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Abstract 

It is proved that if the conditional distribution of one linear form in two independent (not necessarily identically 
distributed) random variables given another is normal, then the variables are normal. The result complements a series of 
characterizations of normal distribution via different properties of linear forms: independence, linearity of regression plus 
homoscedasticity, equidistribution, conditional symmetry and normality. The method is different from previous ones and 
is based on properties of densities, not characteristic functions. 
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1. Introduction 

Condi t ional  specifications of  stochastic models have at tracted at tention of  numerous  researchers in the 
field of distr ibution theory  and its applications. A considerable par t  of  this interest is devoted to specifica- 
tions involving condit ional  distributions as m a y  be learned from the recent m o n o g r a p h  by Arnold  et al. 
(1992). The present contr ibut ion is a further development  in the case of  condit ional  normality.  

Consider  a r a n d o m  vector  (U, V) such that  both  the condit ional  distributions,/z vl v and/~ vlv, are normal,  
i.e. 

m~tv = X ( m ( V ) ,  ~r2(V)) (1) 

and 

~ = ~ ( r ~ ( u ) ,  5~(u) ) ,  
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where m, rfi, a > 0, ~ > 0 are some real Borel functions. Then the joint distribution may not be normal as it 
was observed in Castillo and Galambos (1989) (see also Bhattacharyya (1943)); it may even be bimodal as 
a nice picture in Gelman'and Meng (1991) reveals. However, if any of the conditional means is linear or any of 
the conditional variances is non-random then the bivariate distribution of (U, V) is Gaussian. Numerous 
variations on this theme are gathered in Hamedani (1992). Obviously, normality of the conditional 
distribution of, say, U given V, even with linearity of the conditional mean E(UI V) and constancy of the 
conditional variance Var(UI V), (called homoscedasticity) does not imply normality of (U, V). However, 
supplemented by linearity of E(VI U) or by constancy of Var(VI U), it leads to bivariate Gaussian distribution, 
as it was observed in Ahsanullah and Wesolowski (1994) (see also CacouUos and Papageorgiou, 1984). 

Here we study the case, where U and V are linear functions of a pair of independent (not necessarily 
identically distributed) r.v's X, Y and prove that conditional normality of U given V, without any additional 
conditions on the structure of the parameters of this distribution, implies normality of both X and Y. 

This result complements a series of, now classical, characterizations of normality via properties of linear 
forms in independent r.v's: 

- Marcinkiewicz-Linnik theorem on equidistribution of linear forms in i.i.d.r.v's (Marcinkiewicz, 1938; 
Linnik, 1953); 

- Cram~r theorem on normality of a sum of independent r.v's (Cram~r, 1936); 
- Darmois-Skitovitch theorem on independence of linear forms (Darmois, 1953; Skitovitch, 1953); 
- Lukacs-Laha theorem on constancy of the first two conditional moments of one linear form given another 

(Lukacs and Laha, 1964); 
- Heyde theorem on symmetry of the conditional distribution of one linear form given another (Heyde, 

1969). 

All these theorems were proved studying functional equations for characteristic functions, which are 
equivalents of the property under study. The monograph of Kagan et al. (1973) gives a wide perspective on 
analytical theory of linear forms in independent r.v's and may be consulted for these and other results. In the 
case considered here it appears that conditional normality of one linear form given another does not allow 
(without additional assumptions) a convenient analytic equivalent in term of the ch.f's. Instead our proof is 
based on analyzing the conditional density and relies strongly on the fact that only two r.v's are involved. The 
general problem of conditional normality of one linear form in n (n > 2) independent r.v's given another 
remains open. 

2. Characterization 

Let X, Y be independent r.v's. Define 

U = c~X + flY, V = TX + fY ,  

where ~,/~, y, 3 are some real numbers. Obviously, for X and Y normal IZvtv is normal. Here we study 
a converse problem; we are interested in the situation when the conditional distribution of U given V is 
normal, i.e. the condition (1) holds. 

Theorem 1.Assume that ~6 • 87. I f  the conditional distribution of U given V is normal (with probability 1) then 
X and Y are normal. 

Proof. Assume that (1) holds. Without loss of generality, we can assume a special form for U and V: 

U = X + Y ,  V = X + ~ Y ,  ~ # 1 .  
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Observe that since X = (aU - V ) / ( a  - 1) a n d  Y = ( U  - V ) / ( 1  - a),  then by (1) it follows that 

#xlv = W ( a m ( V ) -  V), (1 -- a)2]  
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and 

1 a2(V)  "~ 
#rlV = ,IV" 1 -- ( r e ( V )  - V), (i ~--~',]" 

Consequently, X and Y have densities, hence (U, V) is also absolutely continuous. (It is well known that, in 
general, for any random vector, say, (T, Z), absolute continuity of the conditional distribution of Z given 
T implies absolute continuity of Z.) 

By properties of conditional densities for any real u, v 

fx(~--:") f r  ( ~ )  
fvlv=,,(u)fv(v) = f e w  (u, v) = I1 -- al ' (2) 

where fray, fw,v) ,  fv,  f x ,  f r  are densities of the conditional distribution of U given V, joint distribution of 
(U, V), distribution of V, X, Y, respectively. On the other hand, the conditions of theorem imply that 

1 ((u--m(v))2"~2a2(v) ,]' fvlv=v(u) = w/~a(vjeXp u, v • R  (3) 

for some (measurable) functions m and a > 0. Observe that combining (2) and (3) it follows that without loss 
of generality we can assume that the functionsfv, f x  andfv do not vanish (since they can be changed on any 
set of zero Lebesgue measure). Hence, upon taking logarithms we obtain 

a(au - v) + b(v - u) = c(v)u z + d(v)u + e(v), u, v • R, (4) 

where 

a(x) =ln(fx(T-~_~) ) b(x)=ln(fr(]--Z-~_~) ) c(x)= 1 
, , 2a2(x)' 

m(x) in(!1 - -~[ fv(x! )  m2(x) 
M(X) - -  O.2(X) , e(x) = \ ~/2-~a(X) ] 2a2(x), x • •. 

Put  in (4) u + xl instead of u and v + x2 instead of v, where xl, x2 are arbitrary reals fulfilling axa = x2. 
Then subtract (4) from what was obtained. It gives 

b ( v  - u) = ~(v)u z + a (v )u  + ~(v), u, v • R, 

where b(x) = b(x + xz - xa) - b(x) and ~, a, d are some functions depending on xx and x2. Consequently, for 
v = 0 and u changed to - u 

b(u)  = ~(O)u z - il(O)u + ~(0), u • R. 

Hence, by the definition of b for any real u and x 

b(u + x) - b(u) = C(x)u 2 + D(x)u + E(x), 

where C, D and E are some functions. It is well known, since it is a Cauchy-like equation, that b must be 
a polynomial of the order not exceeding three. However due to the fact that e b is a density function b is at 
most a quadratic function. Hence, Y has a normal distribution. 
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The analogous argument  holds for the function a (it suffices to take xa = x2 this time) and consequently the 
r.v. X is also normal. []  

Remark  1. Observe that if we try to treat the problem in terms of ch.f's, as we are used to in cases involving 
linear forms in independent r.v's, then we arrive at the following strange equation (U = X + Y, V = X + crY) 

Ckx(S + t)49r(s + at) = E(ei tV+ism(v)-sZa2(v) /2) ,  s, t ~ ,  

where q~x and q~r are ch.f's of X and Y, respectively. A direct solution of this equation is not known to the 
authors. However, due to Theorem 1 we know that only the normal case is possible. 

Remark  2. The proof  of Theorem 1, given above, strongly relies on the fact that only two independent r.v's 
appeared in the linear forms. We conjecture that the result is true also for linear forms in any finite number  of 
independent r.v's. It holds if U = aLl + bL2 and V = cL1 + dL2, where L1 and L2 are linear forms 
originating from seperate sets of r.v's. This is an immediate consequences of our theorem and Cramrr ' s  
decomposit ion of the normal law, provided some obvious conditions for the coefficients are fulfilled. 

Remark  3. Also another  special case may be answered immediately. If  U = ~.=laiXi and V = ~ = l X i ,  
where X's  are i.i.d, and the condition (1) holds then m is linear. Hence the conditional distribution of the 
linear form U - m(V) given V is symmetric since then 

E(exp(it(U - re(V)))) = exp( - t2~r2(V)/2), t ~ 

and by the Heyde theorem X's are normal if only suitable conditions are imposed on the coefficients. 
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