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O N  CHARACTERIZING DISTRIBUTIONS 
VIA LINEARITY OF REGRESSION FOR ORDER STATISTICS 

JACEK WESOLOWSKI’ AND MOHAMMAD AHSANULLAH2 

Warsaw University of Technology and Rider University 

Summary 

Let XI, . . . , X, be a random sample from an absolutely continuous dis- 
tribution with the corresponding order statistics XI:, 5 X2: ,  5 X,:,,. A 
complete solution of the problem, posed in 1967 by T. Ferguson, of determin- 
ing the distribution by linearity of regression of Xk+2:n with respect to Xk:, 
is given. The only possible distributions are of the exponential, power and 
Pareto type. A linear regression relation for exponents of order statistics is 
also considered. 

Key words: Order statistics; linearity of regression; exponential distribution; power 
distribution; Pareto distribution. 

1. Introduction 

Let X,  X I , .  . . ,X, be independent and identically distributed (i.i.d.) ran- 
dom variables (r.v.s) with distribution function (d.f.) F. Denote by XI:, < 
X 2 : ,  5 . - -  5 x,:, the respective order statistics. If we want to predict Xk+m:n 
knowing Xk:, then the best unbiased predictor with respect to the squared-error 
loss is E(Xk+,,,:, I Xk.,). It is not difficult to check that i t  is linear if X is of 
exponential, power function or Pareto type. 

Extending earlier work, Ferguson (1967) first gave a complete solution to 
the problem of determining all d.f.s F for which 

for m = 1 under continuity assumption, and posed the question for m = 2 
(essentially he dealt with m = -1, but there is an obvious duality in taking 
positive and negative ms in  (1)). Nagaraja (1988a) considered the problem again 
for m = 1 but within the class of discrete distributions. For the continuous case, - 
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Nagaraja (1988b) showed that if E(X,+,:, 1 X,:,) and E(X,:, I XrnS1:,) 
are both linear then the parent distribution is exponential. Arnold et al. (1992) 
observed that the cases where m > 1 remained open. The present paper considers 
the case rn = 2, giving a complete solution when F is absolutely continuous. 

Ferguson's (1967) result led to other developments. Assume that X is of 
the continuous type and determine its distribution by the condition 

where G: R" i IR and H: IR -, IR are known functions and k E (1,. . . , n }  is 
fixed. The general solution of this question is not known. However many special 
cases have been treated in the literature. To give a wider perspective on our 
results we recall them now briefly. 

Fisz (1958) considered the case n = 2, G(z,y) = y - z, C = 1 and H ( s )  = 
const. (essentially he was interested in independence of X 2 : 2  - XlZ2 and XI:?) 
for absolutely continuous F .  Rogers (1963) extended the result to any n by 
taking G( zl,. . . , z,) = zk+l - xk. Then, as mentioned earlier, Ferguson (1967) 
studied the case G(z,, . . . ,z,) = zk-* and H ( z )  = uz + b for continuous F.  
Dallas (1973) considered (2) for G(zl, ... ,z,) = ( n  - l)-' C:=,(z; - zl) and 
linear H .  The results given in Beg & Kirmani (1974) also fit the scheme with 
G ( z l , .  . . ,z,) = (zl + - .  - + z , ) /n  and linear H .  Dallas (1976) treated the case 
G(s , ,  . . . , 5,) = zi  + . - - + z: and H ( z )  = czr. Wang & Srivastava (1980) gave 
characterization theorems by linearity of regression in (2) with G(zl,.  . . , 5,) = 
(n-k)-' C:'k+,,(zi-z,) and G(zl,. . . , z n )  = (k-l)-' Cfi i (zk-z i ) .  Khan & 
Khan (1987) dealt with the problem for G(z,, . . . ,z,) = and H ( z )  = czr .  
Exactly the same G with H ( z )  = c z r  + d was considered in Khan & Ali (1987) 
(see also El-Din et a]., 1991). A recent development has been given in Beg 
h Balasubramanian (1990) with G(zl, . . . ,z,) = (s - l)-l C::: g(X,,,) and 
H ( z )  = f [g(z)  + g(u+)]/2, where g is a continuous function on the interval 
( a , b )  which is the support of F .  Beg & Kirmani (1978) obtained related results 
involving relations between conditional moments, as also did Mukherjee & Roy 
(1986), Khan & Beg (1987), Roy & Mukherjee (1991), Swanepoel (1991) and 
Pakes et al. (1996). For recent surveys see Arnold et al. (1992) or Johnson et d. 
(1994). Many important statistical distributions, including exponential, Weibull, 
Pareto and power, are involved in these investigations. 

Observe that the following two specializations of (2) allow an immediate 
answer. 
( i )  Consider (2) with G(zl, . . . ,z,) = z,+~ for some k E (1,. . . , n - 1) and 
assume that F has a density f. Then, under an integrability assumption and 
writing = 1 - F ,  (2) implies that 
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where [t,, r x ]  is the support of the X (this notation is kept throughout the 
paper), -w 5 1, < rX 5 00 if only H is continuous. Hence it follows easily 
that for any z E (ex, rx) 

(ii) Similarly for G(zl, .  . . , z n )  = zk-l for some k E (2,. . . , n}  and continuous 
H it is not difficult to observe, under an integrability and absolute continuity 
assumption, that for any z E (1, , rX), 

F ( z )  = F(rx)exp 
k - 1  u - H ( u )  

In this paper we are interested essentially in (2) with G(zl,. . . , z n )  = zk+2 
for some k E { 1,. . . , n - 2). Linearity of regression is considered, i.e. H ( z )  = 
az -+ b. It leads to new characterizations of the exponential, power and Pareto 
distributions: these are the main results of the paper and are given in Section 3. 
However Section 2 is devoted to a new characterization of the exponential distri- 
bution by considering G(zl,. . . , z n )  = exp(cz,+,) and H ( z )  = aexp(cz) in (2); 
that result, while being of independent interest, is used in the proof of our main 
result. 

Throughout the paper L(X) denotes the probability distribution of the r.v. 
X; all the equations between r.v.s are understood in the as. sense. 

2. Regression of Exponents 

Let &(A, 7) denote the shifted exponential distribution with the tail of d.f. 
F(z) = exp(-X(z - ?)+I, where X > 0, 7 are some constants. For L(X)  = 
&(A, 7), if c < ( n  - k - l ) X ,  then E[exp(cXk+,,,)] < 00 and it can be easily 
checked that 

Here we are interested in a converse result. 

Theorem 1. Let E[exp(cXk+,:,)] < 00. Assume that X is absolutely continu- 
ous. If 

where k 5 n - 2, c # 0 and a > 0, then L ( X )  = &(X,7)  for some real 7 and 

/I 

E[exp(cXk+,:n) 1 X k n ]  = a eXP(CXkn), (4) 

. a(2n - 2k  - 1) -I- JaZ + 4a(n - k ) ( n  - k - 1 )  
r .  I .  A = c .  

2(a - I)(. - k)(n  - k - 1) 9 
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further, a E ( 0 , l )  if c < 0 and a > 1 if c > 0. 

Proof. Obviously a 5 0 is impossible since the left hand side of (4) is positive. 
Also by (4), a = 1 is impossible since X is not degenerate at a point. 

By (4) and continuity of F it follows that one can assume that the equation 

holds for any 5 E (t,,~~), where f is the density of F .  Consequently (5) yields 
that for any z E (tx,rx), f ( z )  = F ' ( z )  and 

By (6) we conclude that f > 0 in (tX,rX). Thus we can divide both sides of (6) 
by -f obtaining 

a[F(z)]n-"-' e c2 ac{ [F(z)]n-kecr}  
. (7) ( n  - k ) ( n  - k - l ) f (z)  eCY[F(y)]n-k-2f(y) dy = + n - k - 1  

Now again the left hand side of (7) is differentiable and consequently f '  exists 
in  (t , ,rX.) .  Hence, upon differentiation of (7) and some elementary algebra it 
follows that 

a c f " z ) F 2 ( 2 )  - ac2f (z )F;;" (z )  + 2 4 2  - k)f2(z)E(z) 
t (1 - a)(. - k ) ( n  - k - l)f3(z) = 0, (8) 

for any z E ( ! , , T ~ ) .  Denoting y = E (i.e. f = -y', f' = -y") we get by (8) a 
second order differential equation in (tx, rX), 

Substituting u(y)  = y' in (9) we have 

since y' 0 is impossible (it yields f z 0). In (lo),  substitute v(y) = v(y) - ,By, 
where 0 is a real constant such that 
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Hence P has to  be equal to one of the numbers 

a(2n - 2k - 1) f Ja2 + 4a(n - k) (n  - k - 1) 
2(1 - a)(. - k ) ( n  - k - 1) P l , 2  = --c 

Then (10) takes the form 

1 - a  
-y2TIUI+2(n-k) = 0 ,  (11) 

ac 

which is the Bernoulli equation. 

solution of (9),  

where K is a constant. By properties of a d.f. it follows from (12) that y = L ,  > 
-03, T~ = co and 

Take ,f3 = &.  Consider first the trivial solution TI E 0. Then we have as a 

y = I<e-P,x (2 E (!X,TX)), (12) 

F(.) = exp[-P,(. - $1 (z E (Y,..)). (13) 

Now consider the case that TI is not identically zero. Then applying standard 
techniques for a Bernoulli equation to (11), we obtain 

I PIDYB+C 
-Y = Y  D y B + A  ' 

where 

A =  1 B = ,/-' , c=- P 2  

P1 - P 2  ' a PI - P:! ' 
and D is a constant. Observe that (14) implies 

Consider two possible cases. For the first, observe that for c < 0 we have 
a E (0 , l ) .  Consequently pz < 0 < P1. Then A > 0, B > 0 and C < 0. 
Observe that by taking 2 less than but close to rX in (15) its right hand side 
becomes negative, which is impossible since on the Ieft hand side we have a 
density function. Consequently in this case the solution of (9) is not a tail of a 
distribution function. 

In the second case, c > 0 and so a > 1. Consequently P1 > P2 > 0. This 
time A > 0, B > 0 and C > 0. Hence solving (14) we have 



74 JACEK WESOLOWSKI AND MOHAMMAD AHSANULLAH 

f9r 2 E (lx,rX). Observe that (16), by taking limits for z 1 r X ,  implies rx = 00. 
Additionally it follows from (16) that 

where fi' = 1 if D 5 0 and 

if D > 0. On the other hand since E[exp(cXk+2:n)] < 00 then for sufficiently 
large x mn-k-l - < mevcx, 

where m is a constant. If both the above inequalties are to be satisfied then we 
must have &(n - Ic - 1) > c.  Hence 

4(" - k)(" - k - 1) 
2(" - k) - 1 - 

U 
1 <  2(" - k ) ( u  - 1) 

yielding n < 1, a contradiction. 
Hence the only solution is given in (13). 

3. Linearity of Regression 

In this section we are interested in the conditional moment E(Xk+2:n I Xkzn), 
not only in the exponential case, but also for the power and Pareto distributions. 
Denote by POW(8; p ,  v )  a power distribution defined by the density 

where 8 > 0, -co < p < v < 00 are some constants. By PAR(d;p,b) denote the 
Pareto distribution with the probability density function (p.d.f.) 

where 8 > 0, and p,  b are some real constants such that p + 6 > 0. 
Observe that if X has the d.f. F and the p.d.f. f then for any s E (eX,rX), 
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Consequently it can be easily verified that in all three cases of the exponential, 
power and Pareto distributions, the regression relation we are interested in is 
linear, i.e. 

E ( X k + 2 : n  I X k : n )  = U X k n  + b, (17) 

where the constants a and b have the following forms: 
1. for the POW(& p,  u )  distribution, 

e2(n  - k ) ( n  - k - 1) 
a =  < 1, b = ~ ( 1 -  a);  [qn - k - 1) + - 1 ~ )  + 11 

2. for the PAR(B;p,S) distribution with 8 > 1, 

Q2(n - k ) ( n  - k - 1) 
[6 (n  - k - 1) - l][O(n - k) - 11 a =  > 1, b = S(a - 1); 

3. for the &(X,y) distribution, 

2n - 2k - 1 a = l ,  b =  
X(n - k ) ( n  - k - 1)' 

The question we address here is the following: are the distributions given 
above the only cases for which linearity of regression (17) holds? The affirmative 
answer given in Theorem 2 is the main result of the paper. 

Theorem 2. Let E(lXk+9.nl) < co. Assume that X is absolutely continuous. 
If for some k 5 n - 2 and real a and b the linearity of regression (1 7) holds, then 
only the following three cases are possible: 

1. if a < 1 then C(X) = POW(d;p,u) where 

a(2n - 2k - 1) + da2 + 4 4 2  - k ) ( n  - k - 1) b e =  , u = -  
1 - a '  2(1 - u)(. - k ) ( n  - k - 1) 

and p < u is a real number; 
2. if a > 1 then C(X) = PAR(B;p,S) where p is a real number and 

a(2n - 2k - 1) + ,/a2 + 4a(n - k ) ( n  - k - 1) 
2 ( ~  - I)(. - k ) ( n  - k - 1) 

b 
9 =  >1, 6=-- 

a -  1' 

3. if a = 1 then b > 0 and L ( X )  = &(X,7) where 7 is a real number and 

2n - 2k - 1 
A =  b(n - k)(n  - k - 1)' 
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Proof. The proofs in cases 1 and 2 follow easily from Theorem 1 and are 
considered first; case 3 needs a separate argument. 

Case 1. First consider the case a < 1 and denote u = b / ( l  - u ) .  Assume 
that r X  = 00; then by (17), z 5 uz f b for any z E R, which is impossible 
since a <: 1. Consequently rx = v < m. Define a new r.v. Z by the relation 
Z = - ln(v - X). Observe that by (17) for the order statistics from the sample 
z,, . . . , z,, 

E[exp(-Zk+,:n) I Zk:nl = aexp(-Zk:n). 

Hence by Theorem 1, C ( 2 )  = €(A,y). Consequently L ( X )  = POW(O;p,v) with 
6' = A, v given above and p = v - exp(-7). 

Case 2. Consider now a > 1 in (17). For 6 = b / ( a -  1) define Z = ln (6+X)  
and consider order statistics for the sample of 2 s  . Then by (17) 

E[exP(Zk+2:,> 1 Zknl = aexP(Zk:n)* 

Consequently by Theorem 1, L ( Z )  = E(A,y). Thus L ( X )  = PAR(O;p,6) with 
B = A, p = exp(Xy) - 6 = ex and 6 defined above. Observe that (17) implies 
tha t  I,y > b / ( l  - u )  and consequently p + 6 > 0. 

Case 3. Now take a = 1 in (17). Then due to (17) and continuity of F it 
can be assumed that the equation 

holds for any z E (eX,rX), where F = 1 - F and f is the density of F .  Now 
repeating the argument from the proof of Theorem 1 we derive from (18) the 
differential equation 

- d y 2  f 2(n  - k ) u y  f cu2 = 0, (19) 

where y = E (i.e. f = -y', f' = -y"), u(y) = y' and c = b(n - k ) ( n  - k - 1). 

easily solved with a help of the routine technique. Consequently 
Observe that (19) is a kind of Bernoulli differential equation, which can be 

y2( n - k )  

y' = D - cy2(n-k)-1/[2(n - k) - 11' (20) 

Rewrite (20) as 

Observe that the left hand side of (21) is always non-negative in (t,,rX). How- 
ever if z T X  then the right hand side becomes negative (since F(z) + 0) unless 
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D 5 0. Obviously c 5 0 is impossible due to (17) and the absolute continuity 
assumption. 

Now we solve (20) obtaining 

(since F is continuous), where d is a real constant. Since limZle, y(z) = 1 then 
by (22) i t  follows that 7 = t ,  > --oo and 

= 7 + d 2 0. (23 1 D - 
2(n - k) - 1 

Then 

z + d -  [ F( - 4 2 '  7 + d  f l  - k 1 - 1 )] (24) 
2(n - k) - 1 

for z E ( 7 , ~ ~ ) .  Take first rx < 00. Then upon allowing z t rx in (22) we 
observe that its left hand side tends to +w, while the right hand side remains 
finite positive. Hence rX = m. 

Observe now that by the integrability assumption E(iXk+2,nl) < w it follows 
that 

for sufficiently large positive z, where m is a constant. Consequently (24) implies 

( x + d -  m 2 (  n- k) -1 
2(n - k) - 1 

(25) 

for z 2 7. Observe that for 7 + d > 0 the right hand side of (25) is unbounded. 
Hence by (23) we conclude that d = -7 and then the result follows by (24). 
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