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Abstract

In this paper, we are concerned with identification of a discrete uniform mixture by
the posterior mean. An cxact formula for a prior distribution is given. Also some
examples featuring negative binomial, negative hvpergeometric and beta-Pascal
distributions arc provided.
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1 Introduction

A basic question for a mixture model is its identifiability. Usually it is
connected with one to one correspondence between the distributions of Y
and X if the conditional distribution (mixture) fix)y- is given —see for
example Titterington et al. (1985) and references given there. In this
context discrete mixtures (we say that a mixture is discrete iff X and Y
are discrete) were treated, for instance, in Patil and Bildikar (1966). This
paper is devoted to the study of a special discrete mixture.

Another identifiability problem is connected with one to one correspon-
dence between the regression function m(z) = E(Y|X = z) (posterior
mean) and the distribution of Y. In this scheme some discrete mixtures
were considered in the literature:

- binomial and negative hypergeometric in Krishnaji (1974);
- binomial and Pascal in Korwar (1975);
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- quasi-binomial in Korwar (1977);

- negative hypergeometric in Xekalaki (1981, 1983);

- binomial, Pascal and Poisson in Cacoullos and Papageorgiou (1983);
- hypergeometric and negative hypergeometric in Papageorgiou (1985);
- binomial and Pascal in Kyriakoussis and Papageorgiou (1991);

- power series in Sapatinas (1995) and Wesolowski (1995b);

- Poisson in Wesolowski (1996);

- negative binomial in Papageorgiou and Wesolowski (1997).

Some interesting general remarks on identifiability of discrete mixtures
in this setting are given in Arnold et al. {1993). Other kinds of mixtures,
which are not discrete, are also considered in such a context by many au-
thors —for a review and some new results see, for example, Wesolows-
ki (1995a).

Recall that a random variable X has a negative hypergeometric distri-
bution nhg(L, M,n) iff

e (L+§—1 ) (Mn—Lk—k)

, (1.1)
)

E=0,1...,n, where n is a non-negative integer and 0 < L < n+4 L <
M —see Ord (1972, ch. 5). Problems of identifiability of the negative
hypergeometric mixture

x|y = ﬂhg(L, N+Y —1, Y)

for some natural numbers 1 < L < N, by posterior means were studied
in Papageorgiou (1985). The investigation was based on additional strong
assumptions of infinite integrability of X and identifiability of a prior distri-
bution by sequence of moments. The uniqueness result obtained there does
not allow to reconstruct the prior distribution unless one is equipped with
some a priori information or your guess is right. In Xekalaki (1981, 1983)
characterization problems for negative hypergeometric mixtures involving
linear regressions were considered.

In this paper we are interested in discrete uniform mixtures and the
discrete uniform distribution (on a set {0,...,n}) is a special case of (1.1)
—L =1and M = n+ 1. However we do not assume any additional inte-
grability or identifiability conditions. Moreover we obtain an exact formula
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expressing the prior distribution in terms of any consistent posterior mean.
Let us point out that the end point of its support is also determined by
a property of the posterior mean. Also some necessary consistency con-
ditions are obtained. This is done in Section 2. In Section 3 we show
how the formula works by presenting examples of linear (4 examples) and
non-linear (1 example) posterior means. Applying the formula derived in
Section 2 we obtain exact prior distributions. In this way some members of
the families of negative binomial, negative hypergeometric and beta-Pascal
distributions have been identified.

This paper is a complement to an earlier investigation by the authors,
Gupta and Wesolowski (1997), where the continuous uniform mixture 4 Xy
was treated. In that paper it was shown that linearity of E(Y |X) charac-
terizes priors as two kinds of beta or gamima distribution. Also a general
identifiability result in the absolutely continuous case was derived there.
An extension to beta mixtures has been obtained recently in Gupta and
Wesolowski (1998).

2 Identification

Let X = Vi and YV = Vi + V5, where V1, V5 are i.i.d. random variables
with geometric distribution, i.e. P(V) = k) = p(1—p)%, k = 0,1,..., where
p € (0,1). Then it is not difficult to observe that X is a discrete uniform
mixture of ¥ of the form

x|y — UH0,....Y}), (2.1)
1.e. )
PIX =klY =)= — <k<l=0,1,...
(X kY =)= = 0<k<l-0,
Observe that
l—p

BY|X)=X+—=,
p

Observe that if the representation X = V] and ¥ = V| + V3, where
V1, Vo are some i.i.d. random variables, holds then the single condition
(2.1) suffices to characterize the distribution of ¥}, i = 1,2, as geometric.
Obvious calculations lead to the Cauchy functional equation for the pmf

of V) then. Investigations of problems of such a kind go back to Patil and
Seshadri (1964).
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Here we drop off the underlying independence structure of (X,Y) and
we are interested in the converse problem to the observation from the be-
ginning of this section, i.e. we want to identify the discrete uniform mixture
(2.1) through the posterior mean.

Theorem 2.1. Assume that (X,Y) s a random vector such that (2.1) holds
and supp(Y) = {0,1,...,N}, where N < oo. Then the joint distribution is
uniquely determined by the posterior mean E{(Y|X):

=inf{y:m(y) =4 7=0,1,...}

where m(j) = BE(Y|X =4). 1 =0,1,... and for any k € {0,1,..., N},
(k+ DM (k) [}y )

Yisold + M) [T d()’

where M(k) = m(k+1) —m(k), k < N, M(N)=m(N —1) - N+14
N < oo, and

PY =Fk) =

d(5) { 1 §=0,N,
J)V=9 my-n-j+1 . _ B
oo J =12 N L

Proof. The Bayes forimula implies

N N
B3 zﬁ— (2.)

=k

where p; = P(Y =1),1=0,,1... Let ko be the smallest natural number
such that m{ky) = ky. The above equation implies immediately that &y =
N (if Vk, m(k) # k, then N = o). Consider now the case N = oo, All
formulas given in the first part of the proof hold for any £ =1,2,..., and
the upper limit in all sums is oo. Rewrite (2.3) as
Pr
[m (k) +1] 1 2.
=k =k

Put & — 1 instead of k£ in the above equation and subtract one from the
other to get

(k=1 —mk)] Y A k=D + UL 24
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From the inequality

Z Iy Ipy
1=k ! +1 I kE+1 i+l

NN S
=k l+ 1 I=k+1 l

it follows that m is strictly increasing. Consequently (2.4) yields

m k—1-m{k—1) .
2T T Tl (2:5)

Next put £+ 1 instead of & in (2.5) and subtract one from the other to get
Dk E—1—m(k—1) k—m(k)

E+1 Hmk—1) —mB)] " G+ Dimlk) —mk+ 1)

Finally we obtain (recall that (2.3) implies m(k) > k)

E+1lmk+1)—mk)mk—-1)—k+1

k TT?,(J!L‘) — Tn(}; — 1) 7n(k 4 1) s Pr—1- (26)

Pr =

The formula (2.2) follows from the above recurrence relation if we take into
account the normalizing condition.

Now consider N < oc. Similarly as above for & = 1,..., N — 1, the
formula (2.6) holds. Observe that by (2.5)

N-1-m{(N-1)

V= WD D Y

Consequently (2.6) yields

N1

and once again pg is obtained by normalizing. |

Remark 2.1. Sumiming up the observations from the proof, if for the mix-
ture (2.1) supp(Y¥) = {0,1,..., N} then any consistent regression function
mn must be strictly increasing, m(k) > &k, &k =0,..., N —1and m(N) = N.

Remark 2.2, If supp(Y) C {0,1,..., N} for the mixture (2.1) and m({k) =
N, ¥k €supp(Y), then by (2.4) P(Y = N) =1.
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3 Examples

This Section is an implementation of the theoretical result obtained in The-
orem 2.1. We show that the formula {2.2) is computationally useful by in-
troducing few exaimples. It appears that linear posterior mean characterizes
some important distributions: negative binomial, negative hypergeometric
and beta-Pascal (since the last one is not so widely known one can consult
Ord (1972, ch. 5), for its definition and basic properties —see also Ex.
4 beneath). A negative binomial law appears also in a case of non-linear
regression in the last example.

Example 3.1. Assume that (2.1) holds and

BE(Y

X)= X +b. (3.1)
Hence
inf{j : m(j) = j} = .

Then M (§) =1, d(j) for j =1,2,..., and

__b
b+l

Han:(——),@:mhm
L b+1

Consequently
=\, T x, b\ ,
;(z + 1)M(4) ll:lld(l) = ;(z +1) (b-l——l) = (b+ 1)~
Finally (2.2) implies
B
o) = POY =) = (k4 oy = 0

i.e. Y has a negative binomial distribution nb(n = 2,p = 1/(1+8)). Observe
that if V|, V4 are geometric with parameter 1/(1 + b) then ¥ 4 i+ Va.

Example 3.2. For the mixture (2.1) with E(Y|X) = (X + A)/2, where A

is a positive natural munber, we have

inf{j : m{j) = j} = A.
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Hence N = A, M(j) =1/2, and d(j) =1, s =0,1,...,N. Thus

N z
: : N+ LN +2)
2:@+1MHQIIMU— ;
i=0 =0
and by (2.2) ¥ has a negative hypergeometric distribution nhg(2, N +2, N)
(see (1.1)) and the joint distribusion of {X,Y") is bivariate discrete uniform
on the lattice triangle {{7,7) : 0 <i < j < N}

Example 3.3. More generally assume that for the mixture (2.1)

A

-
for some integers r > 1 and A > 0. Then N =r and M{j) = (r—1)/r, j =
0,1,...,N—=1,and M{N) = 1/r. Additionally d(j) = (N+1—7)/{(N+r—j),
j=1,...,N —1, yield

BY|X) =

(3.2)

_ (J\T—F?QE)
¢ _N'*’é‘
[Tt = i=1,2,..., N —1.

=0 (N+T2)
N

i (N4+7)(N+7r 1)
i+ 1M d(l .
2 H

Hence

P2

Consequently by (2.2) Y has a negative hypergeometric distribution
nhg(2, N +r, N) (see (1.1)).

Example 3.4. Take now the mixture (2.1) with

1 L
Eyix)="lx 42 (3.3)
7 7
for some positive integers » and L. Then N = oo since m(k) > k, V& =
0,1,... Additionally it is easily seen that M(0) = M{j) = (r + 1)/,
L L1
() = —I =
R e

_ L+r+1
fFM)(g+i+1+2)'

r+2

j=1,2

E I

and

i=1,2,...
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Consequently
= T (L+7+1)(L+7)
S i+ DM@ [0 = — :
i=0 =0
Finally (2.1) implies
) (k+1)(L+:‘1)
P(Y =k) = . k=0,1,....
r+2 Ltr+k+1
r+42
Recall, following Ord (1972, pp. 86), that the formula
A( K+i—1 )( A+B-1 )
i A
B = 0,1,...,

K+A+B+i—11Y\
(A+K( K+ A )

where A, B, K are some pogitive integers, defines the beta-Pascal bP(A, B3,
K) distribution. Consequently in our example ¥ has the beta-Pascal
bP(r, L,2) distribution.

Remark 3.1. The family of distributions we obtained in Examples 3.1,
3.3 and 3.4 has an interesting continuity property: Consider the mixture
(2.1) with E(X) = b; then E(Y) = 2b. If (3.2) holds then ¥ = (r + 1)b. If
(3.3) holds then L = (r — 1)b. Consequently if the coeflicient of X in (3.2)
or (3.3) tends to 1 (which is the coefficient of X in (3.1)), i.e. » — o, then
also the second coefficient of (3.2) or (3.3) tends to the respective coefficient
in (3.1). Additionally it is easily seen that

lim bk, =g = lm [,

00 00
where f., g and h;, are pmf’s of the prior distributions (beta-Pascal, nega-
tive binomial, negative hypergeometric) obtained in Examples 3.4, 3.1 and
3.3, respectively. (The negative binomial distribution is a limit of the neg-
ative hypergeometric and beta-Pascal —see Ord, 1972, pp. 89). A similar
behaviour was observed in the case of linearity of posterior mean for the
first and second type beta and gamma distribution for linear posterior mean
in the continuous uniform mixture model in Gupta and Wesotowski (1997).
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Example 3.5. Consider now an example of the uniform mixture (2.1) with
non-linear posterior mean

X+5

EY|X)=X :
YIX) =X+ 5=

In this case it is easily seen that N = oo. Additionally

(k+2)(k+5)

M) = ——— "0 =0,1...,
M(k) E+3)(k+4)
. (j 4 4)2 .
dij) = s = 1,2,...
U= 55+ 25 +9)
and consequently
i 4+ 4
d(l :%, —1,2,...
1 (4 5)
Hence
'] p) p DG 9
> i+ 1)M(E) D= =S"G+1)(+2)2" _2
i=0 =1 12 i=0 3

Finally applying (2.1) we arrive at

P(Y—k)—%(l)k, E=0,1,...,

which is a negative binomial distribution nb(n = 3,p = 1/2).
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