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Abstract 

Factorizable distributions are investigated in the context of decomposibility and sphericity. Also a version of the 
Lindeberg limit theorem for 2-factorizable arrays is obtained. 
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I. Introduction 

One of the most prominent results in characterization of probability distributions belongs to Darmois 
(1953) and Skitovitch (1953): I f  X = ( X  t . . . . .  X , )  is a random vector with independent  components  such that 

linear f o r m s  LI  = a , X t  + " • " + a , X ,  and L2 = b t X t  + • • • + b , X ,  are independent  then the X ' s  present in 

both l inear f i ,  rms are Gaussian. This result gave rise to intensive studies in the field of analytical theory of 
linear statistics. This is essentially the main subject of the monograph of Kagan et al. (1973). One direction 
was connected with dimension of the problem see Ghurye and Olkin (1962) for multivariate version, 
Krakowiak (1985) for a Banach space version and Feldman (1988) for a group version. 

In Linnik (1956), strong relations between the Darmois-Skitovitch theorem and the Cram~r theorem on 
decomposition of the normal law were revealed. This line in multidimensional case was continued in Kagan 
(1987, 1988a, b) leading to some analytic weakenings of the concept of independence. A culmination of these 
investigations is a notion of factorizable measures, originally named 2 , .  k distributions, introduced in Kagan 
(1988b). 

* E-mail: wesolo(~i:alpha.im.pw.edu.pl. 

0167-715297/SI7.0() (i 1997 Elsevier Science B.V. All rights reserved 
Pll S01 67-7 I 52(96)0009 I-0 



3 3 0  J. Wesolowski " Stati.gticx & Probabil i ty Letters 32 (1997) 329-337 

Definition 1. A random vector X = (X~ . . . . .  X,,) (or its distribution) is k-factorizable (belongs to the class 
-(/,.k) if its characteristic function 05 has the form 

05(tl . . . . .  t,) = H R,, ~ ,,(t,,, . . . .  ti~) (I) 
1 "~il< <i~,~n 

for any (t~ . . . . .  t,) ~ [~", where R~, ~, is a continuous complex-valued function such that R 6 . ~, (0 . . . . .  0) = 1 
for any 1 ~<i~ < .-. <ik<~n.  

The random vector X (or its distribution) is locally k-factorizable if the representation (I) holds in some 
neighbourhood of the origin. 

In Kagan (1988b) some nice properties of ~,.k families were discovered and interesting examples were 
provided. One of the most intriguing observations, given there, is contained in the following. 

Proposition 1. I f  X is a k-factorizable random vector with all k-variate maryinals Gaussian then X is also 
Gaussian. 

The main result of Kagan (1988b) was a new version of the Darmois-Skitovitch theorem for factorizable 
linear forms. Its proof was based on a solution of a generalized Cauchy equation (see Lemma 1 below). An 
abstract analogue of this result has been given in Lisyanoy (1995), recently. 

The investigations were continued in Wesolowski (1991a), where a formula expressing the characteristic 
function (ch.f.) o fa  k-factorizable measure in terms of ch.f.'s of all its k-variate marginals, was given. We recall 
it here since it will be applied in the sequel. 

Proposition 2. I ra  random i,ector (X t . . . . .  X,)  is (locally) k-factorizahle then its c h f  4) has the fi~rm 

05(tl . . . . .  t,) = H 05i . . . .  i,(t~,, . . . .  t, ) (2) 
r = t  l~i l"::  . . < i , ~ n  

in some neiyhbourhood of  the origin, where 

a,.k.r = ( - 1  
i = o  i 

and 05i ... . .  i, denotes the c h f  o f  the marginal (X 6, . . . .  Xi) ,  1 ~< il < -.. < ik ~< n, r = I . . . . .  k. 

It can be easily seen that Proposition 2 is a straightforward extension of Proposition 1. 
The formula (2) was then applied in investigating relations between the ~ , .  2 classes and the Gaussian 

conditional structure of the second order in Wesolowski (1991b). Central limit problem for factorizable 
arrays was studied in Wesolowski (1994a, b). A comprehend review of all those results is given in Wesolowski 
(1993). A related concept of (n, k)-equivalence, being an analytic weakening of equidistribution, was introduc- 
ed and studied in Kagan (1989). 

This paper is a further contribution towards understanding the analytic notion of factorizability. In 
Section 2 we study first some problems connected with decomposition of linear forms in factorizable r.v'.s. 
We are interested in the degenerate and Gaussian cases. An example provided there gives a lower bound for 
the dimension of the problem. The section is closed with a characterization of the Gaussian distribution by 
sphericity and factorizability. The main tool used in that section is the solution of an extension of the Cauchy 
functional equation given in Kagan (1988b). Section 3 is devoted to a central limit theorem (clt) of the 
Lindeberg type for rowwise 2-factorizable arrays. This is an analogue of the Lyapounov clt for factorizable 
distributions, obtained in Wesolowski (1994a), and considerably refined in Wesolowski (1994b). Here our 
arguments are based on thc formula (2). 
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2. Distributional properties 

We begin with a technical result, ment ioned in the Introduction,  being the core of  most  of  the arguments  
used in this section. It deals with a kind of the Cauchy equation and was obtained by Kagan (1988b). 

Lemma I. Let  m > 1 be an inteyer. I f  a continuous (in a nei,qhbourhood o f  the oriyin) complex  funct ion  ~ defined 

on R sati,sfies f o r  some ~: > 0 and I tll < ~: the equation 

~9(altl + ... + a,,t,,) = ~" pj( t l  . . . . .  t j - i  . . . . .  t j+l . . . . .  tin), (3) 
j = l  

where al "" a,. ~ O, are some real constants  and p's are some complex  func t ions  on ~ -  1. Then  for  some c5 > O, 
@(x} is a polynomial  o f  the order not exceedinq (m - 1) for  Ixl < ~. 

This result was the main tool of the proof  of  the version of the Darmois-Ski tovi tch  theorem given in 
Kagan (1988b). It will be shown in the sequel that  other  interesting properties of  factorizable distributions 
can be deduced by means of  Lemma 1. 

2.1. Decomposi t ion problems  

We begin with some decomposi t ion  problems, i.e. questions of the following type: Take an n-dimensional 
r andom vector X and consider its m-dimensional linear t ransformation L = AX T, where A is an m × n matrix 
with real entries. Assume that the distribution of  L is known. What  is the distribution of  X?  It is trivial, that if 
rank(A) = n the distribution of  L determines that of  X. Otherwise, even with a strong assumption of 
independence of componen ts  of  X, it is usually a difficult question and its solution is known only for some 
special distributions of  L. An example of  a non-trivial result is the Cram6r theorem on decomposi t ion  of the 
normal  law (the case n > m = 1). Other  results on reconstructing the distribution of  X from that of L can be 
found, for instance, in Reiersol (1950) or  Rao (1966, 1973). On  the other  hand, it is quite easy to observe that 
any degenerate distribution has only degenerate independent components ,  i.e. i fX~  ~ , .  1 and L = L1 = a a.s. 
(a constant)  then X is degenerate, if we do not assume independence of  components ,  then it can easily seen 
that the result does not hold. Now we will study the same question for factorizable X. 

Let X E ~ , . k  and assume that L = a a.s., where a ~ It~" is a given point. We want to determine the 
distribution of  X. We begin with the following, more general, negative result. 

Proposition 3. Let  A be an (m - I) x (m + 1) (m > 11 matrix .  Then  there exist  random vectors, X,  Y e 5/,. + i. m 

such that A X  T and A y r  have the same distribution, while X i  and Yi have different distributions, i = 1 . . . . .  m + 1. 

Proof. Only  the case m = 2 is considered since a similar argument  holds for any m > 1. Take some 
X = (X~, X2, X3) e cj3.2. Let U = (U,,  U2, U3) be a r andom vector with independent components  such that 
X and U are independent.  Let A = ( a l , a a , a 3 ) .  Define Y =  (Yl, Y2, Y3) by YI = X~ + a 2 U  3 - a 3 U  2, 

Y2 = X2 + a3 U~ - a i U3, Y 3  = X 3 + al U 2  - a2 Ut. Then, obviously, A x T  = A YT.  

Observe that the ch.f. ~bv of  Y has the form 

~v(t) = Ee iu' Y' +t, r, t., r O = EeiU,~x, +.: t : , -~t , :)- t :~x:  + ~ v , - . ,  c.o+t,~x,+.,, L',-~:t,,)~ 

= (bx(t)c~t.(a3t2 - a2t3, am t3 - a3t l ,  a2tl  - -  a l  I2 )  

for any t = fit,  t2,/3) E ~3, where 4'x, ~bt, are ch.f 's of X, U, respectively. Now, by independence of components  
of U and 2-factorizability of  X, it follows that YE:.~J,  3 . 2  . Observe that V = ( a 2 U 3 - a 3 U 2 ,  

a 3 U I - a I U 3, a I U 2 - a 2 U1) is a 2-factorizable, non-degenerate,  r andom vector such that A V T = 0. [ ]  
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However if the number  of linear forms is increased then a decomposi t ion problem for degenerate 
distribution may have a unique solution. 

Theorem I. Assume that X = (X  t . . . . .  X , , )  ~ ~ , , . , , _  1. If, f o r  an (m - 1) × m m a t r i x  A of the rank (m - 1) the 
random vector L = A X  T has a degenerate distribution, then X is also concentrated in a point. 

Proof. Assume that L = b a.s. for some point b = (ha . . . . .  b, ,_ , )E R " - I .  Then, since rank(A) = m - 1 ,  we 
can solve this systems of linear equat ions to get 

Xi  : 9~i + f l iX~,  i = l . . . . .  m - l ,  

where .ztj, f l j , j  = 1 . . . . .  m, are some real numbers. Hence, the ch.f. ~bx of the X has the form 

C~x(t) = E exp tj(~j + f l jXm)  = (~m f l j t j  e i:L~tj 
1 j = l  j = X  

for any t = (t~ . . . . .  tm) e I~", where 4,,, is a ch.f. of X,,. On  the other hand, by (!), 

~x( t )  -~- fl ~ t j ( f  I . . . . .  l j . . . l ,  t j+l  . . . . .  tin), 
j = l  

where ffj = R x . . ~ -  ~,j+ 1 . . . . . .  j = 1 . . . . .  m. Hence, the above two equations, by Lemma 1, imply that X,, is 
a normal  or degenerate r.v. (It follows immediately from the Marcinkiewicz theorem.) Consequently,  the joint 
distribution of  X is Gaussian or degenerate. However  in the Gaussian case AX T has to be non-degenerate 
Gaussian,  too. Hence, the only possibility is the degeneracy of the distribution of  X. [ ]  

Observe that Theorem 1 is a straightforward and generalization of the trivial independent case, which 
follows by taking m = 2. However,  the decomposi t ion problem for m -  1 degenerate linear forms in 
n-dimensional, n > m, (m - 1)-factorizable r andom vector remains open. 

Gaussian decomposi t ion problems are much more complicated. Here we present a contr ibut ion involving 
factorizable measures with some marginals being Gaussian. The result may  be also treated as a complement  
to Proposi t ion 1. 

Theorem 2. Assume that X = (X~ . . . . .  X , )  is a k-factorizable random vector for  some k < n with all 

( k -  1)-dimensional marginals being Gaussian. Assume that A is a k x n real matr ix  having all its k × k 

submatricies o f  ful l  rank. I f  the linear fi~rm L = (Ll  . . . . .  Lk) = A X  T has a Gaussian distribution then X is 
Gaussian. 

Proof.  Consider the ch.f. q~L of L. Obviously,  

4~L(t) = Ee il''ax') = Ee ilAT''x) = C~x((al, t) . . . . .  (a,, t)) 

for any t = (tx . . . . .  t~) e ~k, where ~bx is the ch.f. of X and ai is the ith column of  the matrix A, i = 1 . . . .  , n. 
F rom (2) we have 

l-I (Pi . . . . .  i , ( (aq, t )  . . . . .  (ai, , t))  

= 4 x ( ( a l , t )  . . . . .  (a , , t ) )  l-I ~,  . . . . .  , ( ( a q , t )  . . . . .  (ai,,t)) 
r = l  l ~ i t <  .i,<~n 
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in a ne ighbourhood of the origin, where q~ . . . .  ~, is the ch.f. of the marginal (X,., . . . .  X 0, 1 ~< i~ < ..- < i, ~< n, 
r = 1 . . . . .  k. Observe  that  the first factor  on the r ight-hand side of  the above  equat ion is a ch.f. of  some 
Gauss ian  measure  (since it is the ch.f. of  L). Since all (k - 1)-dimensional marginals  are Gauss ian  then the 
r ight-hand side has the form exp(Q(t~ . . . .  , tk)) and it is a ch.f. since the left-hand side is a ch.f. Consequent ly ,  
the proper ty  of  the ranks of the submatr ices  of A implies that  the product  of ch.f.'s of  all k-dimensional  
marginals  of  the X is a Gauss ian  k-dimensional  ch.f. Now by the mult ivar ia te  Cram6r  decomposi t ion  
theorem it follows that  all k-variate  marginals  are Gaussian.  Hence, the result is a consequence of 
Proposi t ion 1. [ ]  

Obviously ,  general Gauss ian  decompos i t ion  prob lem for factorizable measures:  is it true for X ~  2 , ,k  that  
the normal i ty  o f A X  r for some k × n matrix,  implies normal i ty  of X (possibly with some assumpt ion  on the 
matr ix  and with no prior  condi t ions on the marginals): remains open. 

2.2. Spherici t  3' 

Now we consider  spherical measures.  An n-dimensional  r andom vector  X (or its distr ibution) is said to be 
spherical (or spherically invariant)  if its ch.f. q~x has the form 

4~x(t) = q~( t f  + . . .  + t~.) 

for any t = (tl . . . . .  t , ) e  R", where ~, is some function. In this case we write X e  Sl(n).  Spherical, more  
generally, elliptically contoured,  measures  are a subject of intensive studies in recent years as a useful and 
non-trivial  general izat ion of Gauss ian  mul t ivar ia te  distr ibutions - see the m o n o g r a p h  of Fang  et al. (1990). It 
is well known that  a spherical r a n d o m  vector  with independent  componen t s  has to be Gauss ian  - see 
T he o rem 4.11 in the monograph .  This can be stated as: I f X e  S I ( n ) ~ , .  1 then it is Gaussian.  We want  to 
extend this result to factorizable measures  of  any order  k. Since any k-factorizable measure  is (k + l)- 
factorizable, k < n, then it suffices to consider  the case k = n - 1. 

Theorem 3. I f  an (n - l ) - factorizable  random vector X belony to SI(n) then it is Gaussian. 

Proof. Both the assumpt ion  imply that  

~(t~ + ... + t 2) = f i  R j ( t l ,  . . . , t j - l ,  t j+ ,  . . . . .  t,), 
) = t  

(4) 

where the ch.f. of  X has the form C~x(t)= t~(t 2 + ... + t2), (tl  . . . . .  t , ) ~  •". It is not difficult to observe, 
applying exactly the same a rgument  as in the original proof, that  L e m m a  I holds true also if Eq. (3) holds 
only for IIt ]l < ~: with positive components .  Then ~O is a polynomial  for 0 ~< t < 6. Hence, considering only 
positive t 's  in 14) upon taking logar i thms for t 's close to zero, we conclude by L e m m a  1, that  ~x has a form 
exp(Q(t  i . . . . .  t,)) in a ne ighbourhood  of the origin. Consequent ly,  it can be extended to the whole space and 
by the Marcinkiewicz theorem it follows that  X is Gaussian.  [ ]  

3. L i m i t  t h e o r e m  

In Wesolowski  (1994a) the following version of the L y a p o u n o v  central limit theorem for factorizable 
measures  was obtained.  
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Theorem 4. Let X ,  = (X, .  1 . . . . .  X , . k  ) be a zero mean 2-factorizable random vector, n = 1, 2 . . . . .  and k,  ~ oc 
while n --, ~ .  l.f 

k. 

lim ~ EX, .~X, .~  = a 2 > 0, (5) 
n~m i . j= l  

k. 

lim k,  Z EX2.~ = r2, (6) 
n ~  i = 1  

k.  

l i m k ,  ~ E I X  3 ..i[ =0 ,  (7) 
n ~ t  i =  1 

then S. = X . .  ~ + ... + X. .k .  converges in distribution to the normal law with the mean zero and the variance 
a2(S~ ~ .,if(O, a2)) as n --* .~. 

Then the result was considerably strengthened in Wesolowski (1994b), were rowwise k-factorizable arrays 
were considered and no version of the technical condit ion (6) was needed. Here we are interested in the 
Lindeberg version of the above result, i.e. we replace the Lyapounov  condit ion (7) by its Lindeberg analogue 

k.  

lim k.  ~ EX2..~I(IX..~I > ~) --0, (8) 
? 1 ~  i = 1 

where t: is a positive number. 

Theorem 5. Let  X ,  = (X, .  l . . . . .  X, .k,)  be a zero mean 2-factorizable random vector, n = 1, 2 . . . . .  and k,  ~ ,~ 
while n ~ ,zc. I f  the conditions (5), (6) and (8) for  any e > 0 hold then S, ~ ~V'(0, a2)) as n ~ ~ .  

Before we give the proof  of Theorem 5 let us formulate and prove the following technical, but general 
inequality, which will be used in that proof. 

Lemma 2. Consider r integrable r.v.'s X and Y. Then for  an), F, > 0 

E ( I X  + Y I ' I ( I X  + YI > e)) <~ 2 ~ [ E ( I X r I ( I X l  > ~/2)) + E ( IY[ ' I ( I  YI > ~:/2))3. (9) 

Proof of Lemma 2. It is well known that for any real numbers a, b and any natural  r the following inequality 
holds: la + bl r ~< 2r -~( la l '  + Ih[r). Additionally, I ( I X  + YI > ~:) ~< I ( IXI  > e/2) + I(I YI > e/2) a.s. Then 

E ( I X  + Y I ' I ( I X  + YI > *:)) ~< 2'-~[E(IXI'/(IXI > ,:/2)) + E ( I X I ' I ( I  r l  > c/2)) 

But 

+ E({ Y I ¢ I ( I X I  > e,/2)) + E(I Y I'I(I YI > c/2))]. 

E ( I X I ' I ( I  YI > ~,/2))= E ( I X I r I ( I X I  > ~:/2,1YI > ~,/2)) + E ( I X I ' I ( I  YI > ~:/2 >/IX[))  

<~ E ( I X I ' I ( I X I  > ~:/2)) + E(I Y I'I(I Y I >  ~:/2)) 

since 

E ( I X V I ( I  YI > t:/2 ~> IXI)) ~< E([ YI ' I ( I  YI > c/2)). 

Similarly, 

E ( I X I ' I ( I  YI > t:/2)) ~< E ( I X I r I ( I X I  > ~,/2)) + E(I YI ' I(I  YI > c/2)). 

Now to obtain (9) it suffices to put both the inequalities in (10). [ ]  

(1o) 
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Proof  of Theorem 5. Observe that the assumption (5) and the Tchebyshev inequality yield 

k. 

P(ISn[> }')<~}'-2 E E(Xn, iXn,j )'-*}--2ff2 
i , j =  1 

as n ~ 7:,. Hence, the sequence of distributions of S,, n = 1, 2 . . . . .  is tight. By the P rokhorov  theorem, each 
subsequence contains a weakly convergent  subsequence. Consequently,  without  loss of generality, we can 
assume that S, converges in distribution. To prove that the limit distribution is no rmal ,  I "(0, 0 -2) it suffices to 
show that 

iim E ( e x p ( i t S , ) ) = e x p ( - ~ )  (11) 

in some ne ighbourhood  of  the origin• 
Consider  independent r.v.'s Y.,j, j = 1, 2 . . . . .  k~, such that 

Y..o-l~ko+i o= X..i ,  j , i = l  . . . . .  k., 

n -- 1, 2 . . . .  It is not difficult to observe that 

k~ k~ 

E(Y~,) = k. ~ E(X2~,i)~z 2 
i = 1  i = 1  

and for any ~: > 0 

~. E(¥d,I(I Y..,[ > g)) = k, ~ E(X~.,I(IX~.,I > c))--+0. 
i - I  i = l  

• ke Y . . i  ~ . V(O,r 2 Consequently,  by the classical Lindeberg theorem (for rowwise independent arrays), y.~'__ t ) as 
n ~ x .  Hence, 

lim q~.:dt = exp - (12) 
n ~  J l .-" i ~ < k~  

for any real t. 
Define a new collection of independent r.v.'s Z.:~.j, l <~ i < j  ~ k.. such that 

Zn:i.j a X,.i + Xn.j 

for any n = 1, 2 . . . .  Since 

k. 

~. E(x.., + x n . f  = (k. - 2 )  y~ E(M.,)  + 
I < . : i < j ~ k .  i = 1  

then by (5) and (6) 

lim ~ E(Z2,.i.fl = r 2 + a 2. 
n ~ , l  1 ~< i < j -<. k~ 

On the other  hand, by Lcmma 2, we have 

kn 

Y" E{x . . ,xn .A 
i , j = l  

(13) 

E((X..i + X,.j)2 I(IX,.i  + X..jl > v)) 
i < j ~ k .  

2 y. [E(X2.,,I(IX,.,I > t:!2)) + E(XZ,.ff(IX.,jl > r,/2))] 
I < ~ i < j < ~ k ,  

= 2(k~-I) y" E(x~..,I(IX..,I > r./2)). 
1 < . i . < . k  n 
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Consequently, (8) implies 

lim ~ E(ZZ..~.~I(IZ.:~.jl > r./2)) =0. (14) 

Now formulas (13) and (14) via the classical Lindeberg theorem imply 3-, ~ ~<./~ k.Z.:~,./ ~ ,.~ "(0, r 2 + a2). 
Hence, 

t2(~2 + a z ) )  (15) 
lim ]--1 ~b.:i,j(t, t) = exp 2 

n ~ x  1 - < . i < j ~ k .  

for any real t, where q~,:~.j is the ch.f. of (X,.i, X,.~), 1 ~< i < j  ~< k,. 
Formulas (12) and (15) imply that there is a neighbourhood V of the origin such that for sufficiently large 

N, n > N, c~..i(t), 1 <~ i <~ k,, and 4~.:~.~(t, t), 1 ~< i < j  ~< k,, are non-zero for t • V. Hence, by (2), for k =2 we 
have 

I ll<.i<j~k~P.:i.j(t,t) E(exp(itS.)) = 
(1- |  1 ~ , ~  k. 4 ' . : , ( t ) )  k" - 2  

for t • V and n > N. Applying (12) and (15) to the above formula we conclude the proof by obtaining the 
relation (1 !). [] 

The general factorizable Lyapounov-type clt obtained in Wesolowski (1994b), being an extension of 
Theorem 4, was possible due to a new version of the classical Lyapounov clt for rowwise independent arrays 
given in that paper. This allowed not only to replace 2-factorizability by k-factorizability but also to omit the 
technical condition (6). Unfortunately, such an approach under the Lindeberg-type condition seems to be 
difficult and the general factorizable Lindeberg-type clt remains an open problem. 
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