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THE LYAPOUNOV CENTRAL LIMIT THEOREM 
FOR FACTORIZABLE ARRAYS 

JACEK WESOLOWSKI 

(Communicated by Lawrence F. Gray) 

ABSTRACT. A sort of the Lyapounov central limit theorem for row-wise factoriz- 
able triangular arrays is obtained. Also a new version of the classical Lyapounov 
theorem for independent random variables, being a tool in the proof of the main 
result, seems to be of independent interest. 

1. INTRODUCTION 

The celebrated theorem on decomposition of the normal law proved in 
Cramer [1] was the beginning of many further investigations that developed 
in different directions. Some of them were concerned with analytical exten- 
sions of the original result and lead in Linnik and Zinger (8] to the well-known 
a-decomposition theorem (see also Linnik and Ostrovskii [7]). Next Linnik [6] 
revealed strong relationships between the Darmois-Skitovitch theorem on the 
characterization of the normal distribution by independence of linear forms in 
independent random variables and the Carmer theorem; this line was continued 
by Kagan [2-4]. A culmination of these studies was the following concept of 
factorizable measures, originally named Qn k classes, introduced by Kagan in 
(3]. 

Definition 1. A random vector X = (X1, ..., Xn) (or its distribution) is k- 
factorizable iff its characteristic function X has the form 

(1) <5'~0ti .- tn) = II Ril ...-ik(ti,,*- tik) 

1<il< ...<ikf<n 

for any (t1, ..., tn) E Rn, where Ri, ...ik is a continuous complex-valued func- 
tion such that 

Ril ..ik (0,.. 0) =1 for any I < ii < --< ik < n. 

The random vector X (or its distribution) is locally k-factorizable if the rep- 
resentation (1) holds in some neighborhood of the origin. 
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Some examples and many interesting properties of these families including 
extensions of the Darmois-Skitovitch and Cramer theorems are given in [3]. 
To become more familiar with the device recall some nice observations from 
Kagan [3]: 

* Gaussian measures are 2-factorizable, 
* a k-factorizable random vector with Gaussian k-dimensional marginal 

distributions is jointly Gaussian, 
* a convolution of k-factorizable distributions is again k-factorizable, 
* classes of product and 1-factorizable measures are equal. 

The last property allows treating the notion as a gradual weakening of indepen- 
dence formulated in a strictly analytical form. 

The research was continued in Kagan [5] where a related concept of (n, k)- 
equivalence was introduced. In Wesolowski [9] a formula expressing the char- 
acteristic function of a k-factorizable measure in terms of the characteris- 
tic function of its k-dimensional marginals was proved. Also some conse- 
quences on determination of the joint k-factorizable distribution by its k- 
dimensional marginals were given there. The formula was intensively exploited 
in Wesolowski [1 0 ] where relations between factorizable measures and the Gaus- 
sian conditional structure of the second order were investigated. It is the tech- 
nical core of the present paper, too. 

Slightly reformulated it may be written in the following form: 
If a random vector (XI, ..., X") is k-factorizable, then its characteristic 

function has the form 

k 
aan,k 

, 

(2) 09(tl,*- tn) =H tI O?il .. ir(til - tir) 

r=I LI <-i,< ...<ir<n 

for all points (ti, ... , 
tn) in which the right-hand side of the above formula 

is well defined (i.e., for all points in which products of the marginal character- 
istic functions with negative powers an, k, r are nonzero), where 

k-r 

an,k,r = on-r li r=1,.. k, 
i=O 

and Qi, ...i, denotes the characteristic function of (Xi, ... , Xi,), 1 < il <* < 
ir < nf. 

The aim of this paper is to prove the Lyapounov version of the central limit 
theorem for row-wise k-factorizable triangular arrays, where k is a natural 
constant. It is a new contribution to the research in that it extends the limit 
theorems by weakening the assumption of independence. Also a new version of 
the classical Lyapounov theorem (i.e., for row-wise independent arrays) in the 
case of divergent sums of variances, being essentially a tool for the proof of the 
main result, seems to be of independent interest. 

In dealing with limit problems for infinite triangular arrays it is natural to 
assume that the number kn of random variables in the nth row tends to infinity 
together with the number of the row. Throughout this paper we consider only 
such arrays. 
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2. THE LYAPOUNOV CENTRAL LIMIT THEOREM 

Recall the classical Lyapounov central limit theorem for triangular arrays. 

Theorem 1 (Lyapounov). Assume that {X,j, j = 1, ..., kn} are zero-mean 
independent random variables, n = 1, 2, . If 

kn 

(3) li m LE (Xn2Bj) = U2 > 0, 
j=1 

kn, 

(4) lim E (lXn ,jl3) = ?, 
j=1 

then S, = Xn,I + - + X, k,, converges in distribution to the normal law with 

the mean zero and the variance a2 (Sn d IA(O a2)) as n - oo. 

The formula (4) is often called the Lyapounov condition. Different versions 
of this theorem for some classes of dependent random variables (martingale, 
mixing, conditioning) are known in the literature. The main result of this paper 
shows that factorizable families may also be fruitfully applied in central limit 
problems. 

Theorem 2. Assume that (Xn, ... Xn, kj) is a zero-mean k-factorizable ran- 
dom vector, n = 1, 2, If 

k,, 

(5) li1m E E(Xn, iXn,j) = 6r2 > 0, 
n-oo0 

i,j=l 

kn 

(6) 111 
m kkn LE(;Xn, jl3) = ?, 

j=1 

then Sn -dAX(O,a2) as n-*oo. 

Observe that for k = 1 from Theorem 2 immediately follows the classical 
result, hence it is a straightforward generalization of the Lyapounov theorem. 
A much weaker version of the result for k = 2 was proved in Wesolowski [ 1]. 
It contained an additional assumption limn,00 kn Zkn1 E(Xn2,j) = T2 > 0. 

Before we give the proof of Theorem 2 (see ?3), a new version of the classical 
result with assumption (3) omitted will be presented. 

Theorem 3. Assume that {Xn,j j = 1, ..., kn} are zero-mean independent 
random variables, n = 1, 2, If the Lyapounov condition (4) holds, then 

/2 kn 

(7) lim exp 
t 

EX2, j), E(exp(itSn)) = 1 

j=1 

for any real t. 
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The core of this result lies in a special formulation of the thesis. In the other 
well-known versions of the Lyapounov theorem it takes a weaker form: 

lim E(exp(itSn))-exp (- E E(Xn 2 
j) =? 

Of course the convergence given in (7) also holds in the assumptions of The- 
orem 1. Hence it is another straightforward generalization of the Lyapounov 
theorem. Theorem 3 is another important tool in the proof of the main result 
(besides the formula (2)). 

Unfortunately we are not able to prove the Lindelberg analogue of this the- 
orem. This fact is also the essential obstacle in obtaining the Lindelberg limit 
theorem for k-factorizable distributions, i.e., the result similar to Theorem 2 
but with the Lyapounov type condition (6) replaced by a condition of the Lin- 
delberg type: 

kn, 

lim knk 'LE(Xn2;jI(IXn,jI > e)) = 0 
n--*oo 

j=1 

for any e > 0. 

3. PROOFS AND LEMMAS 

Begin with the proof of Theorem 3. Then four auxiliary lemmas follow. The 
proof of the main result ends the section. 

Proof of Theorem 3. For any r.v. X such that E(1X13) < 0 and E(X) = 0 
define the function Vx by 

Yx(t) = exp (2t2E(X2)) E(exp(itX)), t E R. 

Observe that yx(O) = yxi(0) = 0 and consequently 

(8) I1 x(t)- I'= yx(t)- -tyx(0)- .xy4(0) 6"'(Ot) 

for some 0 E (0, 1). 
Since 

m,ax E(Xn2,j) < max E(lXn, ji3)) 2 

as n -X ox by (4), 

max exp E(Xn2 )) < c(t) < 0 

for sufficiently large n, where c(t) is nonradom. Let V/nj = Vx,,j. Again by the 
Lyapounov condition (4) and the above inequality after some easy calculations 
we have 

(f) ay 1 , nj(t)l < C(t)E(lXn rl 3)n 

for any j = 1, ..,kn, where C(t) is a real number. Consequently, by the 
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Lyapounov condition max1 <j<kI I y/n/"j (t)I4 0 as n - o . Hence by (9) 

lrn max Iqn t 
n-oo I <j<k, 

for any t. It allows considering the logarithm of ysn' for sufficiently large n. 
By the elementary inequality I ln(z)I < 21 1 - zI for Iz - Ii < 1/2 we have 

kn, kn, 

Iln( /s,, (t)) I < E IIn(VYn, j(t)) |I< 2L EI| n,j(t) - 11| 
j=1 j=1 

Now (8) and then (9) yield 

IIn (VS-(t)) ZIt ' I nj(0t)I < j-C(Ot)E(Xn, j 13), 
j=1 j=1 

and once again applying the Lyapounov condition (4) we arrive at the final 
result. OJ 

The following nonprobabilistic lemma deals with sums of subsums and bi- 
nomial coefficients. In the sequel we use the standard convention: (n) = 0 for 
r < O or r > n, () = 1 for any real x. 

Lemma 1. For any real numbers a,, an and any r = 1,...,n, n = 
I , 2 ,.. 

(I10) E : aij = r- I Eai, 
I<i< .2.<i,<n j=I i=l 

22 

( ) IS <Ei n E ij r- 1) Ea? + (r- 2) (ai) 
Proof. Begin with (10) and apply induction. For n = 1 it is obvious. Assume 
that (10) holds for some n and any r = 1, ..., n. We will prove that it is 
fulfilled for n = 1 and any r= 1, ..., n + 1 . 

First, observe that for r = 1 and r = n + 1 it is trivial. Take any r = 
2, ...,n. Then 

r r 'r-I1 

Z Zaij= E Laij+ E EZaij+an, I 
1<i<---<i,<n+l j=l l<i<---<i,<n j=<<<l l<i<...<i,l<n +j=) 

= (n 1) ai + (n_2),ai + (-1)an+ 1 

by the induction assumption applied to the first and second terms in the middle 
expression. Hence the result follows by the elementary identity (r-) + (r-2) = 

We use induction to prove (1 1) too. For n = 1, 2 it is obvious. Assume that 
it holds for some n and any r = 1, ... , n . We will prove that it is fulfilled for 
n + 1 and any r = 1, .. ., n + 1 . For r = 1 or n + 1 it is immediate. Take an 
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arbitrary r= 2,..., n. Then 

, 2 

E | ai,| 
lSil<-.-<i,<n+l \j=l 

= ( E ()Eaaj) + (a?, +)an+ 
1 Si,< .. *<i,<n j=1 1 <i, < ...<i,_ I <.n j= 1 

r- 1 ~ 2 
= n - 2) ni n r 2) na r-I<E n E 

+2anl1 5 an+ a)j 
1~~~~~~~~~~<j ... <--<i, I <n j=l 

where we have applied above the induction assumption. Now using (10) in the 
fourth summand above we have 

(*) = [(r - u) + (r -22)] Eai2+ [(rn-22) + (r _i3)] (a, 

= (-r2)na-+ _ nr-2) n - 2 n 

+ [(n- 1)+ (n-2)]a + 

Hence ( 1 1) follows immediately. 0 

In the next two auxiliary lemmas the coefficients 

(12) ank , = (fl - r (-1 ) 

r = l, ..., k, k = l, ..., n, n- 1, 2,... ,appearing inthe factorization (2) 
of a characteristic function of a factorizable distribution, are considered. It is 
not difficult to show that these coefficients fulfill the following useful identity: 

(13) an,k+,r=an,k,r+(-l)+ (k r ) 

fornany r, n as aboveand k= ,...,n- 1 . 

Lemma 2.For anyk =2, . ..,n, n= 2,3,. .. 

(14) Z an, fkor (r-12)= 0? 

kr 
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Proof. Obviously the result is true for k = 2. Assume that it holds for some 
k, 2<k<n-1. Then 

k+1 2 k22 

Zan,k+l,r(r 1)= an,k+l,r(r 1) + (k)=(**) 
r=1I r=lI 

since an, k+l, k+l = 1. By (13) and the induction assumption 

(**_l=k-r1) (k - r + l) (r - 1) + (k) 
r=1 

= Z(-l)1 (f- k - 1 + ) (n - 2) 
1=0 

for I = k + 1 - r. Consequently, 

(* *(n -2( 1) ( (-1)'(n - k - 1 + 1) = 0 

since Ek li (k)(_ 1.)l = 0 for i = 0, 1. o 

Lemma 3. For any k = 2, ...,n, n = 2, 3. 

(15) E an,kr(2) = 1. 
r= 

Proof. For k = 2 it is immediate. Assume that it holds for some k, 2 < k < 
n - 1 . Then similarly as in the proof of Lemma 2 by (13) we obtain 

k+1 2 k+1 2 

r=2 r=2 

1 0~~~~ 

Now combining the above three lemmas we obtain an identity, which will be 
used in the proof of the main theorem. 

Lemma 4. For any k =1 ..., n, n = 1, 2. 

(16) E [an,k,r E (ai)j = ( ai) 
r=1 l<i,< ..<i,<n j=l i=l 

Proof. For k = 1 itis obvious. By (11) of Lemma 1 forany k =2, ...,n 

= (an,k ) (r (E ij) + 
r=1l 1<ij< ...-<i,<n j= 1 

= 12 an,k,r( r ) + Ea) n,k,r r_ 2) 
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and the final result follows now by (14) and (15). o 

Now we are ready to prove the limit theorem. Recall that the main tools used 
in the course of the proof are the following: the factorization (2), Theorem 3, 
and Lemma 4. Also the routine technique of subsequences being a consequence 
of the Prokhorov theorem will be applied. 

Proof of Theorem 2. Step 1. Observe that the assumption (5) and the Tcheby- 
shev inequality yield 

kn 

p(ISn I > A) < -2 E E(Xn,iXn, j) _+A-2a2 
i,j=l 

as n 0 . Hence the sequence of distributions of Sn, n = 1, 2,..., is tight. 
By the Prokhorov theorem, each subsequence contains a weakly convergent 
subsequence. Consequently without losing generality we can assume that Sn 
converges in distribution. Thus, to prove that the limit distribution is normal 
_41(0, CT2) it suffices to show that 

(17) lim E(exp(itSn)) = exp (ia2) 

only in some neighborhood of the origin. 
Step 2. Take any r = 1, ..., k. Define independent r.v's 

y(i) d 
Yn; l..ir =~ Xn, i, + * + Xn, i, 

for I = 1, . 1. ., jak,,krI, where the coefficients akn,k,r are defined in (12) (see 
also (2)), 1 < i1 < *-- < i4 < k, . In this step we prove that Theorem 3 holds 
for the Y's. 

Notice that by the definition and an elementary inequality for the third mo- 
ment of the sum 

lakn k.,r 

S= Ej E(IY,J1 l, l ) = Iakn,k,rI E (IY,?,i.l ) 
1 <ii< ... <i,<kn j= 1 1 <i <- .. <ir<kn 

< M(r) lakn, k rl I (E(|Xn, j, 13) + -* + E(lXn itl3)), 
1 <il <- -<i,<k 

where M(r) is a number dependingly only on r. Now by (10) of Lemma 1 

S < M(r)lakn,rI (k-1 1) Z E(lXn .13)- 

Due to (6) to prove the Lyapounov condition for the Y's it suffices to show 
that 

(18) ( 1) ankrn-(k-1) + c(k, r) 0 0) ~~r - I 

as n -. oo, where c(k, r) is a real number. Apply induction with respect to 
k . For k = 1 (18) is obvious since then r = 1 and an, = I . Now assume 
that (18) holds for some k > 1 . Then by (13) 

( )an ,k+,rn-k= (n ) ank nk+(r-k )k-r+ nk(n -)(kn-r ) 
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Hence we obtain (18) since the first term tends to zero by the induction assump- 
tion and the second is equal to c(k, r)(n - 1)) (n - k)n-k. 

Consequently, Theorem 3 holds for the Y's. 
Step 3. Define for any r 1, ..., k 

fl(t, r, n) = exp (2 ? E((Xni + + - i,) )) i 
1 <i,(< X.<i,<k 

Then the result of Step 2 may be formulated as follows: 
_ak , k.r 

(19) lim 
ri(t, n) fJ 4'n;j1.,,(t ..., t)j 

1<i1< <i,<kn 

for any r = 1, ..., k, where On; .i i, is the characteristic function of the 
marginal (Xn,il, ..., Xn,i,). Hence there is a neighborhood V of the origin 
such that for sufficiently large n and all t E V 

n OJn; ,..i(t, ..,t) ? O, 
1 <ii< ..<i,<k,, 

r= 1,..., k. Now the formula (2) for t E V and large n yields 

k ...........akn ,k,r 

r=l1 i<i, < .. <i,<kn 

Multiplying and dividing the above equation by 
k 

7[J1(t, r, n)]akn.k., 

r=1 

we obtain 

k .e ( .E{Z [akn k,r 

.JSn (t) = [l 11 f(t, r, n)On;il ... .,,(t, ,t) 
r= 1I 1l<il< ... <i,<kn 

ex E 
[ k,k (Xn, i, + * * + Xnt, 02]} 

r= 
IL <il< ... <i,<k,, 

Applying (16) from Lemma 4 for ai = Xn, i we find that 

k k,, 

L akn,k,r L (Xn,i, + ***+ Xn,i,) = L Xn,iXn,j - 
r= IL I<ij < -c.i,<k, i,j=l 

Hence by (19) and (5) the final result (17) follows. 0 
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