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Abstract. Let X1;X2; . . . ;Xn be a random sample from a continuous distribu-
tion with the corresponding order statistics X1:n UX2:n U . . . UXn:n. All the
distributions for which E�Xk�r:njXk:n� � aXk:n � b are identi®ed, which solves
the problem stated in Ferguson (1967).
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1 Introduction

Extending some earlier works Ferguson (1967) proved the following theorem:
Let X1;X2; . . . ;Xn be a sample from a continuous distribution such that

E�Xk�1:njXk:n� � aXk:n � b

for some 1U k < n,
then only the following three cases are possible:

1. a � 1 and X1 has an exponential distribution,
2. a > 1 and X1 has a Pareto distribution,
3. a < 1 and X1 has a power distribution.

Let us point out that Ferguson states his result assuming that
E�Xk:njXk�1:n� � aXk�1 ÿ b for some 1U k < n instead of using the regression
Xk�1:n on Xk:n and arrives at distributions dual to that given in 1±3. Since the
duality is obvious (take Y � ÿX ), without loosing generality, here we use the
regression Xk�1:n on Xk:n.

In Nagaraja (1988) an analogue of this result for discrete distributions was
obtained.



Investigations of characterizations of probability distributions by proper-
ties of regression involving di¨erent functions of order statistics were lead
by many researchers. The state of art up to the early nineties with suitable
references can be found in the books of Arnold, Balakrishnan, Nagaraja
(1992) or Johnson, Kotz, Balakrishnan (1994).

A slight re®nement of the original Ferguson (1967) result, allowing dis-
continuity in one of the support ends has been given more recently in Pakes,
Fakhry, Mahmoud and Ahmad (1996).

As pointed out in the monograph Arnold, Balakrishnan, Nagaraja (1992)
the question raised by Ferguson (1967) (``it is unknown what new distributions
arise if any'') about analogous characterizations for non-adjacent order sta-
tistics has not been settled until the very recent paper by Wesoøowski and
Ahsanullah (1997) (it was pointed out by the referee that the result was shown
earlier in the PhD thesis of Pudeg (1991)). They solved the problem consider-
ing linearity of regression of Xk�2:n on Xk:n:

Let X1;X2; . . . ;Xn be a sample from an absolutely continuous distribution
such that

E�Xk�2:njXk:n� � aXk:n � b

for some 1U k < nÿ 1
then the same three cases 1.±3. are the only possible.

In a paper by the present authors, DembinÂska and Wesoøowski (1997),
it was shown that in the absolutely continuous case, instead of a single
regression condition, a pair of identities E�Xki�r:ni

jXki :ni
� � Xki :ni

� bi; i � 1; 2,
with r � 3, n1 ÿ k1 0 n2 ÿ k2 or with any r and n1 ÿ k1 � n2 ÿ k2 � 1, char-
acterizes the exponential distribution.

In the present paper we identify the cases 1.±3. as all possible continuous
distributions with the property of linearity of regression for any non-adjacent
order statistics ± which solves completely the problem raised by Ferguson
(1967).

It should be pointed out that in LoÂpez-BlaÂzquez and Moreno-Rebollo
(1997) this problem was considered under the additional assumption of r-
di¨erentiability of the distribution function of X 's. The method used by these
authors was based on solving r-th order di¨erential equation and, as such,
di¨ers considerably from the approach, making use of integrated Cauchy
functional equation, adopted in the present paper.

2 Linearity of regression

In this section we are interested in the conditional moment E�Xk�r:njXk:n�, not
only in the exponential case, but also for the power and Pareto distributions.
Denote by POW�y; m; n� a power distribution de®ned by the density

f �x� � y�nÿ x�yÿ1
�nÿ m�y

I�m; n��x�;

where y > 0, ÿy < m < n <y are some constants. By PAR�y; m; d� denote
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the Pareto distribution with the pdf

f �x� � y�m� d�y
�x� d�y�1

I�m;y��x�;

where y > 0, and m, d are some real constants such that m� d > 0. Finally by
EXP�l; g� denote the exponential distribution with the density

f �x� � l exp�ÿl�xÿ g��I�g;y��x�;
where l > 0 and g are some real constants.

Observe that if X has the df F and the pdf f then for �L� a.a. x A �lF ; rF �
(where lF � inffx : F �x� > 0g, rF � supfx : F �x� < 1g and �L� denotes the
Lebesgue measure)

E�Xk�r:njXk:n � x�

� �nÿ k�!
�rÿ 1�!�nÿ k ÿ r�!�F �x��nÿk

� rX

x

y�F �x� ÿ F�y��rÿ1�F�y��nÿkÿrf �y� dy:

Consequently it can be easily veri®ed that in all three cases of the exponential,
power and Pareto distributions the regression relation, we are interested in, is
linear, i.e.

E�Xk�r:njXk:n� � aXk:n � b; �1�
where the constants a and b have the following forms:

1. For the POW�y; m; n� distribution

a � y�nÿ k�!
�nÿ k ÿ r�!

Xrÿ1
m�0

�ÿ1�m
m!�rÿ 1ÿm�!�y�nÿ k ÿ r� 1�m� � 1�

b � n
y�nÿ k�!
�nÿ k ÿ r�!

�
Xrÿ1
m�0

�ÿ1�m
m!�rÿ 1ÿm�!y�nÿ k ÿ r� 1�m��y�nÿ k ÿ r� 1�m� � 1� �2�

2. For the PAR�y; m; d� distribution with y >
1

nÿ k ÿ r� 1

a � y�nÿ k�!
�nÿ k ÿ r�!

Xrÿ1
m�0

�ÿ1�m
m!�rÿ 1ÿm�!�y�nÿ k ÿ r� 1�m� ÿ 1�

b � d
y�nÿ k�!
�nÿ k ÿ r�!

�
Xrÿ1
m�0

�ÿ1�m
m!�rÿ 1ÿm�!y�nÿ k ÿ r� 1�m��y�nÿ k ÿ r� 1�m� ÿ 1� �3�
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3. For the EXP�l; g� distribution

a � 1; b � �nÿ k�!
l�nÿ k ÿ r�!

Xrÿ1
m�0

�ÿ1�m
m!�rÿ 1ÿm�!�nÿ k ÿ r� 1�m�2 �4�

The question we address here is the following: are the given above exam-
ples the only for which linearity of regression (1) holds? The a½rmative an-
swer given beneath is the main result of the paper.

Theorem 1. Assume that X1; . . . ;Xn are i.i.d. rv's with a common continuous df
F. Let E�jXk�r:nj� <y. If for some k U nÿ r and some real a and b the line-
arity of regression (1) holds, then only the following three cases are possible:
1. a � 1 and F is a df of an exponential distribution;
2. a > 1 and F is a df of a Pareto distribution;
3. a < 1 and F is a df of a power distribution.

Before we give the proof of the above result let us recall, following Rao
and Shanbhag (1994), an important result concerning possible solutions of an
extended version of the integrated Cauchy functional equation. This theorem
will be used later on in the course of the proof of Theorem 1.

Theorem 2. Consider the integral equation:�
R�

H�x� y�m�dy� � H�x� � c for �L� a:a: x A R�;

where m is a non-arithmetic s-®nite measure on R� and H : R� 7! R� is a Borel
measurable, either non-decreasing or non-increasing [L] a.e. function that is
locally [L] integrable and is not identically equal zero [L] a.e. Then bh A R
such that�

R�
exp�hx�m�dx� � 1;

and H has the form

H�x� �
g� a�1ÿ exp�hx�� for �L� a:a: x if h0 0

g� bx for �L� a:a: x if h � 0

(

where a; b; g are some constants. If c � 0 then g � ÿa and b � 0.

Now we are ready to prove our main result.

Proof of Theorem 1: Using the formulas for the joint distribution of �Xi:n;Xj:n�
and the distribution of Xi:n (see for instance the monograph of Arnold, Ba-
lakrishnan, Nagaraja (1992)) we can write:
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E�Xk�r:njXk:n � x�

� �nÿ k�!
�rÿ 1�!�nÿ k ÿ r�!

�y
x

y
�F �x� ÿ F�y��rÿ1F nÿkÿr�y�

F
nÿk�x�

d�ÿF�y��

F a.e., where F � 1ÿ F . From (1) we get:

�nÿ k�!
�rÿ 1�!�nÿ k ÿ r�!

� rF

x

y
F �x� ÿ F�y�

F �x�

� �rÿ1
F�y�
F�x�

� �nÿkÿr

d ÿF �y�
F �x�

� �
� ax� b �5�

for F-almost all x's. Notice, following the reasoning of Ferguson (1967), that
there does not exist an interval �c; d�, lF < c < d < rF , over which F is con-
stant since the right hand side of (5) is increasing in such an interval and the
left hand side remains constant, while both sides are continuous, so that they
could not possibly be equal at the next point of increase of F. (Observe that a
has to be positive, which follows easily, for instance, from the next identity).
Thus �lF ; rF � is the support of the distribution de®ned by F and F is strictly
increasing in this interval. Notice also that since both sides of (5) are contin-
uous with respect to x we can assume that it holds for any x A �lF ; rF �.

Substituting t � F �y�=F�x�, i.e. y � F
ÿ1�tF�x�� (observe that F

ÿ1
exists

because F is strictly decreasing in �lF ; rF �) into equation (5) we get:

�nÿ k�!
�rÿ 1�!�nÿ k ÿ r�!

�1
0

F
ÿ1�tF �x���1ÿ t�rÿ1tnÿkÿr dt � ax� b

Now substitute F�x� � w, hence x � F
ÿ1�w� and thus

�nÿ k�!
�rÿ 1�!�nÿ k ÿ r�!

�1
0

F
ÿ1�tw��1ÿ t�rÿ1tnÿkÿr dt

� aF
ÿ1�w� � b; w A �0; 1�:

Divide both sides by a and substitute once again t � eÿu and w � eÿv. Then

�nÿ k�!
a�rÿ 1�!�nÿ k ÿ r�!

�y
0

F
ÿ1�eÿ�u�v���1ÿ eÿu�rÿ1eÿ�nÿkÿr�ueÿu du

� F
ÿ1�eÿv� � b

a

for any v > 0.
Now let G�v� � F

ÿ1�eÿv�. Consequently�
R�

G�v� u�m�du� � G�v� � b

a
; v > 0

where m is a ®nite measure on R�, which is absolutely continuous with respect
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to the �L� measure and is de®ned by

m�du� � �nÿ k�!
a�rÿ 1�!�nÿ k ÿ r�! �1ÿ eÿu�rÿ1eÿ�nÿkÿr�1�u du:

Observe that G is strictly increasing on �0;y� since it is a composition of
two strictly decreasing functions. Consequently the assumptions of Theorem 2
are ful®lled. Hence, since G is continuous, it follows that

G�v� �
g� a�1ÿ exp�hv�� if h0 0

g� bv if h � 0

(
�6�

v > 0, where a, b, g, h are some constants and�
R�

exp�hx�m�dx� � 1 �7�

From (7) we get:

1 � �nÿ k�!
a�rÿ 1�!�nÿ k ÿ r�!

�y
0

ehx�1ÿ eÿx�rÿ1eÿ�nÿkÿr�xeÿx dx

After substituting t � eÿx we obtain (observe that h < nÿ k ÿ r� 1):

1 � �nÿ k�!
a�rÿ 1�!�nÿ k ÿ r�!

�1
0

�1ÿ t�rÿ1t�nÿkÿrÿh� dt

� 1

a

B�nÿ k ÿ rÿ h� 1; r�
B�nÿ k ÿ r� 1; r�

where B�: ; :� is the complete beta function de®ned by

B�p; q� �
� 1
0

tpÿ1�1ÿ t�qÿ1 dt; p; q > 0:

Since B�p; q� � G�p�G�q�
G�p� q� then

G�nÿ k ÿ rÿ h� 1�G�r�
G�nÿ k ÿ h� 1�

G�nÿ k � 1�
G�nÿ k ÿ r� 1�G�r� � a �8�

A slight rearrangement allows to rewrite (8) as

a � nÿ k

nÿ k ÿ h
� nÿ k ÿ 1

nÿ k ÿ 1ÿ h
� . . . � nÿ k ÿ r� 1

nÿ k ÿ r� 1ÿ h
� h�h�; �9�

say.
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Observe that

1. a < 1 if h < 0,
2. a > 1 if 0 < h < nÿ k ÿ r� 1,
3. a � 1 if h � 0.

Moreover there is a unique h that ful®ls (9), because the function h is
strictly increasing.

Returning to (6), for a non-zero h, we can write

F
ÿ1�eÿv� � G�v� � g� a�1ÿ ehv�

which implies

eÿv � F �g� a�1ÿ ehv��:

Let us substitute z � g� a�1ÿ ehv�. Then

eÿv � 1ÿ zÿ g

a

� �ÿ�1=h�

Hence F �z� � 1

1ÿ zÿ g

a

� �1=h
for z > g.

Consider now three possible cases:

1. If a < 1 and h < 0 then

F �z� � a� gÿ z

a

� �ÿ�1=h�
� a� gÿ z

a� gÿ g

� �ÿ�1=h�
� nÿ z

nÿ m

� �y

for z A �m; n�, where n � a� g, m � g, y � ÿ 1

h
> 0. Observe that a has to be

positive.
Thus X1 @POW�y; m; n�, where:

. y � ÿ 1

h
and h ful®ls (9),

. n can be calculated from (2) with y � ÿ 1

h
,. m < n is a real number.

2. If a > 1 and h > 0 then

F �z� � ÿa

zÿ aÿ g

� �1=h

� g� �ÿaÿ g�
z� �ÿaÿ g�
� �1=h

� m� d

z� d

� �y

for z > m, where d � ÿaÿ g, m � g, y � 1

h
> 0. Observe that a has to be

negative.
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Thus X1 @PAR�y; m; d�, where:
. y � 1

h
and h ful®ls (9),

. d can be calculated from (3) with y � 1

h
,. m is a real number.

Observe that this is the only case in which b � 0 is allowed. Then d � 0
and m > 0.
3. If a � 1 and h � 0 then from (6) we get:

F
ÿ1�eÿv� � G�v� � g� bv

eÿv � F �g� bv�:

Let us substitute z � g� bv. Then b > 0 and

F �z� � eÿ�zÿg�=b � eÿl�zÿg�

for z > g, where l � 1

b
> 0.

Hence X1 @EXP�l; g�, where
. l can be calculated from (4),. g is a real number.
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