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ASYMPTOTIC EULERIAN EXPANSIONS
FOR BINOMIAL AND NEGATIVE BINOMIAL RECIPROCALS

EWA MARCINIAK AND JACEK WESO LOWSKI

(Communicated by Wei-Yin Loh)

Abstract. Asymptotic expansions of any order for expectations of inverses of
random variables with positive binomial and negative binomial distributions
are obtained in terms of the Eulerian polynomials. The paper extends and
improves upon an expansion due to David and Johnson (1956-7).

1. Introduction

If one wants to estimate a mean of a population Z on the basis of a sample
Z1, . . . , ZM of a random length M , which is a natural-valued non-zero random
variable independent of the sequence (Z1, Z2, . . . ) of independent random variables
with a common distribution equal to that of the random variable Z, then the
unbiased estimate

T =
1
M

M∑
i=1

Zi

is usually exploited. Its efficiency is measured by the variance (if only Z is square
integrable). A straightforward argument based on conditioning leads to the formula

V ar(T ) = σ2E(1/M),

where σ2 is the variance of Z. For details and a more thorough study of T and an-
other related estimate one can consult Szab lowski, Weso lowski and Wieczorkowski
(SWW) (1996) (or SWW (1997) for a shortened English version).

Then a question of computing the first inverse moment for positive discrete
distributions arises. Different general approaches to that problem, including also a
related one of inverse factorial moments, can be found in the literature for instance
in Chao and Strawderman (1972), Kabe (1976), Cressie, Davis, Folks and Policello
(1981), Jones (1987), or Rockower (1988).

In this paper we treat only two special distributions for M : binomial b(n, p) and
negative binomial nb(n, p). They appear in such a context in a natural way if one
takes a sample with replacement from a given finite population of size N and is
interested in estimation of some parameters in a subpopulation A of size NA. Then
two cases are of potential interest: (i) the size of the sample is n and then the size
nA of the subsample falling in A is a random variable with the binomial b(n, NA/N)

Received by the editors January 14, 1998.
1991 Mathematics Subject Classification. Primary 60E05, 62E20; Secondary 11B68, 05A16.
Key words and phrases. Eulerian numbers, Eulerian polynomials, asymptotic series expan-

sions, inverse moments, positive binomial distribution, positive negative binomial distribution.

c©1999 American Mathematical Society

3329



3330 EWA MARCINIAK AND JACEK WESO LOWSKI

distribution; (ii) elements are drawn up to n-th draw from outside of A and then
nA has the nb(n, NA/N) distribution (this is closely related to the inverse sampling
technique used in survey sampling methodology (see for instance Cochran (1977),
Ch. 4.5)). If in the both situations only samples with non-zero nA’s are considered,
then the distributions are truncated at zero.

Let us recall the basic formulas for the two cases:
(i) the binomial b(n, p) distribution truncated at zero, i.e.

P (M = i) =
1

1− qn

(
n
i

)
piqn−i, i = 1, 2, . . . , n,

where n > 0 is a natural number, p ∈ (0, 1) and q = 1− p; then

E(M−1) =
1

1− qn
hn(q),

where

hn(q) =
n∑

i=1

1
i

(
n
i

)
piqn−i;(1)

(ii) the negative binomial nb(n, p) distribution truncated at zero, i.e.

P (M = i) =
1

1− qn

(
n + i− 1

i

)
piqn, i = 1, 2, . . . ,

where n > 0 is again a natural number, p ∈ (0, 1) and q = 1− p; then

E(M−1) =
1

1− qn
gn(q),

where

gn(q) =
∞∑

i=1

1
i

(
n + i− 1

i

)
piqn.(2)

One of the basic questions in estimation is investigation of relations between
sample size and efficiency of adopted estimates. In our setting this can be reduced
to analyzing the behaviour of hn and gn, which are quite complicated functions
of n. Then instead of looking at exact formulas it could be very useful to find
asymptotic approximations of hn and gn for large values of n.

This was our way to come to the asymptotic formulas, which are the main results
of the paper, but we believe that the expansions we provide could be of some interest
to people from other areas of mathematics, and, first of all, to specialists in discrete
methods. The main results are given in Section 2, while the proofs are put off to
Section 3.

In both cases the expansions are given in terms of the Eulerian polynomials An

(see Foata and Schützenberger (1970) for a thorough study of this subject) defined
by the generating function

1− t

1− t exp[(1− t)u]
=
∞∑

n=0

An(t)
un

n!
.(3)

The n-th polynomial has the form An(t) =
∑n

k=1 An,ktk, where An,k denote the
classical Eulerian numbers - number of permutations of the set {1, . . . , n} with k
descents. They are defined by the recurrence formula:

An,k = kAn−1,k + (n− k + 1)An−1,k−1, n = 2, 3, . . . , k = 2 . . . , n,
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where the recurrence starts with A1,k = 0, k = 2, . . . , and An,1 = 1, n = 1, 2, . . .
(see for instance Graham, Knuth, Patashnik (1994) (Ch. 6.2)). The Eulerian
triangle has the form

: 1 2 3 4 5 6 k
1 1 : : : : : :
2 1 1 : : : : :
3 1 4 1 : : : :
4 1 11 11 1 : : :
5 1 26 66 26 1 : :
6 1 57 302 302 57 1 :
n : : : : : : :

The basic property of the Eulerian polynomials we will exploit is the recurrence
formula

An(t) =
n−1∑
i=0

(
n
i

)
Ai(t)t(1 − t)n−i−1,(4)

where A0(t) = 1 - see, for instance, (2.6) in a recent contribution by Désarménien
and Foata (1995).

Let us point out that the inverse moments of the positive binomial distributions
were quite intensively studied in the literature up to the seventies. First approxi-
mate computational formulas go back to Stephan (1946). Tiago de Oliveira (1952)
derived the formula we give in Lemma 2 below via some differential equation for
E(M−1) as a function of q. Then some exact tables were constructed by Grab and
Savage (1954), together with pointing to a possible approximation of E(M−1) by
1/(np− q).

In David and Johnson (1956-7) a new approximating formula was given:

E(M−1) ≈ 1
np

(
1 +

q

np
+

q(q + 1)
(np)2

+
q(q2 + 4q + 1)

(np)3
+

q(q3 + 11q2 + 11q + 1)
(np)4

)
,

which looks like ours for k = 5 (see Theorem 1 below): observe that looking at the
Eulerian triangle we can easily rewrite the above formula as

E(M−1) ≈
4∑

j=0

Aj(q)
(np)j+1

.

Unfortunately the derivation given in David and Johnson (1956-7) is rather infor-
mal; as the authors write it is “not to be regarded as initial terms in expansions for
the reciprocal mean (variance), but as approximation formulae”, and the quality
of approximation is checked only computationally. One of the consequences of the
present paper is that the theoretical background for this formula is provided.

Another approximation, using the beta function approach, by

(n− 2)/{n[(n− 1)p− 1]}
was suggested in Mendenhall and Lehman, Jr. (1960), together with a possible
application in life testing (see also Patel and Gajjar (1995) for a recent contribu-
tion). Then some recurrence relations for E(M−1) were studied in Govindarajulu
(1963) and an approximation by 1/(np) was more thoroughly studied in Thionet
(1963) (here the mathematical rigourousness was preserved); see also Rempala and
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Székely (1998) for a very recent contribution containing a new approximation of or-
der O(n−3). In Stancu (1968) an exact formula for E(M−1) in terms of an infinite
sum of some difference operators was given. This direction was further developed
in Kabe (1976). The special case of our Theorem 1 for k = 2 has been recently
derived in SWW (1996).

2. Expansions

Begin with analyzing the asymptotic properties of hn(q) defined in (1) as n →∞.
The main result brings approximations of hn(q) by finite linear combinations of
powers of 1/n:

Theorem 1. For any k = 1, 2, . . .

n∑
i=1

1
i

(
n
i

)
piqn−i =

k−1∑
j=0

Aj(q)
pj+1

1
nj+1

+ o((1/n)k).(5)

Inserting, for instance, p = q = 1/2 in the formula (5) and computing respective
coefficients we immediately get the following simple expansions:

n∑
i=1

1
i

(
n
i

)
= 2n

(
2
n

+ o(1/n)
)

= 2n

(
2
n

+
2
n2

+ o(1/n2)
)

= 2n

(
2
n

+
2
n2

+
6
n3

+ o(1/n3)
)

= 2n

(
2
n

+
2
n2

+
6
n3

+
26
n4

+ o(1/n4)
)

,

which, we believe, could be valuable companions of classical asymptotic approxi-
mations, reviewed, for instance, in Ch. 9.3 of Graham, Knuth Patashnik (1994).

Observe that since the left-hand side of (3) for t = q ∈ (0, 1) is the moment
generating function of the random variable pY , where p = 1− q and Y is a random
variable with the geometric nb(1, p) distribution, then alternatively the expansion
can be rewritten as

n∑
i=1

1
i

(
n
i

)
piqn−i =

1
p

k−1∑
j=0

E(Y j)
nj+1

+ o((1/n)k).

The proof of Theorem 1, based on the Stolz theorem and the recurrence (4) for
the Eulerian polynomials, is given in Section 3.

To pass from the result for the binomial case to the related one for the negative
binomial case (2) it is convenient to note an identity involving both hn and gn,
which seems to be of some interest, also in view of the asymptotic behaviour of the
difference hn − gn.

Lemma 1. For any n = 1, 2, . . . and any q ∈ (0, 1)

gn(q) = hn(q)− 1/n− qn(log(q)− 1/n),(6)

where hn and gn are defined in (1) and (2), respectively.
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Proof. We use the induction with respect to n. For n = 1 (6) follows directly from
the Maclaurin expansion of the log fuction. Now assume that (6) holds for some
n = m− 1 ≥ 1 and consider n = m. Then applying the reccurence formula for the
binomial coefficients (

m
i

)
=
(

m− 1
i

)
+
(

m− 1
i− 1

)
,(7)

the identity
1
i

(
m + i− 2

i− 1

)
=

1
m− 1

(
m + i− 2

i

)
,

and the induction assumption, we get

gm(q) = q(hm−1(q) − qm−1 log(q)).

Now (7) and the identity

1
i

(
m− 1
i− 1

)
=

1
m

(
m
i

)
imply

qhm−1(q) = hm(q)− (1− qm)/m.

The above identity (6) allows us to conclude the approximation in the negative
binomial case (2) directly from Theorem 1. The expansion needs only a slight
modification of one of the coefficients from (5).

Theorem 2. For any k = 1, 2, . . .

∞∑
i=1

1
i

(
n + i− 1

i

)
piqn =

k−1∑
j=0

Aj(q)
pj+1

1
nj+1

− 1
n

+ o(1/nk).(8)

Proof. It follows immediately from Lemma 1 and Theorem 1.

Now we can give as a simple conclusion some explicit expansions, taking for
instance p = q = 1/2 as in the binomial case. Then directly from Theorem 2 one
has:

∞∑
i=1

1
i : 2i

(
n + i− 1

i

)
= 2n

(
1
n

+ o(1/n)
)

= 2n

(
1
n

+
2
n2

+ o(1/n2)
)

= 2n

(
1
n

+
2
n2

+
6
n3

+ o(1/n3)
)

= 2n

(
1
n

+
2
n2

+
6
n3

+
26
n4

+ o(1/n4)
)

Again, similarly as in the binomial case we can insert Aj(q) = pjE(Y j), j =
0, 1, . . . , where Y is a geometric nb(1, p) random variable, in (8) obtaining the
following form of the expansion:

∞∑
i=1

1
i

(
n + i− 1

i

)
piqn =

1
p

k−1∑
j=0

E(Y j)
nj+1

− 1
n

+ o(1/nk).
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3. Auxiliary results and proofs

Let us begin with rewriting the formula for hn.

Lemma 2. For any n = 1, 2, . . . and any q ∈ (0, 1)

hn(q) =
n∑

i=1

qn−i

i
− qn

n∑
i=1

1
i
.(9)

The proof of Lemma 2 uses a straightforward induction argument based on the
recurrence formula for the binomial coefficients (7) and is skipped. Another neat
derivation can be found in Tiago de Oliveira (1952), as has been already mentioned
in Section 1.

Observe that the second part of the formula (9), i.e. the expression

qn
n∑

i=1

1
i

= o(1/nk)

for any k = 1, 2, . . . . Consequently in the sequel we consider only the first part of
(9).

Lemma 3. Define for any n = 1, 2, . . .

a(0)
n = n

n∑
i=1

qn−i

i
, a(k)

n = n
(
a(k−1)

n − γk−1

)
, k = 1, 2, . . . ,

where the sequence (γk)k=0,1,... is defined by

γ0 =
1
p
, γk =

q

p

k−1∑
i=0

(
k
i

)
γi, k = 1, 2, . . . .

Then

lim
n→∞ a(k)

n = γk , k = 0, 1, . . . .(10)

Proof. In the first step of the proof we show that the following relations hold:

a(k)
n = q

k∑
i=0

(
k
i

)
a

(i)
n−1 + a(k−1)

n − γk−1 , k = 1, 2, . . . ,(11)

for any n = 2, 3, . . . .
To prove (11) we use an induction argument with respect to k. First let us take

k = 1. Then from the definition of a
(0)
n and the recurrence relation one obtains

a(1)
n = n(a(0)

n − γ0) = (n− 1)

(
n

n∑
i=1

qn−i

i
− γ0

)
+ a(0)

n − γ0

= (n− 1)

(
n

n−1∑
i=1

qn−i

i
+ 1− γ0

)
+ a(0)

n − γ0.

Obviously
γ0 = qγ0 + 1.
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Hence, continuing the above sequence of identities, we get

a(1)
n = (n− 1)

(
(n− 1)

n−1∑
i=1

qn−i

i
+

n−1∑
i=1

qn−i

i
+ 1− qγ0 − 1

)
+ a(0)

n − γ0

= (n− 1)

(
qa

(0)
n−1+

n−1∑
i=1

qn−i

i
−qγ0

)
+ a(0)

n − γ0 = qa
(1)
n−1 + qa

(0)
n−1 + a(0)

n − γ0,

which is exactly (11) for k = 1.
Now assume that (11) holds for some k = m − 1 ≥ 1. We will prove that then

it holds also for k = m. Observe that the definition of a
(m)
n and the induction

assumption imply

a(m)
n = (n−1)

(
q

m−1∑
i=0

(
m− 1

i

)
a

(i)
n−1 + a(m−2)

n − γm−2 − γm−1

)
+a(m−1)

n −γm−1.

Since the definition of γm−1 implies that

γm−1 = q

m−1∑
i=0

(
m− 1

i

)
γi,

then

a(m)
n = (n− 1)

(
q

m−1∑
i=0

(
m− 1

i

)
a

(i)
n−1 + a(m−2)

n

− γm−2 − q

m−1∑
i=0

(
m− 1

i

)
γi

)
+ a(m−1)

n − γm−1

= q

m−1∑
i=0

(
m− 1

i

)
(n− 1)(a(i)

n−1 − γi)

+ a(m−1)
n + (n− 1)(a(m−2)

n − γm−2)− γm−1.

Again using the induction assumption for a
(m−1)
n and the definition of a

(i)
n−1 we get

a(m)
n = q

m−1∑
i=0

(
m− 1

i

)
a

(i+1)
n−1 + q

m−1∑
i=0

(
m− 1

i

)
a

(i)
n−1

+ a(m−2)
n − γm−2 + (n− 1)(a(m−2)

n − γm−2)− γm−1.

Now we renumerate the first sum and then use (7) to get the final result (11):

a(m)
n = q

m∑
i=1

(
m− 1
i− 1

)
a

(i)
n−1 + q

m−1∑
i=0

(
m− 1

i

)
a

(i)
n−1 + n(a(m−2)

n − γm−2)− γm−1

= q
m∑

i=0

(
m
i

)
a

(i)
n−1 + a(m−1)

n − γm−1,

which ends the first step of the proof.
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The second part of the proof makes use of the celebrated

Stolz Theorem. Let (cn)n≥1 and (dn)n≥1 be two sequences of real numbers. If
dn →∞ as n →∞ and ∃ n0 such that ∀ n > n0, dn+1 > dn, then

lim
n→∞

cn

dn
= lim

n→∞
cn − cn−1

dn − dn−1
,

if any of the limits exists.

The induction argument with respect to k is used to prove (10). To use the Stolz
theorem for k = 0 observe that

a(0)
n =

∑n
i=1

1
iqi

1
nqn

=
cn

dn
.

Then
cn − cn−1

dn − dn−1
=

1
nqn

1
nqn − 1

(n−1)qn−1

=
1

1− nq
n−1

n→∞−→ 1
p
.

Consequently (10) for k = 0 follows from the Stolz theorem.
Now assume that (10) holds for k = m−1. Then, following the definition, rewrite

a
(m)
n as

a(m)
n =

q−n(a(m−1)
n − γm−1)

1
nqn

=
cn

dn
.

Consequently

cn − cn−1

dn − dn−1
=

n(a(m−1)
n − γm−1 − qa

(m−1)
n−1 + qγm−1)

1− nq
n−1

.

For the numerator we have

cn−cn−1 = n(a(m−1)
n −γm−1)−qn(a(m−1)

n−1 −γm−1) = a(m)
n −qa

(m)
n−1−q(a(m−1)

n−1 −γm−1).

Now applying (11) we get

cn − cn−1

dn − dn−1
=

q
∑m−1

i=0

(
m
i

)
a

(i)
n−1 + a

(m−1)
n − γm−1 − q(a(m−1)

n−1 − γm−1)

1− nq
n−1

.

Finally the Stolz theorem implies

lim
n→∞ a(m)

n = lim
n→∞

cn − cn−1

dn − dn−1
=

q

p

m−1∑
i=0

(
m
i

)
γi.

Now we are ready to prove the main result.

Proof of Theorem 1. Exploiting the recurrence definition of (a(r)
n ) given in Lemma

3 one can easily see, using for instance an induction with respect to r, that

a(r−1)
n − γr−1 = nr

 n∑
i=1

qn−i

i
−

r∑
j=1

γj−1

nj


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for any n = 1, 2, . . . , r = 1, 2, . . . . Thus, it follows from Lemma 3 that
n∑

i=1

qn−i

i
=

r∑
j=1

γj−1

nj
+ o(1/nr)

for any r = 1, 2, . . . . Now the final result concerning convergence is a consequence of
Lemma 2, while the form of coefficients follows from the uniqueness of the recurrence
relation (4) for the Eulerian polynomials, since γ0 = 1/p = A0(q)/p, i.e. γj =
Aj(q)/pj+1, j = 1, 2, . . . .
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