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SUMMARY. Let {Xn, n ≥ 1} be a sequence of independent and identically distributed ran-

dom variables with absolutely continuous distribution function. Suppose XU(k), k = 1, 2, . . .

be the upper record values of {Xn, n ≥ 1}. A complete solution of the problem of determining

the distribution by the linearity of the regression of XU(m+2) with respect to XU(m) is given.

It is shown that the class of possible distributions consists of exponential, power function and

Pareto type. Equivalently, the best unbiased predictors of XU(m+2) given XU(m) is linear

only for this class.

1. Introduction

Let {Xn}, n ≥ 1, be a sequence of independent and identically distributed
(i.i.d.) random variables (rvs) with absolutely continuous (with respect to
the Lebesgue measure) cumulative distribution function (cdf) F. We will de-
note by f the corresponding probability density function (pdf). Set Yn =
max(X1,X2, . . . ,Xn) for n ≥ 1. We say Xj is an upper record value of {Xn}
if Yj > Yj−1. By definition X1 is an upper record value. In this paper we
will call the upper record values as record values. The indices at which the
record values occur are given by the record value times U(n) where U(1) = 1
and U(n) = min{k|k > U(n − 1),Xk > XU(n−1)}, n > 1. We will define
R(x) = −lnF (x), F (x) = 1 − F (x). The conditional pdf of XU(m+k) given
XU(m) is (see Ahsanullah (1995)) as given below :
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fm+k|m(x, y) = 1
Γ(k) (R(y)−R(x))k−1f(y)(F (x))−1, −∞ < x < y < ∞

= 0, otherwise ,
. . . (1.1)

We will denote by EXP (λ, γ), the shifted exponential distribution distribu-
tion with the pdf as given in the following form :

f(x) = λe−λ(x−γ), x > γ, λ > 0
= 0, otherwise

. . . (1.2)

Similarly, we denote by POW (θ, µ, v) the power function distribution with the
pdf as of the following form :

f(x) = θ(v−x)θ−1

(v−µ)θ , −∞ < µ < x < v < ∞, θ > 0,

= 0, otherwise.
. . . (1.3)

For the Pareto distribution, PAR(θ, µ, δ), we take the following pdf :

f(x) = θ(µ+δ)θ

(x+δ)θ+1 , θ > 0, x > µ, µ + δ > 0
= 0, otherwise.

. . . (1.4)

Using the conditional pdf of XU(m+k) given XU(m), it can be shown that for the
above three distributions

E(XU(m+k)|XU(m)) = aXU(m) + b . . . (1.5)

for some constants a and b. Equivalently, for these three distributions, the
best unbiased predictor of XU(m+k) given XU(m) coincides a.s. with the best
linear unbiased predictor (BLUP). It is interesting to know, as pointed out by
Nagaraja (1977), that the relation (1.5) characterizes the exponential, power
function and the Pareto type distributions for k = 1. Forguson (1967) obtained
a characterization of the same class of distributions by the BUP=BLUP for
adjacent order statistics. Nagaraja (1988) showed that if BUP= BLUP for
XU(m+1) given XU(m) and XU(m) given XU(m+1), then the parent distribution
is exponential. The BUP and BLUP for record values were also considered in
Ahsanullah (1980) and Dunsmore (1983).

In this paper we show that the best unbiased predictor and the best linear
predictor of record values coincide a.s. only for the exponential, power function
and Pareto type distribution for k = 2. Equivalently these three distributions
are the only distributions that are characterized by the relation (1.5) with k = 2.
It is an open problem whether this characterization also holds for k > 2.
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2. Main Results

For the exponential, power function and Pareto distribution,

E(XU(m+2)|XU(m)) = aXU(m) + b,

where the constants a and b are of the following form :
(a) a = 1 and b = 2

λ for the exponential distribution, EXP (λ, γ),

(b) a =
(

θ
θ+1

)2

and b = 2θ
(θ+1)2 v for the power function distribution, POW (θ, µ, v),

(c) a =
(

θ
θ−1

)2

and b = 2θ
(θ−1)2 δ for the power function distribution, PAR(θ, µ, δ),

θ > 1,
To prove the main result, we need the following Lemma which is also of

independent interest as a new characterization of the exponential distribution.

Lemma 2.1 Let {Xn, n ≥ 1} be i.i.d. rvs with absolutely continuous cdf
F. Assume that there is an ε > 0 such that E(exp((c + ε)X1)) < ∞. Then
X1 ∈ EXP (λ, γ) iff

E[exp(cXU(m+2))|XU(m)] = a exp(cXU(m)) . . . (2.1)

with λ = c
√

a√
a−1

and a ∈ (0, 1) if c < 0 and a > 1 if c > 0.

Proof. It is easy to verify that if X1 ∈ EXP (λ, γ) then (2.1) holds.

Conversely, suppose (2.1) holds true. Since XU(m+2) ≥ XU(m) a.s. then it
follows easily that a ∈ (0, 1) if c < 0 and a > 1 if c > 0. Let γ = inf{x|F (x) > 0}
and η = sup{x|F (x) < 1}. Using again (2.1), we get from (1.1)∫ η

x

ecy{R(y)−R(x)}f(y)dy = aecx.F (x) . . . (2.2)

almost everywhere with respect to the distribution of X1. Since F is continuous,
it follows that (2.2) holds for any x ∈ (γ, η) and F ′(x) = f(x) for any x ∈ (γ, η).

Differentiating both sides of (2.2) with respect to x and simplifying, we have

−
∫ η

x

ecyf(y)dy = acecx (F (x))2

f(x)
− aecxF (x) . . . (2.3)

If we differentiate both sides of (2.3) with respect to x and simplify, then we
obtain the following equation

f ′(x)F
2
(x)− cf(x)F

2
(x) + 3F (x)f2(x) +

1− a

ac
f3(x) = 0 . . . (2.4)

Let y = F (i.e, f = −y′, f ′ = −y′′), then (2.4) yields
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−y′′y2 + cy′y2 + 3(y′)2y − δ(y′)3 = 0, . . . (2.5)

where δ = 1−a
ac . Substituting u(y) = y′ in (2.5), we have

−u′y2 + cy2 + 3uy − δu2 = 0. . . . (2.6)

Let u(y) = w(y) − λy, where λ is a real constant. Rewriting the equation
(2.6) in terms of w, we get

−w′y2 + λy2 + cy2 + 3wy − 3λy2 − 1− a

ac
(w2 − 2wλw y + λ2y2) = 0. . . . (2.7)

We choose λ = c
√

a√
a−1

. Then we have from (2.7)

−y2w′ + (3 + 2λδ)wy − δw2 = 0, . . . (2.8)

The equation (2.8) is of Bernoulli type. If w = 0, then y′ = u(y) = −λy and
hence

y = F (x) = ke−2λx . . . (2.9)

from any x ∈ (γ, η) and k is a positive constant. The boundary conditions
F (γ) = 1 and F (η) = 0, imply that η = ∞ ad

y = F (x) = e−λ(x−γ), x ≥ γ. . . . (2.10)

The solution of (2.8) for w 6≡ 0, is

w =
2(1 + λδ)Y 2(1+λδ)+1

2D(1 + λδ) + δy2(1+2δ)
, . . . (2.11)

where D is an arbitrary constant. Writing in terms of y, we have

−y′ = y
λDyB + C

DyB + A
, . . . (2.12)

where A = δ
2(1+λδ) , C = λA− 1, B = − δ

A . The equation (2.12) implies

f(x) = F (x)
λD(F (x))B + C

D(F (x))B + A
. . . . (2.13)

Let us consider all possible cases.
First case : c < 0. Then a ∈ (0, 1) and λ > 0. If w = 0, then from (2.9), we

have F (x) = ke−λx. Since F is a probability distribution function we must have

F (x) = e−λ(x−γ), x ≥ γ. . . . (2.14)
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If w 6= 0, then A > 0, C < 0 and B > 0. Thus if x → η, then the right hand
side of (2.13) is negative but the left hand side of (2.13) is always positive. Thus
the only solution for c < 0 is the one given by (2.14).

Second case : c > 0. Then a > 1 and again λ > 0. If w ≡ 0, then as in the
first case the only solution is given by (2.14). Observe that λ > c, hence the
integrability condition is satisfied.

If w 6≡ 0, then A > 0, B > 0 and C > 0. Thus from (2.12), we get

F (x) = e−θ(x−y)

(
λDF

B
+ C

λD + C

)− θ
c

, . . . (2.15)

where θ = c
√

a√
a+1

, x ≥ γ, Let H(D, y) be the second factor of the right hand

side of (2.15), y = F . If D < 0, then H(D, y) ≥ H(D, 1) and if D > 0,
then H(D, y) ≥ H(D, 0). Let M0 = min{H(D, 1)and H(D, 0)}. Thus F (x) ≥
M0e

−θx. The integrability condition implies that θ > c+ε which is contradictory
since c > 0. Hence the only solution of (2.12) is the one given by (2.14).

We now give the main characterization theorem.

Theorem 2.1. Let {Xn, n ≥ 1} be i.i.d. rvs with absolutely continuous cdf
F. Assume that for some ε > 0, E(X1+ε) exists. If

E(XU(m+2)|XU(m)) = aXU(m) + b, . . . (2.16)

then only the following three cases are possible :
1. If a < 1, then X1 ∈ POW (θ, µ, v), where θ =

√
a

2−
√

a
, v = b

1−a and µ is an
arbitrary real number with µ < v.

2. If a > 1, then X1 ∈ PAR(θ, µ, δ), where θ =
√

a√
a−1

, δ = b
a−1 and µ > b

1−a .
3. If a = 1, then X1 ∈ EXP (λ, µ), where λ = 2

b and µ is an arbitrary real
number.

Proof. Let µ = inf{x|F (x) > 0} and v = sup{x|F )x) < 1}.
Suppose a < 1. Then the assumption(2.16) implies that for all x ∈ (µ, v) we

have x ≤ ax + b. Thus v = b
1−a < ∞. Let us define the random variable Zn by

Zn = −ln(v −Xn), n ≥ 1.
Let ZU(I), ZU(2), . . . be the record values of Zn, n ≥ 1. Then the condition

(2.16) reduces to

E(exp(−ZU(m+2))|ZU(m)) = exp(−ZU(m)). (2.17)

Hence by Lemma 2.1, Z1 ∈ EXP (λ, γ), where λ =
√

a
1−

√
a

and γ is an arbitrary
number.

Thus X1 ∈ POW (θ, µ, v), where θ =
√

a√
a−1

, v is as given above and µ =
v − e−γ .
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Consider a > 1. Let δ = b
a−1 and consider the record values of the sequence

Zn = ln(δ + Xn), n ≥ 1. Then the condition (2.16) again reduces to (2.17).
Hence by Lemma 2.1, Z1 ∈ EXP (λ, γ) where λ = a

1−
√

a
and γ is an arbitrary

number. Thus X1 ∈ PAR(θ, µ, δ) where θ =
√

a√
a−1

, δ = b
a−1 and µ = eγ − δ.

Consider a = 1, then using (1.1), proceeding similarly as in the proof of
Lemma 2.1, we get∫ y

x

y({R(y)−R(x)}f(y)dy = (x + b)F (x), . . . (2.18)

for any x ∈ (µ, v). Differentiating both sides of (2.18), we get

−
∫ y

x

yf(y)dy = −(x + b)F (x) +
F (x))2

f(x)
. . . . (2.19)

Differentiating both sides of (2.19), with respect to x, we obtain on simplifi-
cation

F
2
(x)f ′(x) + 3F (x)f2 − bf3(x) = 0. . . . (2.20)

Now substituting y = F (x)(i.e. f(x) = −y′, f ′ = y′′) the equation (2.20)
reduces to

−y′′y2 + 3yy′2 + by′3 = 0. . . . (2.21)

Upon substitution u(y) = y′ the equation(2.21) reduces to the Bernoulli type
finally yielding

y′ = u =
2y3

2D − by2
, . . . (2.22)

where D is an arbitrary constant. Rewriting (2.22), we get

f(x) =
2(F (x))3

b(F (x))2 − 2D
. . . . (2.23)

Since f(x) ≥ 0 for all x and F (x) → 0 as x → η it follows that we must have
D ≤ 0. Finally the solution of (2.23) is given by

− b

2
lnF (x)− D

2
(F (x))−2 = x + d . . . (2.24)

where d is an arbitrary real number. Since lim
x→µ

F (x) = 1, we have µ > −∞ and

µ + d = −D/2 ≥ 0. Thus we can write (2.24) as

F (x) = exp[−2
b
(x + d) +

2(µ + d)
b(F (x))2

]. . . . (2.25)

Suppose v < ∞, then limx→v F (x) = 0 but the right hand side of (2.25)
remains finite, while the left hand side tends to ∞. Hence v = ∞. Now by
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Markov’s inequality F (x) ≤ m
xl+ε for sufficiently large positive x, where m is a

positive constant.
Thus for large x we have

F (x) ≥ exp[−2
b
(x + d) +

2
b
(µ + d)

x2+2ε

m2
]. . . . (2.26)

If µ + d > 0, then the right hand side of (2.26) is unbounded for x → ∞
which contradicts the assumption that 0 ≤ F (x) ≤ 1. Hence µ + d = 0 and thus
from (2.25), we get

F (x)exp[−2
b
(x− µ)], x > µ.
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