obtain a pair which is both necessary and 
sufficient for any n 3 2. 

Combining our method and the AP Markovian approach the following general result may be obtained 
easily. 

Instead of (2) consider a condition being a mixture of (3) and (4). 

For some k, 1 < k < n, 

(6) (X0, Xl, ... ,Xlpl,XJ~(X,,Xl, . . . . Xl-1,Xl+1), l=k, . . . . n- 1, if k<n, 

(Xl, . . . . X,-,)&(X,, . . . . XJ if k > 1. 

Theorem 3.2. If the condition (1) and (6) are fulfilled for some n 3 2 then (Xl, . . ,X,,) is multivariate normal. 

Observe that for k = n, Theorem 3.2 yields the AP characterization and for k = 1 our Theorem 3.1 follows. 
Also rephrasings of this result involving permutations of r.v.‘s are possible. 
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