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Abstract 

Straightforward generalizations of the classical Kotlarski characterization of normality using 
bivariate Cauchy distribution of quotients of independent r.v.'s are given. The symmet~ assump- 
tion in Kotlarski's result is omitted. Two larger families of bivarime distributions are considered: 
symmetric second kind beta and elliptically contoured measures. @ 1997 Elsevier Science B.V. 
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1. Introduction 

It is well known that for independent normal zero-mean r.v.'s X and Y the quotient 

X/ 'Y  has a symmetric Cauchy distribution. Beginning with late 1950s, many efforts 

were devoted to study different versions of  the converse problem. Some examples 
of  non-normal r.v. 's with Cauchy quotient were given, for instance, in Laha (1958, 

1959a) and Kotlarski (1960). In Laha (1959b) also some additional analytical con- 

ditions forcing normality were proposed. In order to identify the normal distribution, 

Seshadri (1969) assumed additional independence of  the quotient and the euclidean 
norm. These assumptions have been weakened in Wesolowski (1991). A bivariatc ver- 

sion of  Seshadri's result, featuring elliptically contoured distributions, has been gi~.en 
recently in Wesolowski (1992). 

A remarkable contribution to this field establishing normality via bivariate Cauchy 

quotients was given in Kotlarski (1967). 
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Theorem 1 (Kotlarski, 1967). Let Xl, )(2, )(3 be independent symmetric r.v.'s with 

X3 ~ 0 a.s. The random vector (X,/X3, X2/X3 ) has the bivariate Cauchy distribution, 

i.e. it has a density f o f  the form 

1 
f ( x , y )  = rt(1 + x  2 + y2)3/2 , x ,y  E R. ( l )  

iff X ' s  are normal. 

This was a consequence of Kotlarski's interest in problems of identifiability of  dis- 

tributions of independent r.v.'s by the joint distribution of linear forms. A considerable 
development here was given in Rao (1973). 

A starting point of  our interest in this characterization was a feeling that the symme- 
try assumption in Theorem 1 is somewhat technical. In the proof, as given by Kotlarski, 

the distribution of squares of  r.v.'s was identified as chi-square with one degree of free- 
dom. I f  one does not assume symmetry then the family of distributions of  r.v.'s with 
squares having the chi-square distribution is much wider. For details see, for instance, 
Roberts (1971). However, condition (1) is much more informative as it will be shown 
in the sequel. 

Notice that the symmetry assumption may be replaced by identity of distributions. 
This is an immediate consequence of the following observation due to Laha (1959b): 
for i . i .d.r .v. 's  X and Y, a distribution of the quotient X/Y  is symmetric iff X has a 

symmetric distribution. 
The following characterization of the normal law is given in Letac (1981). 

Theorem 2 (Letac, 1981). Let X = (X1,X2,X3) be an a.s. non-zero random vector 

with independent components. I f  X/] [XI] has a uniform distribution on the unit sphere 

in ~3, where I I" II denotes the euclidean norm, then X is Gaussian. 

It may be treated as another version of Kotlarski's theorem without explicitly giving a 
symmetry assumption. However, once again, it is hidden among other assumptions. 

While relaxing symmetry, we consider at the same time wider families of bivariate 
measures instead of the Cauchy law. In Section 2, the bivariate symmetric beta distri- 
bution of the second kind is investigated. Letac's theorem is obtained here as a special 
case of  a more general result. In Section 3, elliptically contoured measures are studied. 

Let us point out that in both the cases only partial identification is possible, i.e. not 
all distributions of  the r.v.'s involved are uniquely identified by conditions like (1). 
However, all the results are straightforward extensions of  Kotlarski's theorem. 

2. Quotients with the bivariate symmetric beta distribution of the second kind 

Denote by Gr(C~,fl, 7) the reflected generalized gamma distribution defined by the 
density 

f ( x )  -- 7fl~ ]xl ~>'-' exp -/~lxl: , x E [R 
2F(~) 
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for positive ~,/~, 7. This distribution was introduced in Plucinska (1966) for some mod- 

els concerning rheostat resistance (see also Johnson et al., 1994). For 7 1/7 = ~-, it 

is the normal distribution and for 7 = 7 ~ 1, it is the Laplace distribution. 
By SB2(7,7) denote a bivariate symmetric beta distribution of the second kind with 

the density 

f ( x , y )  = 72F(3~) [xy ]~;--i 
4 y 3 ( ~ )  (1 + Ix],' + lY [))3:~ ' x . y  ~ ~ (:2) 

for positive ~ and 7- It is a symmetric version of  the bivariate Burr-type XII distribution 
given in Takahasi (1965). For ,7 = 1/7 := ½, it is the bivariate Cauchy distribution. 

The sufficiency part of  Theorem 1 can be easily extended to 

Proposition 1. Let XL, X2, X3 be i.i.d r.v.'s havin,q a GA~,/LT) distribution. Then 
(XI/'P(3, X2/X3) has an SB2(~, 7) distribution. 

Proof.  It follows immediately from the formula for the joint density O of the quotients 

,q(x, y)  = f~  Z 2 f l ( x z ) f 2 ( y z ) f 3 ( z )  dz  , (3 ) 

where f ,  is the density of  X~, i =  1,2,3. Q 

The main result of  this section is the following: 

Theorem 3. Let X1, )(2, X3 be independent r.v. 's and X~ ¢ 0 a.s. The random vec,'or 

(XI/'X3, X2/X3) has an SB2(c~,7) distribution iff two of  the X ' s  have G,.(:~,[LT) dis- 
tributions and 7th power of  the absolute value of  the third o[ the X ' s  has a .qamma 
distribution n, ith the shape parameter ~ and the scale [L 

Obviously, Kotlarski 's theorem is an immediate consequence of  Theorem 3 since for 
the Cauchy case we have 

Corollary I. Let X~, X2, X3 be independent r.v.'s with X3 ¢ 0 a.s. Assume that (XI/X~, 
X2/'X3 ) has the bivariate Cauchy distribution with the density (1). Then two q[ the 
X ' s  are equi-distributed normal and square of  the third one ~[" the X ' s  has Z2(1) 
distribution (chi-square with one degree o['j?eedom). 

Before proving the result, let us formulate two other immediate consequences of  
Theorem 3. 

Corollary 2. Let Xl, X2, X3 be independent r. c. ' s  and suppose that )(3 is positive .,t.s. 
/ f  (X1,/)V3, X2/X3) has the bivariate SB2(:~, 7) distribution then X~ and ,~ hate" a 
common G,.(~:, [3, ~,) distribution jor some [~ > O. 

Corollary 3. Let XI, X2, )(3 be independent r.v. 's and suppose that )(3 is positive a.s. 
I f  (XI/X3, X2/X3 ) has the bivariate Cauchy distribution with the density ( I )  then XI 
and X2 are normal A/'(0, a 2) jor some c; > O. 
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Remark .  Let us now quickly show how Letac 's  theorem (Theorem 2) follows from 
Corollary 3. Since the X/I]Xll  is uniform on the unit sphere then the distribution of  
(XI/IX31, X2/IX31) is uniquely determined to be Cauchy with the density (1) (we know 
that it is the case i f X ' s  are normal). Hence, by Corollary 3, X1 and X2 are normal. That 
)(3 is normal, too, follows by symmetry of  the problem with respect to permutation of  
X ' s .  Yet another proof  of  the Letac theorem, based on the Deny theorem, was given 
in Rao and Shanbhag (1989). 

P r o o f  o f  T h e o r e m  3 Necessity. Define Y = ( Y l ,  Y2) = (In IX11 - In IX 3 I, In I)(21 - 

In I)(31). Then by Proposition 1 (Y1, Y2) d (ZI,Z2), where Z1 = In lUll - In ]U31, 

Z2 = l n [ U 2 1 -  lnlU31 and Ui, i ~ 1,2,3, are i.i.d. Gr(~,fi, 7) r.v.'s. The ch.f. ff o f  
In lUll has the form 

F(~ + it~7 ) 
O ( t ) -  , t ~  

F ( ~ ) flit,"7 

Consequently, for the ch.f. ~b of  Y we have 

F(~ + is/7)F(~ + it/7)F(a - i (s + t )/7) 
q S ( s , t ) =  F3(7 )  , s, t E ~ .  

So it does not vanish. Now by Lemma 2 in Kotlarski (1967) it follows that the [Xl's 
have the same distribution as rescaled ]U I 's. Further (2) implies that a scale is common 
for all ]Xl's. Thus IX,-] ~', i = 1,2, 3, have the same gamma distribution with parameters 
fl and ~, where fl is a positive number. Without any loss of  generality we can assume 

f l=l .  
Consequently, by Theorem 1 from Roberts (1971), Xi has a density 

f i ( x )  = hi(x)lxl ~ -~ exp(-[xl~ ' ) ,  x E ~, 

where hi(x) + h i ( - x )  = 1, x ~ ~, i =  1,2,3. 
Denote 

F(3~)  
b ( x , y )  ~- 47(1 + Ixl~' + lyl'/) 3'~ ' x , y  E ~. 

Then by (3) we have 

f hl(xz)h2(yz)h3(z)lz] 3~' le [zl:(l+lx[:+lYl:) dz = b ( x , y ) .  (4) 

Observe that b(x, y )  does not depend on the sign o f x  and y. Hence (4), upon changing 
z to - z  and then x to - x  and y to - y ,  takes the form 

Now we 

hl(xz)h2(yz)h3(-z) lz l  3~' - le- lz l  (l+lxl: +lYr:') dz = b (x, y )  . 

add (4) and (5) to obtain 

ht(xz)he(yz)[zl 3~'' -le-lZl:°+lxl:+lYl:) dz = 2b (x, y ) .  

(5) 

(6) 
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Notice that (6) is satisfied for hi(x) : i l .,:~, i : 1, 2, 3. Next define ,qi(x) : h , (x)--  ~, 

x c R, i = 1, 2, and notice that they are odd functions. Consequently, (6) implies 

./~ .ql(xz)g2(yz)lz] 3~::' -Le-I"t ~l+l~l "lr[:)dz 0 m 

For an arbitrary (but fixed) w put y = wx in the above equation and consider any 

positive x. Since :lt(xz)g2(yz) is even in z then the above equation yields 

~ :/l(XZ),q2(WrZ)Z3~',' - l e - :  I lt.~ ( lq  Iwl >) dz 0 
m 

• 0 

Upon changing the variable u = zx and denoting s = x - :  we get 

/(i c'k 
.ql(u)g2(wu)u3:,::-le-, (I,Iw[ ~e ' "  du = 0 

for any s > 0. This indicates that a Laplace transform is equal to zero. Hence, ~,tl(x) 
g2(a~r) = 0 a.e. in R. Since w is arbitrary then it follows that for some versions of  ~/~ 

and 02, ~,tl(x)g2(y) = 0 for any real x and y. Consequently, one of  these functions is 
identically zero• 

Now observe that we can renumber the X ' s  and still the joint distribution remains 

the same, i.e. SB2(~,7). Consider, for example, (XI./'X2, X3/X2). Denote its density 

by f .  Then for f given in (2) it follows by (3) that 

,[(.v,y) f z2fl(xz)f3(yz).f2(z)dz:ly] 3.~u2.[, (yU).f2 ( ~ u ) f 3 ( u ) d u  

for any (x, y )  ~ R2. 

Consequently, we can repeat the above argument to get Oi(x)o/(y) 0 for any real 
x and y and for any i,j = 1,2,3, i J - j .  Hence, two of  0 's  must be zero. 

Suf/icienc3,. Assume that :{3 is non-symmetric. Then it suffices to prove that 

.~[.zl3:~;'-lh3(z)e-I~l(l'l"~l:+l':!)dz=4b(x,y), x,)'E R. (7) 

Observe that 

.~,z,3~"-lh3(z)e-I"l(l+l'l~-'Yl)dz=j[,z,3:~;-Ih3(-z)e I:lll~lr' + l ) ! ' d z .  (8) 

By the definition of  h3 upon adding both sides of  (8) we obtain easily (7). Similar 

argument holds if XI or ):2 is non-symmetric. ~3 

3. Quotients with bivariate elliptically contoured distributions 

Let us recall that a real random vector (Xi,)(2 ) has the central elliptically contoured 

(c.e.c) EC(a~, c~, p) (al > 0, a2 > 0, IPl ~<1) distribution iff its ch.f. at any point 
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(s, t ) E ~2 is a function o f  the quadratic form a~s 2 -  2pal a2st + c~2t 2 (for ai = or2 = 1, 

p -- 0 it is called spherically invariant, s.i.). I f  only the distribution has no atom in 
the origin then the quotient follows the symmetric Cauchy law as it was observed 

in Szablowski (1986). See also Philips (1989) for a more general result involving 

spherical matrix distribution. Some versions of  the converse result were given in Letac 

(1981) and Wesolowski (1992). 
On the other hand, the bivariate Cauchy is c.e.c. All these facts suggest that an 

extension of  Kotlarski's theorem in this direction might hold. This is confirmed below. 

Let X :-- (Xl , ) (2)  have a non-degenerate c.e.c, distribution. Then it is well known 

(see, for example, Fang et al., 1990) that there exist: a 2 × 2 matrix A, a non-negative 

r.v. R and independent o f  it bivariate random vector Z --- (ZI, Z2) distributed uniformly 

on the unit sphere, such that X d RAZT" All these quantities are uniquely determined 

by the distribution o f  X. On the other hand, if Y = (Y1, Y2) has an c.e.c, distribution 

and R is a r.v. independent of  Y then X -- (Xl , ) (2  ) ,a R Y  is also c.e.c. In this 

section, first, we consider a converse problem. 

Suppose that X = (Xi,)(2 ) is c.e.c. Let us also assume that X d R Y ,  where R is 

a non-negative r.v. independent o f  Y = (YI, Y2). Is Y c.e.c.? 

As an answer, we have the following theorem. 

Theorem 4. Let  X ~ 0(1, )(2 ) d R Y ,  where R is a posit ive r.v. independent o f  

Y = (Y1, Y2 ), be c.e.c. Then Y is c.e.c, i f  either o f  the fol lowing conditions hold: 

(i) ER it ¢ O f o r  all t E ~; 

(ii) E[IX[I ~ < oo f o r  some ~ ~ 0 (G. Le tae  private communication).  

As an immediate consequence o f  Theorem 4 we have the following characterization 

o f  normality: 

Corollary 4. Let  X1, X2, X3 be independent r.v. 's with X3 positive a.s. Suppose that 

(X1/X3, X2/X3) is s.i. and (i) EX~ t ¢ Offer all t E ~ or (ii) EX~ < cx~ Jbr some ~ ¢ O. 

Then X1 and X2 are normal .:V(O, a 2) f o r  some a > O. 

Proof of Theorem 4. It is easy to notice that, upon taking a suitable linear transfor- 
mation, instead of  c.e.c, measures it suffices to consider s.i. distributions. Take now 

any s C ~2 and some complex z (z = it for any t C ~ under (i) or z = t for any 
t E (0, g) ((~, 0)) under (ii). Then by independence o f  R and Y and the definition o f  X 

we have 

(exp [(s ixz)   (exp E(" Rz,, l,z) 
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On the other hand, additionally using the fact that X,/I,X[] and [IXI! are independent, 
we obtain 

h ( s , z ) = E  (exp  E(s, ~ ) 1 )  E (I'X]I~) 

Finally, since in both cases (i) and (ii), we can cancel ER:, it follows that 

E (exp  [ ( s ,  ~ ) 1  I 'YII:)  = E  (exp  [ ( s , - ~ ) ] ) E ( I , Y I I ~ - )  

for all z it, t c ~ in the case (i) and for all z = t, t ~ (0, ~) or (~, O) in thc case 
(ii). Hence, r,,,"llrll and IIYII are independent. Consequently, Y is s.i. I] 

Now we use the above result to give another straightforward extension of  Kotlarski's 
theorem in the case of  s.i. quotients for independent parent r.v.'s. 

Theorem 5. Let Xj, X2, Z be independent r.t:.'s and Z .~ 0 a.s. Suppose that the 
distribution o1 (X /7, Xz /Z)  is s.i. and (i) EtZ! it ¢ 0 for  any t c ~ or (ii) E!Z] ~ < 
,~c, j b r  some ~ ¢; 0. Then the X 2,s have a Z2(1 ) distribution, and one q[ the X's  is 
H O F I ~ ' I L I [ .  

Proof.  One can assume that Z is symmetric. To understand this denote the value of 
the ch.f. of(X1/Z,  X2/Z) at the point (s, t ) E R 2 by qS(s 2 + t 2 ) ,  i.e. 

q~(x 2 + 12) = exp is + it d F z ( z ) d F x , ( x ) d F x e ( y ) ,  (9) 

where Fz, Fx,, Fx2 are d.f.'s of  Z, Xi, X2, respectively. Now let us change the z to 
--z in (9). Then 

7X)  • "YO ~ C  

exp ( Xis_ + it ~'-) d(l F z ( - z ) ) d F x l ( x ) d F \ , ( v )  

since one can substitute - t  for t and - s  for s (q~ is even with respect to s and t). 
Now, upon adding (9) and (10) divided by 2, we conclude that Z can be replaced by 
some r.v. with a distribution function ~-(Fz(z) + 1 - F z ( - z ) ) ,  i.e. by a symmetric one. 

Hence, assume now that Z is symmetric. Let us notice that ~T(sgn(Z)Xi, sgn(Z))(2) 
is s.i. and that sgn(Z) and ]Z I are independent since Z is symmetric. Hence, Theorem 
4 ensures spherical invariance of (sgn(Z)Xi, sgn(Z)X2). Let f ( s  2 + t  2) be its ch.f. and 
denote the ch.f. of  X/ by qSi, i = 1, 2. Then 

.f(s 2 + t2 ) qbl(s)q~ 2(t ) + qb i(-s)qb 2 ( - t )  = s, t ~  ~, ( l l )  
2 

since P ( s g n ( Z ) =  ± 1 ) -  1 - -  5 .  
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Now ( l l )  implies Req~i(t ) = f(t2), i = 1, 2. Hence the relation (11) takes the 
form 

f ( s  2 +t  2 ) = f ( s 2 ) f ( t  2) -q l ( s )q2 ( t ) ,  s, t E ~ ,  

where tli = ImqSi, i = 1, 2. Since f ( s 2 +  t 2) and f ( s  2) are even with respect to s 

then we deduce that q i(s)q2(t) = 0 for all s, t ~ R. Consequently one of  the r/'s 
is a zero function and we have f ( s  2 + t 2) = f (s2) f( t  2) for all s, t E N. This is 

a version o f  the Cauchy equation with f ( 0 )  = 1. It is well known that in such a 
case f ( s  2) = exp(-a2s2) ,  s ~ R. Notice that the condition Re Oi(t ) = exp(-cr2t 2) is 

equivalent to a-2Xi 2 d Z2(I) for some a > 0, i = 1, 2 (see, for example, Roberts, 

1971). [] 

Observe that Corollary 1 is an immediate consequence o f  Theorem 5 since the 

Cauchy distribution is s.i. and it allows to renumber the r.v's involved in the quotients. 

To have a kind of  a converse of  Theorem 5 symmetry of  Z is needed. 

Theorem 6. Let Xl, X2, Z be independent r.v.'s such that both the X2's are Z2(1) 
with a scale a 2, one of the X's is normal .~f'(0, a 2 ) and Z ;~ 0 a.s. is" symmetric. 
Then (Xj/Z, X2/Z) is s.i. 

Proof. Without any loss of  generality, we can assume that a = 1 and Xi is normal. 

Then the ch.f. 4} o f  (XI/Z, X2/Z) has the form 

= f ( s 2 ) . ~  (i~v) e x p ( @ )  dvdFz(z), q~(s, t) , f~ -  exp - ~ z  2 h (y )exp  
V 2 J ~  ~ " 

where h(y)+ h( -y )  = 1. Now the result follows once again by changing variables y 

to - y  and then z to - z  (since Z is symmetric) and further on adding both sides of  

the original and the resulting formulas. [] 
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