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B I V A R I A T E  D I S T R I B U T I O N S  VIA T H E  S E C O N D - K I N D  B E T A  C O N D I T I O N A L  
D I S T R I B U T I O N  A N D  A R E G R E S S I O N  F U N C T I O N  

J. Wesolowski  (Warsaw, Poland) 

The uniqueness of the specification of a bivariate distribution by the second-kind beta conditionals and a consistent 
regression function is investigated. New characterizations of the bivariate second-kind beta-conditional distribution 
are obtained. 

1. I n t r o d u c t i o n  

Specifications of the distribution of a random vector (X, Y) by the conditional distribution i.tYiX and the conditional 
mean E(X [ Y) have been intensively studied in recent years. Research in this field has covered a wide variety of 
conditional distributions, including the following ones: binomial and Pascal in [10], binomial, Pascal, and Poisson type 
in [5], hypergeometric and negative hypergeometric in [13], X-fold convolution of a discrete measure in [i1] (discussed 
also in [9]), again binomial and Pascal in [12], exponential in [2], normal in [1], power series in [14], Poisson in [15], 
Pareto in [16]. The investigations were concerned with the uniqueness question in the presence of any consistent 
regression function and/or  characterizations when the regression function is explicitly specified. This paper is a new 
contribution which introduces the second-kind beta conditional in this area. 

Denote by B2(p, q; ~r) the second-kind beta distribution with density function 

i o'qxP- 1 
f (x )  = ~(P, q)(~ + x)P+q' ~ > o, 

0, x < 0 .  

Following the specification of the bivariate Pareto-conditional distribution discovered by Arnold [2], a similar result 
involving both conditionals distributed according to the second-kind beta law was obtained by Castillo and Sarabia 
[6] (see also w in [3]). Let us recall the following result: 

For a random vector (X, Y), denote by ~XIy and #YIX t he conditional distributions of X given Y and of Y given 
X, respectively. Consider a random vector (X, Y) with 

~ x w  = B2(p, q; cq(Y)), 

where crt and e2 are some positive functions. 
Then 

#YIx = ~2(p, q; a2(X)), ( t )  

a + Y  a + b X  
o ' l ( r )  - b + c Y '  ~ 2 ( X )  = 1 + c---'--~' 

and the joint distribution, the bivariate second-kind beta-conditional distribution, has a density of the form 

KzP-lyp-1 
f ( z ,  y) = (a + bx + y + cxy)P +q' z > 0, y > 0, (2) 

f ( z , y )  = 0 otherwise, K is a normalizing constant, a > 0, b > 0, e > 0. If a = 0, then q < p; if c = 0, then 1 < p < q. 
In the latter case it is the bivariate inverted Dirichlet-type distribution - -  see [8]. Also the possibility of identification 
of both the special cases of the density (2) by (1) and exact forms of conditional expectations E(X I Y) and E(Y I X) 
was indicated in the paper (however, the exact statements of the results are incorrect due to the wrong formulas for 
conditional moments). Another conditional specification of the inverted Dirichlet distribution involving the concept of 
neutrality is given in [7]. 
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In this paper, we complement the results of Castillo and Sarabia [6] by considering one second-kind beta-conditional 
distribution, ~YlX say, and one conditional expectation E(X [ Y); however, we assume the exact form of the scale 
parameter of the conditional distribution. The results of the paper generalize theorems and the method of the proofs 
develop some ideas from [16], where the Pareto case was treated. 

2. Uniqueness and Characterization 

Let (X, Y) be a random vector with nonnegative components. As was pointed out in the introduction, in this paper 
we consider possible distributions of (X,Y) with l.tyix as in the case of the bivariate second-kind beta-conditional 
distribution, i.e., we assume that the conditional density of the measure l.tYiX has the form 

(a + b )q(1 + c )Pr '-1 
fYIX=~(Y) = j3 (p ,q ) (a+bx+y+cxy)P+q '  y > 0 ,  x e S x ,  (3) 

or equivalently 

a +  bX'~ 
].tyl X = B 2  p,q; l + c X ] !  (4) 

w h e r e a > 0 ,  b > 0 ,  c > 0 ( i f a = 0 ,  t h e n q < p ; i f c = 0 ,  then l < p < q ) , S x = [ O , c r  
Additionally we assume ac ~ b. Observe that in the case ac = b by (3) 

aq yP -1 

IYIX=z(Y) = j3(p, q)(a + y)q+P 

for any y > 0, z 6 Sx .  Consequently Y has the second-kind beta B2(p, q; a) distribution and X, Y are independent. 
Hence E(X J Y) = E(X) and this is the only restriction imposed on the distribution of X. 

Our aim in this section is to prove that under the assumptions given above the conditional expectation E(X ] Y) 
uniquely determines the joint distribution. 

THEOP~EM 1. Let (X, Y)  be a random vector satisfying (4). Then its distribution is uniquely determined by 
E(X I Y). 

P roof .  Denote by m the regression function of X given Y: 

= y) = / z dFxly=~ (z), y > O, re(y) E(X I Y 

Sx 

where Fxw=~ is the conditional distribution function. From (3) it follows that Y has a density, say f y .  Then the 
obvious identity 

fr(y) dFxlr=y(*) = fr lx=.(y)  dFx(.), 

where Fx denotes the distribution function of X, yields for any y > 0 

re(y) / syjx_-.(y) dFx( ) = / drx( ). 
Sx Sx 

Define a generalized distribution function H by the formula 

(5) 

Then (3) and (5) imply 

where 

dH(x) = (a + bx)q(1 + cx) p dFx(x) ,  x > O. 

m(y)~p+q(y) = f x(a + bx + y + cxy) -(p+q) dH(x), 
8x 

(6) 

~.~(y) - - / ( a  + bx + y + cxy) -'t dH(x)  

Sx 
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for 7 E {p + q - 1, p + q}. Observe that  from the definition of ~ it follows tha t  for any y > 0 

/ x(a + bx + y + cxy) -(p+q) dH(x) = ~p+q-l(Y) - (a + y)(pp+q(y). (b + ey) 

sx 

Now we join (6) and (7) to obta in  

(7) 

[(b + ~y)m(y) + .  + yl~.+a(y) = v.+~_~(y), y > 0. 

Observe that  ~Vp+q_1 is differentiable and its derivative can be expressed in terms of ~ap+q-1 and ~p+q: 

~ + ~ _ ~ ( y )  _ p + q - I [ ( a ~ -  b ) ~ + ~ ( y )  - ~ + ~ _ ~ ( y ) ] ,  y > o. 
b+ cy 

Hence by the assumption ae ~ b after some easy algebra, (8) and (9) yield 

(8) 

(9) 

[(b+ cy)rn(y) + a + y]~p+q_l(y) = - ( p +  q - [)(crn(y) + 1)~p+q-l(y) ,  y > 0. 

Consequently 

( / cm(y)+l  
~p+q_l(y)= Kexp - - ( p + q - -  I) (b+cy)rn(y)Ta+ 

where K is a positive constant.  

dy, y > 0, 
Y 

Hence by (8) ~ p + q  = KG, where G is a function uniquely determined by a,  b, c. Let 

( l + c X ~  p 
C = E \ - - 4 - - ~ ]  

and 

d [ - l ( x ) = c - l ( l  +cx'~ \a  + bx] dFx(x). 

Then H is a distribution function. Let 2 be a r.v. with the d.f. / : / and  define Z = (1 + cZ)/(a + bZ). Then 

~p+q(y) = KG(y) = CE(1  + yZ) -@+q). 

The function ~p+q is k-differentiable for any k = 1 , 2 , . . . ,  in each point y > 0 (in y = 0 we consider the right-hand- 
side derivatives). Since 

KG(k)(O) = ~(k) l0 ~ C(_1)k  P(p + q + k).E(Z~), 
~P+q~ J = r ( p  + q) k =  0 , 1 , 2 , . . .  , 

we have E ( Z  k) = /~'G(k)(0), where G depends only on a, b, c, and /~" is a constant.  To prove tha t  the distribution 
of X is uniquely determined by a, b, c, consider X1 satisfying the assumptions of the theorem. Then,  similarly as 
for Z we have for its analogue ZI built on XI:  E(Z~)  = /~'lG(k)(0), k = 1 , . . . ,  with the same function G. Hence 
/~'IE(Z k) = h 'E (2~ ) ,  k = 1, 2 . . . . .  Consequently for L = I~'/T['(1 

r (s )  = Lrl(s) + 1 - L, s > 0, 

where r and # are the Laplace-Stiel t jes t ransforms of Z and Z1, respectively. Since Z and Z1 are positive a.s., both 
the transforms vanish as s ~ cr Thus L -- 1 and/~" =/~'1- This  yields a unique cletermination of the distribution of 
Z and finally by the definition of Z the distribution of X is also uniquely characterized by a, b, c. Q.E.D. 

By Theorem 1, a bivariate distribution can be specified by the conditional second-kind be ta  distribution and a 
regression function. Now we use this result to characterize the bivariate second-kind beta-condit ional  distribution 
introduced in [6]. Observe tha t  the mean of the second-kind be ta  B2(p, q, ~) distribution exists only for q > 1 and is 
equal to p~/(q - 1). Hence for (X, Y) with density (2) and q > 1 

E ( x I Y ) =  p ( a + r )  (q - 1)(b + cY)  (10) 

127 



COROLL~,RY 1. Let (X, Y) be a random vector satisfying (4) and (10). Then (X, Y) has the bivariate second- 
kind beta-conditional distribution with density (2). If E(X [ Y) is linear, i.e., c = O, then (X, Y) has an inverted 
Dirichlet-type distribution. 

Now we are going to replace the conditional mean E(X [ Y) by E[(a + bX + Y + cXY) -1 [ Y]. It appears that in 
this case we can also obtain a uniqueness result like Theorem 1 using similar methods. 

TH~.OIt~.M 2. Let (X, Y) be a random vector satisfying (4). Then the distribution of(X,  Y) is uniquely determined 
by E[(a + bX + Y + cXY) -I [ Y]. 

Proof.  Adopting the notations from the proof of Theorem 1 and additionally denoting 

r = E[(a + bX + Y + c X V )  -~ I Y = Y], y > O, 

we have 

~(v)vp+q(v) = ~+q+l(v) ,  

Now (9) with p + q changed into p + q + 1 yields 

y > 0 .  

Hence 

b_+c._y , /y~ 
(ac-- b)r = P+ q p+q, / + cwp+q(y), y > 0 .  

K [ f ( ( y )  y] 
~p+q(y) = (b+cy)p+ q exp ( p + a ) ( a c - O J  b--~-~cvd , y > 0 .  

Consequently ~op+q = KG, where G is a function uniquely determined by a, b, c. Now it suffices to follow the final 
steps of the proof of Theorem 1. Q.E.D. 

Theorem 2 can also be used to characterize the bivariate second-kind beta-conditional distribution. Observe that 
for a r.v. X with the second-kind beta B2(p, q, ~r) distribution,.E(cr/(cr + X)) = q/(p + q). Consequently (X, Y) with 
density (2)(and conditional distributions given in (1)) 

E [ ( a + b X + Y + c X Y )  -1 [Y]= q (11) 
(P + q)(. + Y)' 

COROLLARY 2. Let (X, Y) be a random vector satisfying (4) and (11). Then it has the bivariate Pareto-conditional 
distribution with density (2). / f c  = 0 in (4) and (11), then it is an inverted Dirichlet distribution. 
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