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Abstract .  Uniqueness of specification of a bivariate distribution by a Pareto 
conditional and a consistent regression function is investigated. New charac- 
terizations of the Mardia bivariate Pareto distribution and the bivariate Pareto 
conditionals distribution are obtained. 
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1. Introduction 

Specifications of multivariate probability distributions by conditional charac- 
teristics of Paretian type have been intensively studied in recent years. First result 
is due to Arnold (1987), where a characterization of a bivariate distribution with 
the both Pareto conditional distributions, without specifying precise forms of pa- 
rameters, was obtained. Then it was extended while Castillo and Sarabia (1990) 
investigated bivariate distributions with the second kind beta conditionals. We 
recall this result following the recent monograph on conditional specifications of 
this kind by Arnold et al. ((1992), Section 5.2): 

Denote by 7)(er,/3) the Pareto distribution with the density function 

/3cTz 
f ( x )  -~- (a q- X)/3+1 X > 0 

0 x_<0 

where/3 and a are positive numbers. For a random vector (X, Y) denote by # x l Y  
and Ityi x conditional distributions of X given Y and of Y given X, respectively. 
Consider a random vector (X, Y) with 

(1.1) , X l y  = ~ ' ( ~ ( Y ) ,  9),  , r r x  = 7~(o-~(x), 9),  
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where 0-~ and 0-2 are some positive functions. 
Then 

a + Y  a + b X  
0"1(]/-)- b - ~ c Y '  0 2 ( 2 ) -  1 - ~ - c X  

and the joint distribution, named the bivariate Pareto conditionals distribution, 
has a density of the form 

K 
(1.2) f ( x , y ) =  ( a + b x + y + e x y ) 9 + l '  x > 0 ,  y > 0 ,  

f ( x ,  y) = 0 otherwise, K is a normalizing constant, a _> 0, b > 0, c _> 0; if a = 0 
then/3 c (0, 1), if c = 0 then fl E (1, oc)--observe that  in the case fl = 1 we can not 
have a = 0 as it was allowed in Arnold et al. (1992). A special case of this measure 
for /3 > 1 and c = 0 is the Mardia bivariate Pareto distribution introduced in 
Mardia (1962). This distribution was also characterized in the Arnold et al. (1992) 
by (1.1) and linearity of regressions E ( X  I Y )  and E ( Y  I X)- - see  Section 7.2. 

Other conditional specification of the similar nature are the following: In 
Arnold et al. ((1992), Section 8.5), a multivariate distribution with all univariate 
Pareto conditionals was considered while multivariate measures with all bivariate 
Pareto conditionals has been recently treated in Arnold et al. (1993a). Univariate 
generalized Pareto conditionals are studied in Arnold et al. (1993b). Another 
kind of conditional specification featuring one univariate Pareto conditional and 
equidistribution of some marginals was given in Arnold and Pourahmadi (1988), 
developed recently by Wesolowski and Ahsanullah (1994). 

In this paper we consider the Pareto conditional distribution in the gen- 
eral scheme of specification of the distribution of a random vector (X, Y) by 
the conditional distribution PYIx and the conditional mean E ( X  I Y) .  Such a 
method of specification of bivariate measures goes back to Korwar (1975), where 
binomial and Pascal conditional distribution together with a regression function 
re(y) = E ( X  I Y = Y) = ay + b, for some real constants a and b, were con- 
sidered. Then Cacoullos and Papageorgiou (1983) investigated the uniqueness of 
determination of the bivariate distribution for binomial, Pascal and Poisson type 
conditionals andan  arbitrary consistent function m. The same question for hyper- 
geometric and negative hypergeometric conditionals was treated by Papageorgiou 
(1985). Kyriakoussis (1988) worked on uniqueness of specification of the bivariate 
distribution assuming that #Ylx  is an X-fold convolution of a discrete measure 
and m is a polynomial. The discussion given in Johnson and Kotz (1992) revealed 
some important limitations of such a model. Logarithmic series distributions are 
characterized by the binomial conditional distribution and rn(O) = b, re(y) = ay, 

y = 1, 2, or by the Pascal conditional distribution and re(y) = °~-az(l+°p/qF-1 
• "" q [ ( l q -Op /q )Y - -1 ] '  

y = 1, 2 , . . . ,  where p, 0 E (0, 1), q = 1 - p and [.] denotes the integer part of -, in 
Kyriakoussis and Papageorgiou (1991)• More recent contributions are the follow- 
ing: Arnold et al. (1993) uniqueness result for the shifted exponential conditional 
distribution and a consistent rn; Ahsanullah and Wesolowski (1993) characteriza- 
tion of the bivariate normality by the normal conditional law and the linearity 
of rn; Wesolowski (1993a) uniqueness theorems for the power series conditional 
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distribution and a consistent m; Wesolowski (1993b) specification of the bivariate 
Poisson conditionals distribution by the Poisson conditional and a power function 
?77,. 

2. Uniqueness and characterization 

Let (X, Y) be a random vector with non-negative components. As it was 
pointed out in Introduction in this paper we consider possible distributions of 
(X, Y) with PYlX as in the case of the bivariate Pareto conditionals distribution, 
i.e. we assume that the conditional density of the measure PYrX has the form 

/3(a + bx)Z(1 + cx) 
(2.1) f Y t X = x ( Y )  = (a 4- bx zr- y -~- cxy)  ~+1' 

or equivalently 

(2.2)  YIX = P ( - -  
\ 

y > 0 ,  x E  

a + bX /3) 
1 + ~ '  ' 

wherea_>0 ,  b > 0 ,  c_>0 ( i f a = 0 t h e n / 3 E  ( 0 , 1 ) , i f c = 0 t h e n f l E  (1, oc)) and 
sx  = [0, 

Additionally we assume a c ¢  b. Observe that in the case ac = b by (2.1) 

/3a/~ 
fY,x=x( ) - (a + y ) , + l  

for any y > O, x E Sx.  Consequently Y has the Pareto P(a,/3) distribution and 
X, Y are independent. Hence E ( X  ] Y) = E(X)  and it is the only restriction 
imposed on the distribution of X. 

Our aim in this section is to prove that under the given above assumptions 
the conditional expectation E ( X  I Y) or E[(a + bX + Y + cXY) -1 I Y] uniquely 
determine the joint distribution. 

THEOREM 2.1. Let (X ,Y)  be a random vector fulfilling (2.2). 
Then its distribution is uniquely determined by E ( X  ] Y). 

PROOF. Denote by m the regression function of X given Y: 

m(y) = E ( X  ] Y = y) = f xdFxlY=v(x), y > O, 
JS x 

where Fx/y=y is the conditional distribution function. From (2.1) it follows that 
Y has a density, say fy .  Then the obvious identity 

fY (y)dFxry=y (x) = fYIx=z (y)dFx (x), 

where Fx denotes the distribution function of X, yields for any y > 0 

(2.3) m(y) ~ x  fyIx=x(y)dFx(x) : ~ x  xfyjx=x(y)dFx(x).  
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Denote a generalized distribution function H by the formula 

dH(x) = (a + bx)Z(1 + cx)dFx(x), 

Then (2.1) and (2.3)imply 

(2.4) 

where 

x_>O. 

m ( y ) ¢ z + l ( y )  = J(s x(a + bx + y + c x y ) - ( Z + l ) d H ( x ) ,  
x 

O's(Y) = ffs (a + bx + y + cxy)-'~dH(x) 
x 

for y E {fl, fl + 1}. Observe that from the definition of ¢~ and (~--1 it follows that 
for any y > 0 

(2.5) (b + cy) l_  x(a + bx ÷ y + cxy)-(Z+l)dH(x) = CZ(y) - (a + Y)OZ+I(Y). 
Jb' x 

Now we join (2.4) and (2.5) to obtain 

(2.6) [ ( b + c y ) . ~ ( y )  + a + y ] ¢ ~ + l ( y )  = ¢~(y) ,  y > 0 

Observe that CZ is differentiable and its derivative can be expressed in terms of 
¢~ and ¢;~+1: 

, 
(2.7) ¢~(Y) - -  b +  c y  [ ( a c -  b)¢~+l(y) - c¢~(y)], y ) 0. 

Hence by the assumption ac¢ b after some easy algebra (2.6) and (2.7) yield 

[(b + cy)m(y) + a + yl¢~(y) = -fl(cm(y) + 1)¢Z(y), y > 0. 

Consequently 

¢z(y)  = K e x p  - 9  (b + ~y)m(y) + a + y 

where K is a positive constant. 
Hence by (2.6) CZ+I(Y) = KG(y), y > 0, where G is a function uniquely 

determined by a, b, c. On the other hand observe that for any y > 0 

( (a+bX)Z(l+cX)  ) 
~fl+l(Y) = E [a -~- b X  + y(1 @ o N ) ]  f l + l  " 

The function ¢~+1 is k-differentiable for any k = 1, 2 , . . . ,  in each point y _> 0 (in 
y = 0 we consider the right-hand side derivatives) Consider now a r.v. Z l+~X • - -  a4-bX" 
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Since Z <<_ max(1/a,c/b)  a.s. then E ( Z  k) exists for any k = 1 ,2 , . . .  and the 
distribution of Z is uniquely determined by the sequence of its moments. Since 

K G  (k) (0) (k) t ,k F(/9 + k + 1) ~ , Z k + l  , 
= , , + 1 ( 0 )  = V ( # T T )  J' k = 0, 1 ,2 , . . .  

then a, b, c, K characterize uniquely the distribution of Z. To prove that the 
distribution of X is uniquely determined by a, b, c, consider X fulfilling the as- 

sumptions of the theorem. Then, similarly as above, for 2 - 1+c2 a+b2 w e  have 

E ( Z  k) = RG(k)(0), k = 1, 2 , . . . ,  with the same function G. Hence K E ( Z  k) = 
KE(2k), k = 1, 2, . . . .  Consequently for L = K/BI  

T(S) = L?(s) + 1 - L, s > O, 

where 7- and ~ are the Laplace-Stjeltjes transforms of Z and 2,  respectively. Since 
Z and 2 are positive a.s. then both the transforms vanish as s ~ co. Thus L = 1 
and K = / ~ .  This yields unique determination of the distribution of Z and finally 
by the definition of Z the distribution of X is also uniquely characterized by a, b, 
¢ . D  

By Theorem 2.1 a bivariate distribution can be specified by the conditional 
Pareto distribution and a regression function. Now we use this result to character- 
ize the bivariate Pareto conditionals and the Mardia bivariate Pareto distributions. 
Observe that the mean of the Pareto 7)(or,/9) distribution exists only for /9 > 1 
and is equal ~r/(/9 - 1). Hence for (X, Y) with the density (1.2) and/9 > 1 

a + Y  
(2.8) E ( X I Y )  = ( /9 -  1)(b + c Y )  

COROLLARY 2.1. Let ( X , Y )  be random vector fulfilling (2.2) and (2.8). 
Then ( X ,  Y)  has the bivariate Pareto conditionals distribution with the density 

(1.2). I f  E ( X  I Y)  is linear, i.e. c = 0 then the joint distribution is the Mardia 
bivariate Pareto distribution. 

Now we are going to replace the conditional mean E ( X  I Y)  by E[(a + bX + 
Y + c X Y )  -1 I Y) .  It appears that in this case we can also obtain a uniqueness 
result like Theorem 2.1 using similar methods. 

THEOREM 2.2. Let (X, Y)  be a random vector fulfilling (2.2). Then the dis- 
tribution of (X, Y)  is uniquely determined by E[(a + bX + Y + c X Y )  -1 I Y) .  

PROOF. Adopting the notations from the proof of Theorem 2.1 and addi- 
tionally denoting 

~(y) = E[(a + bX + Y + c X Y )  -1 I Y = Y), Y > 0 

we have 
;(y)¢Z+l(y) =¢z+2(y) ,  y > 0. 
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Now (2.7) with/3 changed into/3 + 1 yields 

b+ cy . i  , 
( a c  - - 9z+  y; + c e z ÷ l ( y ) ,  y > O .  

Hence 

6Z+I (Y)-  ( b + c y ) Z + l e x p  ( / 3 + l ) ( a c - b )  ~ j y > 0 .  

Consequently 6Z+1 (Y) = KG(y ) ,  y > 0, where G is a function uniquely determined 
by a, b, c. Now it suffices to follow the final steps of the proof of Theorem 2.1. [] 

Theorem 2.2 can be also used to characterize the bivariate Pareto condition- 
als distribution. Observe that for a r.v. X with the Pareto P(a,/3) distribution 
E(--~x ) - ~ Consequently for (X, Y) with the density (1.2) (and conditional Z+I" 
distributions given in (1.1)) 

(2.9) 
/3 

E[(a + bX + Y + c X Y )  -1 I Y) = (/3 + 1)(a + Y)" 

COROLLARY 2.2. Let ( X , Y )  be a random vector fulfilling (2.2) and (2.9). 
Then it has the bivariate Pareto conditionals distribution with the density 

(1.2). I f  c = 0 then it is the Mardia bivariate Pareto distribution. 
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