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Abstract 

Stability of the characterization of the geometric law by equidistribution of the spacing of two 
i.i.d.r.v.'s and one of them is studied. 
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1. I n t r o d u c t i o n  

The first step in dealing with a characterization question is just to prove a char- 
acterization theorem, i.e. a result of  the following type: if  a distribution has some 
property (it fulfils a characterizing condition) then it has such and such form. Usu- 
ally it is substantially less laborious than the second step: investigation of  stability of  
the characterization. In this case we are interested in the question; if  "slight" distur- 
bances in the characterizing condition produce distributions "slightly" different from 
those obtained in the characterization theorem. Let us point out that such problems are 

of  great importance for practitioners: Building a statistical model we should rely on 
some characteristic property of  a distribution we are going to use. However,  without 
some knowledge on stability of  the charcterization it may be quite risky. 

Essentially researches in this area have begun in the early seventies. There is a huge 
literature on stability of  characterizations till now (no single result for the geometric 
distribution is known to the author). Many of  the results are gathered in a recent book 
by Yanushkievichius (1991), see also Kagan et al. (1973, Ch.9). 

In this paper we are interested in the characterization of  the geometric law given 
in Arnold and Ghosh (1976). It is a result making use of  identical distribution of  the 
spacing max{X, Y} - min{X, Y} and X,  where X, Y are i.i.d, natural valued r.v.'s. At 
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first we give a short proof o f  the original result in Section 2. In Section 3, stability of  
the characterization is studied. 

2. Characterization 

It is well known - see Ahsanullah (1975) - that for continuous distributions equidis- 

tribution o f  a normalized spacing and the parent r.v. is a characteristic property o f  the 

exponential law, provided some additional technical assumptions are fulfilled. In Arnold 

and Ghosh (1976) a version of  such result for the geometric distribution was obtained: 

Theorem 1. Let  X ,  Y be i.i.d, natural valued r.v. 's. I f  f o r  each k = 1,2, . . .  

e(I  X -  Y I = k l  I X  - Y I > 0 ) = P f X  = k ) ,  

then X has the geometric distribution. 

Then making use o f  the Shanbhag lemma (see Shanbhag, 1977) the result was 

extended in Arnold (1980). The main aim of  this paper is to consider the question of  

stability o f  the above theorem. Before that we give a short proof o f  Theorem 1 (being a 

modification o f  the original p r o o f -  see also Azlarov and Volodin (1986, Section 8)). 

A new idea o f  introducing the sequence (an) given in this proof is then fruitfully 

exploited in proving the stability result. 

Proof  of  Theorem 1. From the assumption we have 

(X3 

P r = C ~ p k P r + k ,  r =  1,2 . . . . .  
k = l  

where pr = P ( X  = r), r = 1,2, . . . ,  and c~>2 is a constant. 

Define al = cpl  = a > 0 and an = a + a~-_ll, n = 2,3 . . . .  Then for any n = 2,3 . . . .  

the following two implications hold: 

(i) I f  pr>~an_lPr+l, r = 1,2, . . . ,  then anPr+l ~Pr ,  r = 1,2 . . . . .  by 

O~ OO 

Z E2 p~ = apr+l + c PkPr+k <~apr+l + a~l_lc Pk-1Pr+k = (a + an-l_l )Pr+l. 
k=2 k = 2  

(ii) I f  an-lPr+l >~Pr, r = 1,2 . . . . .  then pr>/anPr+l, r = 1,2 . . . . .  by 

OO 

p~ >-apr+l + a~.l_lc E pk-lPr+k = (a + an~ 1 )P~+I. 
k = 2  

Now from (i), (ii) and the obvious inequality pr>~apr+l, r = 1,2 . . . .  we get for all 
r,n = 1,2, . . .  

a2n Pr+ 1 >1 Pr >>" a2n- 1 Pr+l. 



J. Wesolowskil Journal of Statistical Plannin 9 and Inference 52 (1996) 263-269 265 

Hence,  taking limits for n ~ ~ ,  we find that P~+1 = YP~, r = 1,2 . . . .  for 7 -1 = 

limn--,o~ an = (a + v ~  ~ + 4)/2.  [] 

3. Stability 

There are different not ions  of  stability related to types o f  disturbances involved in 

the characterization condi t ion  and in the result ing distribution. Here we are concerned 

with an e P ( X  = r)  b o u n d  for the characterization condi t ion at each point  r and as a 

consequence  a un i fo rm estimate is obtained. It is the ma in  result  o f  the paper. As a 

corollary we obtain a b o u n d  for the total variat ion metric. 

Denote  pr  -- P ( X  ---- r ) ,  r = 1,2 . . . .  for a natural  valued r . v . X .  

Theo rem 2. A s s u m e  that f o r  some  e c (0, 1) and each r = 1,2 . . . .  

I e ( I x -  r l  = r l  I x -  YI>O)-p~I <~Pr. 

Then f o r  some  ~, E (0, 1 ) and any  r =- 1,2 . . . .  

e K ] P r - T r - l ( 1 - Y ) ] <  1 - e  

where 

5 
K =  

p~(1 - P l )  

Proof. From the assumpt ion we have 

o o  o o  

c z Z 1 + e Pk Pr+k <~ pr "-~ ~ P~ pr+k, 
k = l  k = l  

where 

2 
C - -  

P(x¢  Y) 

Now define 

a a 

a = e p l  > O, al = ae -- be - 
l + e '  1 - e '  

l + e  --1 1 - e  -1 
a2n =- be + f-~_ a2n_ 1, a2n+l = ae + f - -~ca2n , n = 1,2 . . . .  

S tep  1: In  this step we wil l  show for any  r ,n  = 1,2 . . . .  the inequalit ies:  

(1)  

azn- 1 pr+l <. Pr <- a2n Pr+ 1. (2) 

The argumenta t ion  in this step is s imilar  to that used in the proof  o f  Theorem 1. We  

wil l  prove the fol lowing two implicat ions for any n = 1,2 . . . .  : 

(*)  I f  pr>~a2, - lp~+l ,  r = 1,2 . . . . .  then p~<~a2,p~+l, r = 1,2 . . . . .  

(**)  I f  p~<~a2npr+l, r = 1,2 . . . .  , then pr>~aZn+lP~+l, r = 1,2, . . . .  
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To prove (*) observe that, by (1), 

O ~  OG 

C C - -1  

Pr<~bepr+l q- ~ E PkPr+k <--.bepr+l + ~ _ c a 2 n _ l  Z Pk-lPr+k 
k = 2  k - 2  

l + e - 1  c o~ ( l + e - 1  "~ 
= b~pr+l + f-~_ea2,_,l +---~ Epkpr+1+k<-~ \be + ~_=a2n_l] pr+l 

k = l  

On the other hand, (**) follows by (1) since 

C C - -1  

pr>~aepr+l + f - ~  pkpr+k>>-a~pr+l + Z p k - l P r + k  
k = 2  k = 2  

1 - e  -1  c x - ~  f 1 - e  -1"~ 
= ae pr +l + ~ a 2 n  ~ k~=l pk pr+l+k >~ ~ae + ~-+--~a2n J P~+I. 

NOW from (*), (**) and the obvious inequality pr>~alPr+l, r = 1,2 . . . .  we get (2). 

Step 2: Define bn = a2 , - l ,  cn = a2n, n = 1,2 . . . . .  Hence (2) takes the form 

bnp~+l <~ p~ ~ Cnpr+l (3) 

for any r, n = 1, 2 . . . . .  In this step we will prove that the sequences (bn) and (c , )  are 

convergent and compute their limits. 

Observe that 

bn - bn-1 - 

Hence 

b n - bn_ 1 = 

1 + e  bn_ 1 - b n 
Cn - -  C n - 1  - -  - -  , n = 2,3 . . . . .  (4) 

1 - e b . b ~ - i  

1 - -E  Cn_ 2 --Cn_ 1 
, n = 3,4 . . . . .  

1 -[- C Cn_lCn_ 2 

bn-I - bn-2 
n = 3 , 4  . . . . .  (5) 

Cn-len-2bn-  l bn-2 ' 

Since b2 - bl = ((1 - e)/(1 + e))af I > 0 then by (5) we conclude that the sequence 

(bn) is increasing. Hence from (4), (cn) is a decreasing sequence. By (3), they are 
convergent. Denote their limits by B and C, respectively. Taking limits in (3) we obtain 

BPr+l ~ Pr ~ Cpr+l (6) 

for any r = 1, 2 . . . . .  

Now we find the values o f  B and C. The definitions o f  the sequences (bn) and (Cn) 
yield 

__l - e c -  1, C = b~ + l + e B _ l .  
B = a ~ +  l + ¢  1 - e  

Hence 

B x( (o 
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where x(~)  is a positive solution o f  the equation x 2 - ~x - 1 = 0, i.e. x(~)  = (~ + 

x / ~  + 4)/2. 

Step 3: In this step we prove the inequality 

e L l TPr - Pr+ll ~ ~ Pr (7) 

for any r = 1 , 2 , . . . ,  where 7 ---- x - l ( a )  and L = a + 4/a. 
First observe that for any v >/u 

X- - I (u )  - -  x-- l(1))  ~ IY --  U (8 )  

since 

and 

x - l ( u l - x - l ( v ) =  ~ ( v - u )  1 -  x /~ + ~ +  

N+N ~< 1 Hence by (8) and (6) ~x/-~-~+ ~/-/r~ --~ . 

and 

7pr pr+l<<.[X--l(a)--x--l(l l~_e a+4~ea))lpr<~l_ee LPr 

];Pr -- Pr+l 
1 a 

~ [ x - l ( a ) - - x - l ( - i - ~ ( -  4~Ea))] Pr 

E 
>~ - - - L  pr >~ L pr 

l + e  1 - e  

since 1/(1 - y)~< 1 + 1/a. 

I Pr+l -- ])r( 1 --  ~) l  

~< ]p~+l-TPrl +~ [pr-Ypr-ll ~_..._[_~r--I Ip2-~pll 

+ ~ r l p l _ ( l _ 7 )  l<~ e--- f - - -L(Pr+VPr-l+'"+Yr-lPl+7 r) 
1 - - e  

~--~---- L 1 
~ < l - e  1 -  7 

c 
~< K1 

l - e  

where K1 = (a 2 + 4) (a  + 1 )a  -2 .  Now for any r --- 1,2 . . . .  

Step 4: In this step we show how the theorem follows from (7). Since 

1 = Z...~Pr = Pl + Pr = Pl + Z..~,Pr+l- 7 P r ) +  Y, 
r~l  r=2 r=l  

then by (6) 

e_~____ L e K1, 
[ P l - ( 1 - Y ) [  ~ [Pr+I-TPr[ < ~ l - e  < ~ l - e  

r=l  
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Step 5: Now the bounds for c in terms of  pl  will be found and upon applying them 

to K1 the proof will be concluded. Observe that 

2 2 2 
c =  1 -  P(X  = Y ) 1 -  ~-]~=, p2 >~ l _ p~ 

On the other hand 

2 2 1 1 

C - p ( x # Y )  --2~-~l<~j<k<~oopjPk~Pl~kC~=2Pk pl(1 -- p l )  

Consequently 

2pl  1 - - ~ < a ~ < - -  
1 - p~ 1 - Pl 

Now from the definition of  Kl we have 

[1 + 4(I  - Pl)2](2 - Pl)(1 + p~) 5 
K1 = 4p~(1 - P l )  ~< p~(1 - P l )  - K "  [] (9) 

Observe that the constant KI given on the left-hand side o f  inequality (9), though 

somewhat cumbersome, is even better than K given in the statement o f  Theorem 2. It 

should be pointed out that K and K1 depend on Pl in such a way that with Pl tending 

to 0 or 1 the stability conditions are worsening. Question about a universal constant K 

remains open. 

As a consequence of  Theorem 2 we obtain a stability result involving the total 

variation metric. Recall that p(Iz, v) -- SUpAE~ [p(A)  - v(A)[, where # and v are 

probability measures on ~ and ~ denotes the Borel a-algebra on the real line, defines 

a metric in the set o f  probability measures on ~. It is called the total variation metric. 

Denote now by # the measure generated by the natural valued r.v. X (P(X = r) = pr, 
r = 1,2 . . . .  ) and by v the geometric measure with the parameter ~ (defined in the Step 

3 o f  the proof  o f  Theorem 2). 

T h e o r e m  3. For any 6 > 0 there is e = ~(6) > 0 such that i f  for each r = 1, 2 . . . .  

IP ( IX  - YI = rl I x  - Y[ > 0)  - pr l <  Cpr 

then 

p(,u, v) < 6.  

P r o o f .  Take a natural number N such that/~([N, oo)) + v([N, oo)) < z < 8/2. Then for 

any A E 

I p ( A ) - v ( A ) l  ~< I t~ (AN[1 ,N) ) -  v (AN[1 ,N) )  I + z 
N--1 

~< ~ IPk - ~k-~(1 - Y ) [  + z  < ~ _ ¢ K ( N -  1 ) + z  
k=l 

by Theorem 2. Hence it suffices to take e - K(N----1)+z" 
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