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Abstract 

Bayes negative binomial models under two different parameterizations are shown to be completely identifable by 
the form of the Bayes estimates of the parameter. Also power series mixtures are briefly treated. @ 1997 Elsevier 
Science B.V. 
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1. Introduction 

For a mixture model (X, 0) denote by #x[o the conditional distribution of the random variable (rv) X given 
0, where 0 is a random parameter. The classical problem of identifiability of a mixture model defined by #XlO, 

see Teicher (1961) or Seshadri and Patil (1964), is connected with the question of unique determination of 
the prior distribution of 0 by the distribution of X. Here we are concemed with another approach involving 
posterior mean E(OIX). Identifiability problems in such a setting have been considered beginning with Korwar 
(1975). More recent contributions involving different types of  mixtures include: Kyriakoussis and Papageorgiou 
(1991), Arnold et al. (1993), Weso~owski (1995a, b), Gupta and Wesolowski (1997). Here we are interested 
in negative binomial (nb) mixtures. 

Denote by nbl(r, p )  the nb distribution with the probability mass function (pmf) 

r + k -  1 )  
Pk = k pr(1 _ p)k, k E N = {0, 1, 2 . . . .  }, 
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where r > 0 ,  0 < p <  1 and by nb2(r,q) the nb distribution with the pmf 

( r + k - 1 )  q)-~,+k), 
Pk = k qk(1 + k E ~, 

0 < q < ~ .  Obviously, nb2 is just a reparameterization of nbl, i.e. nb2(r, q) = nbl (r, 1/(1 ÷q)) .  Different random 
chance mechanisms producing negative binomial distribution with different natural parameterizations, including 
both the above examples, can be found in Boswell and Patil (1970). 

In the context of identifiability via posterior mean E(OIX), the nb type mixtures with respect to the parameter 
0 = r were considered first. In Cacoullos and Papageorgiou (1982) a result for #XlO =nb2(0,q), where 0 is a 
natural valued rv, was announced. Then in Cacoullos and Papageorgiou (1983) #XlO =nbl(0,  p) was shown 
to be identifiable for a natural valued rv 0. Also positive solutions for the related conditional distributions 
#X_Olo=nbl(O,p) and #x_olo=nbl(n,p) were given in that paper. A mixture with respect to the second 
parameter was studied in Papageorgiou (1984). It was proved there that the model ~Xiq =nb2(r,q),  where q 
is a positive rv, is identifiable via the posterior mean under the restrictive assumption of uniqueness of the 
solution of the moment problem for both the rv's q and X. 

The aim of this note is to consider identifiability of both types of  negative binomial mixtures with respect 
to the second parameter, without any additional conditions of a technical nature. Our approach does not rely 
on the classical identifiability (in Teicher sense) results, as it was done in the three papers on nb mixtures 
mentioned above. Thus instead of seeking for the distribution of X and then applying classical identifiability 
result to conclude that the prior distribution is unique, we try to obtain directly the prior distribution. In 
Section 2 the nbl model is studied. Except of the posterior mean, also an indication on a possibility of using 
higher posterior moments is given. An extension towards power series mixtures is also considered. Section 3 
is devoted to nb2 mixtures and includes a straight forward extension of Papageorgiou (1984) result, mentioned 
above. Some applications of the results are presented in Section 4. 

2. nbl mixtures 

In Weso½owski (1995b) it is proved that for the geometric mixture, i.e. in the case #xl0=nbl(1,  1 - 0 ) ,  
where the distribution of 0 is concentrated on the discrete set { 1, 1/2, 1/3 . . . .  }, the posterior mean determines 
the joint distribution. It is obvious that the analoguous result holds for the mixture #xlo =nbl(1,0) .  Here we 
begin with a generalization of that result by considering a general nb mixture of the first kind, and with no 
additional restriction on the support of the mixing parameter. 

Theorem 1. Assume that (X, O) is a mixture model with 

lZXlo=nbl(r, 0), (1) 

where r > 0 and So = supp(O) C [0, 1]. Then the prior distribution of 0 is uniquely determined by the posterior 
mean E(OIX). 

Proof. Denote by Fobx and Fo, respectively, the distribution functions (df's) of the posterior and prior distri- 
butions. By the Bayes formula we have for any k c • and any t E So 

P(X = k) dFolx=k(t) = e ( x  = k I 0 = t) dFo(t), (2) 

where P(X = k l 0 =  t) is defined by the relation 

P ( X = k ) =  f P(X=k[O=t)dFo(t) ,  kE  
a s~ 
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(we choose its regular version). Additionally, denote m(k)=E(OIX =k) ,  k E [~. Then we have 

m(k) = fs,, tdF°lx=k(t) 

and by (2) for any k E 

m(k) [ P(X = klO = t) dFo(t) = [ tP(X = klO = t) dFo(t). (3) 
Js o d So 

Hence (1) implies 

m ( k ) {  tr(1 - t) k dFo(t)= { tr+l(1 - t) k dF0(t), (4) 
,/S 0 ,IS0 

k C ~. Define now a new df 

dG(t) = e-It  ~ dFo(t), 

where c=E(Or). I f Z  is a rv with df G then (4) implies that 

(1 - m(k))E(Uk)=E(Uk+l), kE ~, 

where U = 1 - Z. From the above recurrence we have 
k - 1  

E(U k)= U ( 1 - m ( j ) ) ,  kG[~ 
j=0  

and the distributions of U and, consequently, Z are uniquely determined by the function m (all the moments 
exist and uniquely identify the distributions since U and Z have bounded supports). Hence G is also uniquely 
determined by m. Since e = [E(Z-r)] -1 then, by the definition of G, also the df Fo is unique. [] 

It is easy to see that the result also holds if instead of (1) we consider 

#XlO = nbl(r, 1 - 0). 

Then the mixture is a special case of the power series model, i.e. #xlo =PSD(a,0) ,  where a power series 
distribution, PSD(a, 0), is defined by the pmf 

po(k)=a(k)Ok/f(O), k E S C ~ ,  

where a>~0 is a coefficient function and f > 0  is a series function ( f ( 0 ) =  ~k~sa(k)Ok). Such a general 
problem in the case of bivariate discrete measures was considered in Weso~owski (1995b). Similar argument 
to that given in the proof above implies that PSD(a, 0) mixtures are also identifiable: 

Theorem 2. Let (X, O) be a mixture model with 

#xto = PSD(a, 0), (5) 

with supp(X) = ~. I f  supp(0) is not bounded additionally assume 

~ ~ = o o .  (6) 
k=0 

Then the prior distribution of  0 is uniquely determined by the posterior mean E(OIX ). 
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Proof. Similarly as in the proof of Theorem 1 we have from (5) and the Bayes formula 

m(k)E(Z k) = E ( Z  k+l), k E ~, (7) 

where Z is a rv with df G defined by 

dG(t) =edFo(t)/f(t), t E supp(0) =So, 

e-I = fs,, 1/f(t)dF0(t). Observe that for unbounded So 

f t k e f a(k)t k c E(Z k) = ef--~ d~(t)= ~ ~ d~(t)~< a(k---5 

for any k E NI. Hence Z is infinitely integrable and (7) is really valid. Also by (6) 

k=l ~ = 

and by the Carleman criterion the distribution of Z is uniquely determined by the sequence of moments. 
Consequently G is uniquely determined by m. And also the distribution of 0 is identifiable. [] 

Similar problem has been considered also in Sapatinas (1995), where instead of the condition on the 
coefficient function a a restriction on the regression function m of the following form 

~ re(i) = o c  (8) 
x=t \ i=O 

was imposed and an approach via the classical identifiability method was proposed. 
Assume that instead of the posterior mean E(OIX ) a form of the second posterior moment E(O2[X) is 

known. Then, similarly as in the proof of  Theorem 1 (with its notation), we have 

E(Uk+2)=2E(U k+~) - (n(k) + 1)E(Uk), k E N], 

where n(k)=E(O21X=k), k E ~, which is not sufficient for determining the distribution of U since E(U) 
remains unknown. This can be handled by additional assumption that E(OIX = 0 ) = m ( 0 )  is known. Conse- 
quently, we have 

Theorem 3. Assume that the nb mixture model (X, O) is defined by the relation (1). Then the prior distri- 
bution of  0 is uniquely determined by E(Oz[X) and E(OIX=O ). 

Similarly, it follows easily that the mixture (1) is identifiable by a higher posterior moment E(O n IX) and the 
collection E(OilX = 0 ) ,  i = 1 . . . . .  n - 1. It is possible also to consider E(On]X) with some other combinations 
of E(oi[x=j) ,  iE{1 . . . . .  n - 1}, jC{0 ,  1 , . . . ,n  - 1}. I f  we consider IzXl o = nbl(r, 1 - 0), the identifiability 
results also hold (even with much simpler recurrence relations). Also similar extensions towards PSD(a, 0) 
mixtures can be obtained. 

3. nb2 mixtures 

Here we consider the second type of a nb mixture. It was proved in Papageorgiou (1984) that such a 
mixture is identifiable by a regression function under assumptions that all the moments of  marginals exist and 
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uniquely determine their distributions. The method of the proof was based on the classical identifiability of 
the mixture by the marginal. We prove that the both type of restrictions are superfluous. 

Theorem 4. Assume that (X, O) is a nb mixture model defined by 

#XlO = nb2(r, 0), (9) 

where r > 0 and supp(0) C (0, oc). Then the prior distribution of 0 is uniquely determined by the posterior 
mean E(OIX). 

Proof. Similarly as in the proof of Theorem 1, via the Bayes formula and (9), we obtain the following 
equation for any k E N 

fo~ ( t ) l dF°(t) fo~ ( t ) k dF°(t) (10) 
m(k) ~ ( l + t )  r -  t ~ ( l ÷ t )  r '  

where Fo is a df of 0. Denote, now, 

K(i,s)= ~ (1 + t) s' 

for i = 0 ,  1 . . . . .  and s = r -  1,r. Then (10) implies 

(m(k)+ l )K(k , r )=K(k , r -1 ) ,  kEN.  

On the other hand, from the definition of the function K it follows that 

K(k + l , r - 1 ) = K ( k , r - 1 ) - K ( k , r ) ,  kEN.  

Combining the above two equations we have the reccurence formula 

m ( k ) K ( k , r - 1 ) = ( m ( k ) + l ) K ( k + l , r - 1 ) ,  kEN.  (11) 

Define now a new df G by 

df0(t) 
d G ( t ) - c ( l + t )  r - l '  tESo, 

where c = K(0, r - 1). Consequently, if Z is a rv with the df G then for U = Z/(Z + 1 ) we have 

c E ( U k ) = g ( k , r -  1), k E N  

and, hence ( 11 ) yields 

k 
m(k) 1E(gk)  = 11  m(j) 1' E(Uk+l ) = m(k ) ~  re(j) + 

j=0 

k E N. Since U is bounded a.s. then its distribution is uniquely determined by the sequence of moments. 
Thus the function m determines the distribution of U, which gives the distribution of Z. And finally G is 
uniquely determined. Now c -1 ----E(1 + Z) r-I and, by the definition of G the df Fo is also unique. [] 
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4. Applications 

A rv X is said to have generalized hypergeometric type IV distribution (GHIv(A,B,C))  if its pmf has the 
form 

A + B  
~ , k = 0 , 1  . . . . .  

C / 

where A, B, C are real numbers fulfilling A < 0, C < 0, 0 < A + B + 1. The distribution was introduced in 
Kemp and Kemp (1956), where it was derived by mixing negative binomial with beta distributions in two 
ways: 

(1) If Pxpo =nbl(r ,  0) and 0 has the beta distribution of the first kind (Bi(a,b)) with the density 

ta-l(1 _ t ) b - I  
f ( t )  = 1<0,1)(0, 

B(a, b) 

where a > 0 ,  b > 0 ,  t henX is a G H i v ( - b , a + b -  1 , - r )  rv. 
(2) If #xlo = nbz(r, 0) and 0 has the beta distribution of the second kind (Bil(a,b)) with the density 

ta--1 
f ( t )  B(a, b)(1 + t)a+b.l(O,~)(t),r 

where a > 0, b > 0, then X is a GH1v(-a ,a  + b -  1 , - r )  rv. 
Since our previous results assure identifiability of nb mixtures by posterior moments then to characterize 

both the models it suffices to compute the respective quantities. Hence we easily get the following three 
results. 

Proposition 1. I f  Izxlo = nbl(r, 0) and 

c 
E ( O I X ) - - d + X ,  O < r < c < d ,  

then the prior distribution is BI(e - r,d - e) and X is a GHIv(e - d,d  - r - 1 , - r )  rv. 

Proposition 2. If #x[o = nbl(r, O) and 

c ( c + l )  E ( O I X = O ) = c / d ,  O < r < c < d ,  
E(°21x) = (d + X ) ( d  + X  + 1)' 

then the prior distribution is Bffe - r,d - c) and X is a GHlv(c - d,d  - r - 1 , - r )  rv. 

Proposition 3. I f  ttXl o = nbz(r, 0) and 

E ( O I X ) = c X + d ,  O < r < l / d ,  O<e,  

then the prior distribution is Bii(e/d, l i d -  r) and X is a GHiv( -c /d , (1  + c ) / d -  r -  1 , - r )  rv. 

The results of Propositions 1 and 2 can be easily extended to negative binomial-generalized beta models, 
as proposed in Holla (1968), or to the Pascal Pas(r, 0) models defined by the pmf 

 :r,r+l . . . . .  p(k  ) = 1 
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0 < 0 < 1, r E { 1,2 . . . .  }, which are just shifted negative binomial models. In particular the Pascal-beta model 
#xlo = Pas(r, 0) introduced in Dubey (1966) may be characterized by the posterior mean of the form 

a 
E ( O I X ) - b + X ,  O<r < a < b + r .  

Denote by ~ (0 )  the Poisson mixture model defined by the pmf 

O k 
p(k)=e-°-~. ,  k = 0 ,  1,... 

In Weso~owski (1996), it was shown that #xlo =~(ab°), a > 0, 0 < b~< 1 and E(OIX)= cb x characterize 
the bivariate Poisson conditionals distribution (see Arnold and Strauss, 1991). Here we consider the Poisson 
mixture #xl0 = ~(20)  = PSD(a, 0) with a(k) = 2k/(k!) and f(O) = e ~'°, 2 > 0. Since 

k=0 k=l 

then by Theorem 2, it follows that the Poisson mixture model is identifiable by the posterior mean E(OIX ). This 
result was originally obtained in Cacoullos and Papageorgiou (1982) (see also Cacoullos and Papageorgiou, 
1983). Consequently for the Poisson mixture there is no need to check the condition (8) of Sapatinas (1995) 
to conclude about its identifiability. 

The above observation can be used to identify by the posterior mean numerous Poisson mixture models 
known in the literature as for example: Poisson-gamma of Greenwood and Yule (1920), Poisson-uniform of 
Bhattacharya and Holla (1965), Poisson-power function of Rai (1971), Poisson-Lindley of Sankaran (1970), 
Poisson-generalized inverse Gaussian of Sichel (1975) or Poisson-beta of Holla and Bhattacharya (1965). 

Observe that nbl(r, 1 - 0 )  is PSD(a, 0) with 

a ( k ) = ( r  + k - 1 )  
k and f(O) = (1 - O) -r. 

Since 

1 

k=0 k=l 

then Theorem 2 implies that any mixture of the form #XlO = nbl(r, 1 - 0 ) ,  r > 0, is identifiable by the posterior 
mean. This can be also derived directly from Theorem 1. Consequently, the correct version of Corollary 3 of 
Sapatinas (1995), is 

Proposition 4. I f  #XlO =nbl( r ,  1 - O )  and 

X + a  
E ( O l X ) = x  + a + b + r ,  a,b,r>O, 

then the prior distribution is B~(a,b) and X is a G H w ( - a , a  + b -  1 , -r)  rv. 

Denote by LSD(0) the logarithmic series model defined by the pmf 

O k 
p ( k ) -  k l o g ( 1 - 0 ) '  k = 1 , 2  . . . .  , 

where 0 E (0, 1 ). Observe that LSD(0 )=  PSD(a, 0) with a(k)= 1/k and f (O)= - l o g ( I - 0 ) .  Since the condition 
(6) is obviously fulfilled then Theorem 2 implies that for the mixture #xlo =LSD(0)  the prior distribution 
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of 0 is uniquely determined by the posterior mean E(O]X), which again allows to forget about checking the 
condition (8) of Sapatinas (1995) to conclude about its identifiability. 
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