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Preface

A conference in Modern Analysis and Probability on the occasion of his 65th birthday was
held in honor of M. M. Rao at the University of California, Riverside. Over a hundred
friends, colleagues, students, and other mathematicians attended during the three-day meeting.
The Mathematics Department provided copious amounts of coffee and doughnuts. An on-
campus dinner was held on a Friday night and an off-campus dinner was held Saturday night
following a gala reception at the home of M. M. and his wife, Durgamba. Support for the
conference was supplied by the College of Natural and Agricultural Sciences at the University
of California-Riverside, the Mathematics Department at the University of California-
Riverside, and the National Science Foundation.

This festschrift volume contains most of the talks given at the conference as well as
several that were contributed later. The beginning portions of the book include a biography of
M. M. Rao, a bibliography of his published writings, an ancestral mathematical family tree,
and a list of Ph.D. theses written under Rao and his students.

The talks at the conference included four keynote addresses by Rao, Jean Bourgain, S. R.
S. Varadhan, and Michael Crandall. All but Crandall’s talk are contained here; Crandall’s
talk will appear in a paper that will be published elsewhere. Rao’s paper is an account of that
portion of his work which originated in problems arising in applications. It is organized by
area and features the work of his students as much as his own. The breadth and depth of Rao’s
mathematical work and its impact on analysis, probability, and stochastic processes can be
seen not only by what is included in this paper but also by the portion of his bibliography
which is not in this paper. The editors enjoyed this paper immensely. Even as good as the
paper is, it does not capture the charm and the emotion with which the talk was given.

Jean Bourgain’s paper is a long, densely written survey (an “exposé” in his terminology)
of persistency of quasi-periodic solutions of linear or integrable partial differential equations
after Hamiltonian perturbation. Much of the original work is due to Bourgain and is not in
print elsewhere. The talk given by Varadhan reported on joint work with H. T. Yau
concerning scaling limits for lattice gas models. This provides a way to give a simplified
description of the state of a large system of interacting particles which is evolving in time.
The results typify recent deep research involving hydrodynamic limits, which establish that
nonlinear partial differential equations govern many large particle systems in the limit.

The remaining eighteen papers are original contributions in probability and statistics,
stochastic processes, Banach space theory, measure theory, and differential equations—both
deterministic and stochastic.

Many other people attended the conference who did not give talks for one reason or
another. Although we cannot list all of them (our sincere apologies) we would like to mention
two esteemed intellectual colleagues of M. M. Rao, Mannie Parzen and Howard Tucker, as
well as two former students, William Kraynek and Marc Mehlman.

Jerome A. Goldstein
Neil E. Gretsky
J. J. Uhl, Jr.




Multivariate Distributions with Gaussian
Conditional Structure
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ABSTRACT

Multivariate distributions exhibiting some features of the conditional structure associated
with the classical normal model are investigated. Features considered include conditional
distributions of subvectors and conditional moments. Our understanding of the classical
normal model is enhanced by the study of such quasi-Gaussian distributions together with
investigation of additional assumptions required to characterize the classical normal model.
Special attention is paid to the class of distributions exhibiting Gaussian conditional struc-
ture of the second order, i.e. those in which the conditional moments of orders one and two
match the Gaussian model.
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1 THE CLASSICAL MULTIVARIATE NORMAL DISTRIBUTION

A random vector X = (X1, Xa,..., X)) is said to have a classical multivariate normal dis-
tribution if it admits a representation of the form

X=p+3"?Z

where Zy, Za, ..., Zy are i.i.d. standard univariate normal random variables. In such a case
we write X ~ NUC)(E, Y)). Here HeRk and ¥ is a non-negative definite £ x k matrix. Such
random variables have remarkable properties. For example:

1. All one dimensional marginals are normal.
2. All ¢ dimensional marginals, £ < k, are {-variate normal.

3. All linear combinations are normal. In fact for any £ x k matrix B we have

BX ~ N9 (B, BLB') .

4. All conditionals are normal. Thus if we partition X = (X, X) then the conditional
distribution of X given X = Z is multivariate normal.

5. All regressions are linear. Thus for any i and any ji, ja, - - - Jge(# 1) BE(Xil XG0, X5,)
is a linear function of X, Xj,, ..., Xj,.

6. All conditional variances are constant. Thus var(X;|X;,,...,Xj,) is nonrandom for

any ia and any jl)j?v e ajf(# Z)
7. If ¥ is positive definite, the joint density of X is elliptically contoured.
8. X has linear structure, i.e. X admits a representation of the form

_X_:QQ+AZ

where the Z;’s are independent random variables.

Most of these properties, taken individually, fail to characterize the classical multivariate nor-
mal distribution. Combinations of these properties can be used to characterize the classical
model . Condition 3 does characterize the classical model. Condition 4 also will characterize
the classical model provided k > 2. None of the others alone will do it. Conditions 7 and 8,
together, will characterize the classical distribution.

The present paper will focus mainly on two issues: the possibility of weakening the assump-
tion of property 4 and still preserving a k-variate normal characterization (Section 2), and
a discussion of models which, though not classical normal, mimic the conditional moment
structure of the classical models (Section 3 and 4). Additional conditions for such structures
leading to multivariate normality are outlined in Section 5.
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Some useful notational conventions follow. Suppose X denotes a k-dimensional random
vector and zeR*. A partition of X into two subvectors of dimension and k with k+k =k
will be denoted by (X, X) The corresponding partition of z will be denoted (&, Z). X; will
denote the ith coordinate of X. _)_{(i) is the k — 1 dimensional vector obtained from X by
deleting X;. X, ;) is obtained from X by deleting X; and X;. Analogously real vectors z;
and x; ;) are defined.

2  CONDITIONAL CHARACTERIZATIONS OF THE CLASSICAL NORMAL MODEL

Suppose that for each 7 and for each g(i)eR’“"l the conditional distribution of X; given
2_(_(1-) =z is normal with a mean and variance that may depend on Ty i.e.

Xl Xy =z ~ N(pi(zg), of (2)) - (1)

In this case, generalizing the early results of Bhattacharya (1943) and solving an appropriate
set of functional equations, one may verify that X must have what we may call a k-variate
normal conditionals distribution with density of the form:

fx (@) = exp[-5G(z)] (2)

where
2 2 koo
Glz)=3 > 2 Va1 77) - (3)
i1=0i5=0  i;=0 j=1

There are necessary restrictions on the ranges of the v’s in (2.3) in order to ensure integra-
bility and to ensure that all expressions for conditional variances are uniformly positive. Of
course 7ygo..0 is not really a parameter, it is a normalizing factor that is a function of the
remaining 7’s chosen to ensure that the integral of the joint density is 1. If X, of dimension
k, has a density of the form (2.2) we will write

X ~NC®(y).

See Arnold, Castillo and Sarabia (1992) for a more detailed introduction to the normal
conditionals model.

The classical k-variate normal distribution is of course a special case of the normal condition-
als model (2.2), since obviously it satisfies the required condition (2.1). It can be recognized
by the fact that for such a distribution all coefficients ~y; for which Zle i; > 2 must be zero
since, in order for (2.2) to represent a classical normal model, G(z) must be a quadratic
form.

Many characterization programs may be viewed as beginning with conditional normal re-
quirements leading to the model (2.2), or some related submodel, and then imposing addi-
tional conditions to ensure vanishing of the “unwanted” coefficients (i.e. 7;’s with Z§:1 1 >
2).
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To begin with, we may recall that the classical normal distribution actually has far more
conditional normal distributions associated with it than those alluded to in (2.1). In fact, if
X ~ Nk (_ Y), then for any partition of X into subvectors X and X of dimensions & and
k with k = k + k we have ) .

i~ N®(ju(z), 5(2)) - (4)
Since all subvectors of X are again classical normal, even more conditional distributions,
analogous to those in (2.4) but now based on partitioning subvectors of X, are again guar-
anteed to be normal.

X|X=3%

Assumption (2.1) is not enough to guarantee the classical model. Assumption (2.4) is more
than enough (provided k > 2, otherwise (2.1) and (2.4) coincide and fail to characterize the
classical normal model). In fact one may prove (see Arnold, Castillo and Sarabia (1994))
that, for k > 2, a sufficient condition to guarantee a classical multivariate normal model is
an assumption that for each 4, j and each z; ;eR*~2

(Xi’ X]‘)tx(i,j) ~ N(z) (H(ij)(_x_(i,j)) E”( (i )]))) (5)

) is normal, since the

The key observation is that (2.5) implies that for each 7, X;|X; ; = Ly
classical bivariate normal has normal marginals. Consequently (2.5) is enough to guarantee
that
X ~NCW(y) (6)
and for each 17, '
Xy ~ NCED () (7)

However marginals of a normal conditionals distribution (2.2) can only be of the normal
conditionals form if certain s are zero. In fact (2.7) guarantees that all the “unwanted” 7’s
are zero, and the fact that X must have a classical normal distribution is a consequence.

Of course the conditional mean functions and conditional variance functions which are en-
countered in the normal conditionals model (2.2) are not the familiar linear regressions and
constant conditional variances associated with the classical model. If we are willing to as-
sume, in addition to the assumption that each X; given X, is normal, that the conditional
variances are constant, i.e. that

Xi| Xy =z ~ N(Mz‘(&(i)ﬁ?) ; (8)

then the unwanted s in (2.2) are forced to be zero and we must have X, ~ N&) (1, 2), ie.
classical normal. An analogous alternative sufficient prescription is the requirement that in
(2.1) each pi(z(;) be a linear function of z;.

It is indeed well known that for a classical k-variate normal random vector X we can explicitly

write the parameters in the conditional distribution of X given X in terms of the original
parameters of the distribution of X. Thus with X = (X, X) and p = (j1, jr) we have

X|X =i~ NO (i + £1955 (& — 1), S11.2) (9)

211 Z:12
¥ =
( 221 E22 >
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and
Yo =21 — L1255 Ty

The linear regressions and constant conditional variances are explicitly displayed in (2.9).
Linear regressions are not that unusual in multivariate distributions. Constant conditional
variances are unexpected. In some ways they are even counterintuitive. Taken together,
the requirements of linear regressions and constant conditional variances seem potentially
so restrictive as to possibly, alone, suffice to characterize the classical normal model. They
don’t. But verifying that they don’t and asking what additional requirements will lead to
characterizations is an interesting exercise that enriches our understanding of the real nature
of the curious classical multivariate normal model. The topic will be addressed in the next
section.

Before leaving the study of conditional normality assumptions to focus on conditional mo-
ment assumptions, it is worth returning to the list of 8 properties of the classical model
listed in section 1. Which of these in addition to (2.1) (i.e. X; given X;y = z(; is normal
Vi, V() will guarantee classical multivariate normality. We have already considered prop-
erties 5 and 6. Property 1 has potential, since marginals of normal conditionals models are
typically not of the normal conditionals form and a fortiori not (classical) normal. In fact, if
all one dimensional marginals of X are normal and (2.1) holds then the unwanted 7’s in (2.3)
must disappear and the classical normal model is obtained. Turning to condition 2, it is a
condition that subsumes 1 and consequently can be used to characterize the classical model.
Actually far less is needed. For example, if in addition to (2.1), each X, is classical (k —1)-
variate normal, then X must be classical k-variate normal. Indeed any marginal normality
statement sufficient to guarantee one dimensional normal marginals will obviously suffice.
Turn next to condition 3. If & linearly independent linear combinations of the coordinates of
X are normally distributed and if (2.1) holds then, by a suitable linear transformation, we
have Y = BX with normal conditionals (i.e. (2.1)) and normal one dimensional marginals.
Then Y and consequently also X is a classical normal random vector. Next turn to condi-
tion 7, elliptical contours. This is easily dealt with. The contours of the normal conditionals
density are determined by G(z) in (2.3). Their form will be elliptical only if the unwanted
7’s are all zero; i.e. only in the classical normal case.

Finally consider condition 8. The assumption of linear structure turns out to be particularly
fruitful in conjunction with certain conditional moment assumptions, as we shall see in the
next section. In conjunction with the normal conditionals assumption, i.e. (2.1), the role of
linear structure is less evident. Assumption 8 does however imply the existence of a linear
transformation of X (with density (2.2)) that has a density which can be factored. This
does imply that the unwanted 7’s in (2.3) must be zero and does indeed guarantee classical
multivariate normality. a

3  GAUSSIAN CONDITIONAL STRUCTURE

What can we say about collections of random variables which exhibit linear regression
functions and constant conditional variances? We will, following Wesolowski (1991), call
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this property Gaussian conditional structure of the second order.

Formally we will say that a random element (or indexed collection of random variables)
X = {X, : aeA} exhibits Gaussian conditional structure of the second order and write
XeGCSy(A) if for any n = 2,3,... and any a1, s, ..., aeA,

(1) B(Xa|Xazs -+, Xa,) is a linear function of X,,, Xa,, .- ., X, and

(i) var(Xa,|Xags - - -, Xa,) is non-random.

At times it is convenient to use the term Gaussian conditional structure of the second order
to refer to the distributions or probability measures associated with the random element
rather than with the random element per se; we will do this at times without explanation
and without fear of confusion. To avoid trivial examples we will usually implicitly assume
that the X,’s are linearly independent and not uncorrelated. Collections of independent
random variables could otherwise provide uninteresting examples of Gaussian conditional
structure of the second order.

Observe that A could correspond to the natural numbers or the reals or positive reals. Con-
sequently time series will be subsumed in the class of random elements under consideration.
Spatial processes can be viewed as being random elements associated with a set A that is
a subset of R¥. Any normal process or, more generally, any Gaussian random element, will
obviously exhibit Gaussian conditional structure of the second order. Our main focus will be

however on random vectors of dimension k; i.e. on random elements where A = {1,2,...,k}.
If X = (Xj,...,Xx) exhibits Gaussian conditional structure of the second order we will write
XeGCSy(k).

A remark is in order about the subscript 2 that appears in our definition of Gaussian con-
ditional structure of the second order. One could obviously ask that the random element
mimic the conditional moment structure of a Gaussian element with regard to more than the
first two conditional moments. One could ask for the first j conditional moments to behave
as they do for Gaussian elements. The class of random elements exhibiting such behavior
would be denoted by GCS;(A) instead of GCS3(A). Our focus will be on GCSy(A). Only
once will we briefly mention how we might construct non-Gaussian members of GCS;(4),
for j > 2.

If XeGCSy(k), it is natural to ask whether X must necessarily be Gaussian. The question
is already meaningful and reasonably challenging when k£ = 2; i.e. in the case of bivariate
distributions. Kagan, Linnik and Rao (1973) provide the following lemma indicating the
nature of characteristic functions associated with GC'S3(2) distributions.

Lemma 3.1: In order that the two-dimensional random vector (X,Y) satisfy (i) E(Y|X) =
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o+ BX and (i) var(Y|X) = o2 (a constant), it is necessary and sufficient that the charac-
teristic function of (X,Y") satisfies

0 d
a—t;¢(tl;t2)|t2:0 =iap(t1,0) + ﬂgg(/)(th 0) (1)

and 2
)
ot4

If one, as do Kagan, Linnik, and Rao, then assumes that (X,Y) has linear structure (i.e.,

satisfies condition 8, of section 1), then we may verify that indeed (X,Y) must have a
classical bivariate normal structure.

(t1,t2)|ty=0 = — (0% + a®)p(t1,0) + Qiaﬂditlfb(tbo) —+ ﬂ2~(i—2¢(t1,0) . (2)

Examples of non-Gaussian characteristic functions satisfying the conditions of Lemma 3.1 are
not that easy to visualize. It is in fact probably an inappropriate approach to the problem of
verifying that there do exist random vectors with GCS, that are not classical normal random
vectors. It is probably more fruitful to seek non-Gaussian density functions that will exhibit
the required conditional properties (and a fortiori will have characteristic functions satisfying
the conditions in the Lemma). The first example of this genre was provided by Kwapien
sometime prior to 1985. It was first reported in Bryc and Plucinska (1985). It was in fact
presented in terms of the joint characteristic function. He considers a random vector (X,Y)
whose joint characteristic function is given by

bxy(s,t) =pcos(s+1t)+ (1 —p)cos(s — 1) . (3)

where p ¢ (0,1) and, to avoid independence, p # 1/2. It is obvious that (3.3) does not
correspond to a Gaussian random vector and it is not hard to verify that conditions (3.1)
and (3.2) hold, as do the parallel conditions corresponding to interchanging the roles of
X and Y. Consequently (X,Y) with characteristic function (3.3) does exhibit Gaussian
conditional structure of order 2, i.e. (X,Y) e GCS,(2).

Where did (3.3) come from? And, why does it work? The picture is clearer if we look at the
following joint discrete density of a random vector (X,Y’)

T
Y -1 1
fxy(@,y): (4)
1|tz 2
e
1 5 5

where p € (0,1) and, to avoid independence, p # 1/2. Tt is readily verified that this is
indeed Kwapien’s example (the corresponding characteristic function is given by (3.3)). But
the joint distribution (3.4) has marginals with only two possible values. This gives linear
regression functions by default (any function with a two point domain is linear!). Constant
conditional variances are a consequence of the fact that p(1 —p) = (1 — p)p.

The elegant simplicity of the Kwapien example would suggest ready extension to higher
dimensions. However, only recently (Nguyen, Rempala and Wesolowski (1994)), have any
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other (other than relabeled versions of the Kwapien example) non-Gaussian examples been
described in either two or more dimensions. Indeed there were some disturbing indications
that Gaussian conditional structure of the second order might be more restrictive than one
would initially imagine. Bryc and Plucinska (1985) showed that if we consider a random
element where A = {1,2,...} then under mild regularity conditions, Gaussian conditional
structure of order 2 i.e. GCSy(1,2,...) is sufficient to guarantee that X must be a normal
process. Earlier, in a series of papers (Plucinska (1983), Wesolowski (1984) and Bryc (1985)),
an analogous result was obtained in case on which A = R*.

The first step to finding non-Gaussian random vectors of dimension greater than 2 with
Gaussian conditional structure of order 2, would focus on 3 dimensional examples and, fol-
lowing Kwapien’s lead, would focus on simple discrete examples in which the conditional
moment conditions will transform into relatively simple equations in the unknown cell prob-
abilities. Thus for example we might seek a 3-dimensional discrete distribution whose second
order conditional structure will match that of a 3 dimensional classical normal distribution
of the form

X 0 1 12
X | ~NOLo|, i1 ] (5)
X 0 i 11

For such a distribution we will have E(X;) = 0 and var(X;) = 1,7 = 1,2,3. The conditional
moments will be given by

1
E(Xi|X;, Xy) = g(Xy + Xi)

var(X;|X;, Xi) = g (6)

E(X,|X,) = X,/2

and 3
var(X;|X;) = 1

for all choices of i # j # k (since the distribution is clearly symmetric). Following the lead of
the Kwapien example we would seek a 3 dimensional random vector (Y7, Y, Y3) with a dis-
crete distribution with possible values for each Y; being —m, m —1,...,1,1,...,m and with
probabilities p;j, = P(Y) =4,Y, = j,Y3 = k). The joint distribution should be exchangeable.
The marginal means and variances should be 0’s and 1’s. The conditional means and vari-
ances of the ¥;’s should agree with those in (3.6). Our task is then to solve for the unknown
values of {py, : —m <1 < j <k < m} subject to the given constraints. If m < 3, there are
more constraints than variables. For m = 4, there are 120 variables (p;;;’s) which must be
non-negative and satisfy 91 linear constraints. A promising situation, although a solution is
not guaranteed. Unfortunately efforts to solve such a system of equations have not proved
successful. The search for a solution continues since a simple discrete example may shed
additional light on the nature of the class of distributions with Gaussian conditional struc-
ture. However, the problem of constructing a non-Gaussian multivariate distributions (of
finite dimension > 2) with Gaussian conditional structure was recently resolved by Nguyen,
Rempala and Wesolowski (1994). The solution is ingenious but, retrospectively, obvious.
Inspired by their examples, the following simple construction is possible.
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Take fo(z) to be the joint density of a classical k-variate normal distribution with mean vector
p and variance-covariance matrix ¥. We now construct a k-dimensional density which has
the same conditional means and variances as does fo(z). Pick two distinct bounded densities
g1 and gy each supported on the interval (~1,1) and each having mean 0 and variance 1.
There are of course a plethora of such densities. Now consider the new k-dimensional density
defined by

k
(@) = folz) + 01:[1[91(%) — g2(z)] (7)

where c is chosen small enough to guarantee that the expression in (3.7) is uniformly positive
(possible since the g;'s are bounded densities). Obviously f*(z) is non-Gaussian but all of
its marginals are Gaussian and it is readily verified that all of its first and second conditional
moments match those of fo(z). The density f*(z) thus belongs to GCSy(k); and in fact
GC Sy (k) is not just non-empty but contains an enormous variety of distributions constructed
in a fashion analogous to that used to define (3.7). It is indeed possible, by putting additional
higher moment conditions on the g;’s (used in the construction of f*), to find k-variate non-
Gaussian distributions whose conditional moments up to the m’th order (m > 2) match
those of a classical normal k-variate distribution.

4  THE STRUCTURE OF THE CLASS GCSy(k)

From the discussion in Section 3, we are aware that the class GCSy(k) is quite extensive.
Our goal in the present section is to identify characteristic properties of the class and to
identify conditions sufficient to guarantee that a member of the class indeed is a classical
Gaussian distribution. For notational simplicity, some of the discussion is restricted to the
bivariate case (i.e. k= 2).

Suppose that XeGCSy(k). Obviously any vectors of the form Y = (X + b1, X +
bo, ..., cxXg +by) for c1,...,cp > 0 and beR* will again belong to GCSy(k). Consequently
there is no loss in generality if we focus on standardized members of GCSy(k). These
are random vectors ZeGCS,(k) with the property that E(Z;) = 0 and var(Z;) = 1; i =
1,2,..., k. Throughout this section we will adopt the convention that if we use the notation
X, we are dealing with a general member of the class GC'Sy(k) while, if we use the notation
Z, we are referring to a standardized random vector in GC Sy (k).

Thus we are concerned with random vectors X such that, with Z; = (X;—E(Xy))/VvarXi, Z
satisfies: for any i, j1,...,j¢ (L <k —1)

£
(i> E(Zi‘ZJH (KRR Z]z) = Z (51,i,mzjm (1>
m=1
and
(ii) var(Zi\Zj; - - ZJk) = U?,v’, (2)

for constants d;;m € R and o7, ¢ R%.
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A random vector Z satisfying (4.1) and (4.2) will have a corresponding variance-covariance
matrix ¥ = R (with unit entries in the diagonal). To avoid trivial cases we assume R is not
a diagonal matrix. Clearly there are quite complicated inter-relationships that must hold
among the coefficients appearing in (4.1) and (4.2) since they must be consistent with some
diagonal variance-covariance matrix R. Of course, for a given R, there are many GCSy(k)
distributions. It is convenient to introduce the notation GCS,(k, ¥) to denote all random
vectors X with Gaussian conditional structure of the second order with a given k-dimensional
variance-covariance matrix ¥. Analogously if we write Z ¢ GCSy(k, R) we mean that Z is a
standardized vector with Gaussian conditional structure of the second order and correlation
matrix R.

If (4.1) and (4.2) hold, the joint characteristic function of Z is severely constrained. Con-
ditions analogous to those displayed in equations (3.1) and (3.2) must hold for various first
and second partial derivatives of the joint characteristic function. In the bivariate case, we
have Z € GCS,(2) iff

(i) E(Z,|Z,) = pZy, E(Z5|Z1) = pZ,

and »
(i) var(Z1Zy) = var(Zy|Z)) = 1 — p?

where
p=cov(Zy,Z5)(e (—1,1)) .

Conditions (3.1) and (3.2) may be rewritten for such standardized variables as follows.

Lemma 4.1: Z € GCS,(2) iff for some p e (—1,1) its joint characteristic function ¢(t,t3)
satisfies

4 50, 1)

0
—d(t1, o) |1=0 = pd_tg

0ty

d
—6“¢(t1, t2)|ty=0 = p——(t1,0)

Oty dty

82 ) d2
a—ﬁ¢(t1,tz)|t1:0 =(p* = 1)g(0,t5) + p d_t§¢(0’t2)

82 ) ) d2
bt—%fﬁ(%h)hzzo = (p° = 1)¢(t1,0) +p aﬁQb(tl:O) :

It is not hard to verify that a classical bivariate normal random vector with unit variances
and correlation coefficient p, has a joint characteristics function which satisfies (4.5) - (4.8).
Similarly the joint characteristic function of the Kwapien distribution (3.3) clearly satisfies
(4.5) - (4.8) with p = 2p — 1.

The class GC'S3(k) contains Gaussian distributions, non-Gaussian densities as in (3.7) and,
when k& = 2, even discrete distributions. The common features of all the members can
be expressed in terms of properties of conditional moments or of derivatives of the joint,
characteristic function. The class is however diverse. Some closure properties are however
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available for the class GCSy(k). For example each subclass GCSy(k, X), for fixed Z, is closed
under mixtures.

Theorem 4.2: Suppose {X, : « ¢ A} is an indexed collection of random vectors with
I . X, € GCSy(k,X) for every a. If we define Z to be a random vector with distribution
i function

| Fyle) = | Fx, (2)dH (@)
for any probability distribution H on A, then Z ¢ GCSy(k,X).

Proof: The bivariate case (k = 2) with A of cardinality 2 was reported by Bryc (1985). The
general result is straightforward if we write the joint characteristic function as a mixture

02(1) = [ ox,(DdH ()

and observe that the conditions (4.5) - (4.8) (and their k-dimensional analogs) are preserved
by mixtures since the covariance structures (and hence the coefficients in (4.5) - (4.8)) are
the same for every a.

Linear combinations of independent random vectors in GC'Sy(k, 2) will yield random vectors
in GCSy(k) but with a different covariance matrix. Specifically we have

Theorem 4.3: Suppose that X® and X@ are independent members (not necessarily identi-
cally distributed) of GC'Sy(k, ) then for (a,b,) # (0,0),aX® +bX® € GCSy(k, (a® +b%)2).
In particular if a® + b = 1, then aX® + bX® € GOSy(k, X).

Proof: We provide a proof in the bivariate case. More extensive equations analogous to (4.5)
- (4.8) must be verified in higher dimensional cases.

For simplicity and without loss of generality we assume that X® and X? have been standard-
ized and we will denote them by Z") and Z®. By assumption Z(!) and Z® have common
correlation ratio p and their joint characteristic functions satisfy (4.5) - (4.8). Denote the
joint characteristic functions of ZW 7® and aZ® +bZ® by fi, fo and f3. Because AR
and Z @ are independent we have

fa(ty, t2) = filaty, aty) fo(bty, bty)
Consequently, using (4.5) for f; and f;

0

. d
gafs(tla )]t =0 = agﬁfl(ath ats) fo(bty, bta)

) 0
+f1(aty, atQ)ba_tfz(btl, bt2)]4,=0
1

d
= apgt“ﬁ(oy ats) f2(0, bts)
2
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d
+bpf1(0, atz)g—ﬁ(O, bty)
to

Thus (4.5) holds for fs. Similarly (4.6) may be verified. Differentiating twice and using (4.7)
for f; and f, we find

2
%fs(thtz”tlzo = (@®+ ") (0" — 1) f5(0,t2)
1

2 d2
— f3(0,%2) .
+p dt%fg( ) 2)

When a? + b% = 1 this implies that (4.7) continues to hold for f;. In parallel fashion, since
(4.8) holds for f; and f, then, when a? + b? = 1, it continues to hold for fs;. Since conditions
(4.5) - (4.8) are sufficient for membership in GSC5(2) the conclusion of the theorem follows.

Naturally we can extend Theorem 4.3 to deal with sums of more than 2 independent members
of GC'S,(X). Indeed we can consider infinite convolutions since clearly the class GCSy(k, X)
is closed under weak convergence (i.e. if X ¢ GCSy(k, %), n =1,2,... and X™ 4y x()
then X®)eGCSy(k,%)). Thus we may state

Theorem 4.4: Suppose XV X® ... are independent random vectors each being a member
of GCSy(k, ) (the same ¥ for every X*). Define ¥ = 3%, ¢, X where ¥, a2 = 1. It
follows that Y e GCSy(k, X).

Example: (Uniform and Cantor marginals) Suppose that X® =12 ... areiid. Kwapien
random vectors (with characteristic function (3.3) and joint density (3.4)). Consider a ran-
dom vector Y = ¥°, a;X® where 3%, a? < co. Since each X ¢ GCS,(2) with correlation
2p—1, it follows that ¥ e GCS3(2) with the same correlation, 2p—1. Particular choices for the
a;’s yield interesting examples. If we choose a; = 1/2!,4 =1,2,...,Y will have a continuous
bivariate distribution with uniform (—1,1) marginals (and Gaussian conditional structure).
We conjecture but are unable to prove that this joint distribution is singular (unless p = 1/2,
the uninteresting case of independent marginals). If we choose a; = 2/3%,i = 1,2,... then
Y will have a singular joint distribution with Cantor (and thus clearly singular) marginals.
Thus we have a singular continuous example with Gaussian conditional structure. It is
well known that sums of independent Cantor-like singular random variables can have non-
singular (indeed uniform) distributions. Our present construction (using a; = 2/3') allows
us to give an example of dependent Cantor-like random variables whose sum is uniform. To

do this, consider the special case ¥ = ¥, 2X® where the X(¥’s are Kwapien random

vectors with p = 2/3. Here Y; and Y, are singular (Cantor) distributed on (—1,1) but
(Y1 + Y3)/2 is uniform on (—1,1) (as is easily proved by looking at the convergent infinite
product representation of its characteristic function obtained using the expression for the

Kwapien characteristic function given in (3.3)).
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5 FROM GCS,(k) TO CLASSICAL NORMAL

The examples of section 4 clearly indicate that additional conditions, besides appropriate
behavior of conditional moments up to order 2 will be required to characterize the classical
normal model. In this section we survey some known and some new results in this area.
First a result due to Szablowski (1989).

Theorem 5.1: If X e GCSy(k) and if X is elliptically contoured then X ~ N®(u, ).
Next, we consider the generalized independence models described by Kagan (1988) classes.

Definition 5.2: A k-dimensional random vector X belongs to the Kagan class Dy ;(loc),j =
1,2,...,k, k=1,2,..., if its characteristic function ¢x, in some neighborhood, V, of the
origin in R* has the form

Px(t) = 1I Ripi; (titiy, -5 i)

1<iy << <k

where each R; is a continuous complex function with R;(0) =1, Vi.

It is plausible that any X in a Kagan class Dy ;(loc) that exhibits Gaussian conditional
structure of the second order might be classical k-variate normal. Some progress towards
proving this result is provided in the following result due to Wesolowski (1991).

Theorem 5.3: If X ¢ GCSy(k) for some k > 2 and if X € Dy z(loc) then X ~ N®)(p, %),

If we assume that X, in addition to having Gaussian conditional classical structure of the
second order, is infinitely divisible, then it must be classical normal. This result is due to
Wesolowski (1993). We refer the reader to the original paper for a general proof. Here we
provide a simple illuminating proof for the bivariate case only.

Theorem 5.4: If XeGCSy(k) and if X is infinitely divisible then X ~ N(k)(;_t, ).

Proof: (in the bivariate case, i.e. k = 2, the case k > 2 was proved by another approach
in Wesolowski (1993)). As usual, without loss of generality we assume zero means and unit
variances. Since X = (Xi, X,) is infinitely divisible, the logarithm of its joint characteristic
function is of the form

1
WD) =logd(t) = (8 + 2otz +13)
(110 . dK (z,y)
(t1z+tay p . 177
+ (R2[€ (ethay) 1 — 4ty 2 + tyy)] S
for some measure K. It then follows that
82 ity x?
gt Wlamo = —1= [T dK (w,y)

|
|
|
|
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and
2

T =1 [ oV i(ay)
g Y R’ g2z Y

However since X € GCS,(2), we know that (4.8) holds. Consequently we have

/ T 0K (z,y) J V1K (z,y) (1)
Y dK(z.y) =

R,2./L'2+y2 Y 14 $2+y2 z,y

(where p? < 1). Analogously, by considering g%¢(i)|tz:0 and %w(tl,()) we find that (5.1)

again holds with the roles of  and y interchanged. Summing we conclude that for p? < 1,

AdeTLy)=p2AvdKKLy),

i.e. dK = 0. Consequently X must be classical bivariate normal.

6 REMARKS

Progress towards understanding the class of distributions with Gaussian conditional structure
is accelerating. Many interesting questions remain open. Perhaps the most frustrating
lacuna in the current inventory of examples involves the absence of any discrete example
with Gaussian conditional structure of dimension greater than 2 (as discussed in Section
3). Theorem 4.3 together with the celebrated Kwapien example permits construction of a
plethora of two dimensional discrete distributions with Gaussian conditional structure. The
elusive 3 dimensional examples should appear soon.
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