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Abstract 

The classical martingale characterizations of the Poisson process were obtained for 
point process or purely discontinuous martingale i.e. under additional assumptions on 
properties of trajectories. Here our aim is to search for related characterizations without 
relying on properties of trajectories. Except for a new martingale characterization, 
results based on conditional moments jointly involving the past and the nearest future 
are presented. 
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1. Introduction 

Let X = (Xt)t>o be a real stochastic process defined on a probability space (Q2, F, P), 
adapted to some filtration (Ft)t>o and Y = (Yt)t>o, where Yt = Xt - t Vt > O. The 
celebrated Watanabe martingale characterization theorem states that if X is a point process 
and (Yt, t)t>o is a martingale, then X is a Poisson process - see Watanabe (1964). Re- 
lated martingale characterizations were obtained for the doubly stochastic Poisson process in 
Bremaud (1981), for spatial Poisson processes in Ivanoff (1985) and Merzbach and Nualart 
(1986) and for set-indexed Poisson processes in Ivanoff and Merzbach (1993). If a structure 
of square integrable martingales is taken into account, then it is well known that if (Yt, Ft)t>o 
is a purely discontinuous martingale with jumps equal to +1, and (Y2 - t, Ft)t>0 is also a 
martingale, then X is a Poisson process - see for instance Elliott (1982), Chapter 12. 

Here our aim is to search for characterizations of the Poisson process based only on proper- 
ties of conditional and ordinary moments. Such an approach to the identification of stochastic 
processes goes back to the early 1980s and the development of the research in this area has 
been recently surveyed by Prakasa Rao (1998). In Bryc (1995), Chapter 8.4, applications to 
random vibrations and epidemics are outlined. Bryc (1998) presents an application of such 
characterizations to the identification of stationary random fields. 

An approach to martingale characterizations of the Poisson process on the real line, without 
taking into account properties of trajectories, was presented in Wesolowski (1990a). Instead, 
martingale properties for polynomial processes up to the third order were assumed. Another 
characterization involving conditional moments up to the second order with respect not only 
to the past but, additionally, jointly with respect to the past and the future was given in Bryc 
(1987). Here also no attention was paid to trajectory properties. 
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Conditional moments were also used to characterize the Poisson process in the renewal 
theory setting by Huang et al. (1994), extending earlier results by Cinlar and Jagers (1973), 
Holmes (1974) and Gupta and Gupta (1986). Another characterization based on the joint 
moments structure has been given by Fang (1991). 

The aim of the present note is to push ahead the subject by giving (i) a straightforward 
extension of the martingale characterization from Wesolowski (1990a) - considering the 
second and third ordinary moments instead of two of the martingale conditions (Section 2), 
(ii) a Poisson version of the martingale and reverse martingale characterization of the Wiener 
process obtained in Wesolowski (1990b) (Section 3), (3) a version of the Bryc (1987) result 
involving only the conditional variance with respect to the past and the nearest future (Section 
4). 

Throughout the paper stochastic processes are identified with the measures they generate in 
the space of all functions Rl+. 

2. Past conditioning 

A non-decreasing process X = (Xt)t,o is a Poisson process if only 

(Yt, Ft)t>o, (y2 - t, Ft)t>o and (Y 3-3tY -t, Ft)t>o 

are martingales, where Yt = Xt - t Vt > 0 - see Wesolowski (1990a). An immediate 

consequence is that in the class of thrice-integrable non-decreasing processes with independent 
increments the Poisson process is uniquely determined only by its moments up to the third 
order: E(Xt) = t, E(X2) = t2 + t, E(X3) = t3 + 3t2 + t, t > 0. 

Here we give a straightforward extension of the above-mentioned martingale character- 
ization by considering the second and third moments instead of the second and third order 
martingale properties. 

Theorem 2.1. Assume that X is a non-decreasing process. Let (Yt, )t)to> be a martingale. If 
E(Y2) = E(Y3) = t Vt > 0 then X is a Poisson process. 

The proof will be based on the following version of the Poisson central limit theorem for 
row-wise dependent triangular arrays obtained by Beska et al. (1982). 

Theorem 2.2. Let {Zn,k, k = 1,..., n;n > 1} be a double sequence of non-negative 
random variables adapted to a row-wise increasing double sequence of a-fields {n.,k, k = 

1, ...,n; n > 1} and let o C o n,o C n,1 , Vn V> 1, also be cr-fields. Iffor n - oc 

max E(Zn,k I |n,k-1) 0, (1) 
1 <k<n 

n 

2E(Zn,k I n,k-1) -* a > 0, (2) 
k=l 

k=l 

then the conditional distributions Sn = nk=l Zn,k given go are weakly convergent to the 
Poisson law with the parameter a. 
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Proof of Theorem 2.1. For any s < t consider a sequence of divisions of the interval [s, t]: 

s = tn,o < tn,l < * * * < tn,n = t, n = 1, 2, ..., 

such that 

lim max (tn,j 
- 

tn,j-i) = 0. 
n Ioo 1 <j <n 

Define double sequences of random variables (Zn,k, k = 1, .... n; n > 1) and a-fields 

(0n,kk= 1... n; ,> l)by 

Zn,k = Xtn,k 
- 

Xt,k-1, gn,k = tn,k , k = 0, 1,..., n; n > 1. 

Additionally, write go = Fs. Consider now any k = 0, 1, ...n, n > 1. Then the martingale 
property implies 

E(Zn,k I 9n,k-1) = tn,k - tn,k- 1 

Consequently the conditions (1) and (2) (with a = t - s) of Theorem 2.2 are satisfied. 
We want to show now that (3) is also fulfilled. Observe that for any E > 0 and for any b > 0 

we have, via the Markov inequality 

P EE(Zn,kI(Zn,k 
- 1I > b I n,k-1) > )) 

k=l 

< E- E( E(Zn,kl(|Zn,k - 1| > b | n,k-1)) = -1 E(Zn,kI(IZn,k - 1I > b)). 
k=l k=l 

Since xI(Ix -11 > b) < x(x- 1)2/b2 for any non-negative x (Zn,k > 0 a.s. by the assumption) 
then 

P( LE(Zn,kI(IZn,k - 1I > b I gn,k-1) > E) <_ -lb-2EE(Zn,k(Zn,k- 1)2). 
k=l k=l 

Now the form of the first three moments of Yt implies that 

E(Xt - Xs)(Xt -Xs - 1)2 = (t - s)2(t -s + 1) 

for any 0 < s < t. Consequently 

n 

EE(Zn,k(Zn,k 
- 1)2) < max (tn,k - tn,k-l)(t- S)2 n >o 0. 

k=1 I1<k<n 

Finally we conclude that all the assumptions of Theorem 2.2 are satisfied. Observe that Sn = 
Xt - Xs Vn = 1, 2,.... Hence the conditional distribution of Xt - Xs given the past is Poisson 
with parameter t - s for any 0 < s < t, which means that X is a Poisson process. 
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3. Separate past and (the nearest) future conditioning 

Assume, as above, that a process X = (Xt)t>o is adapted to a non-decreasing sequence 
of a-fields F = (t)t>o. Assume additionally that X is also adapted to another sequence 
of a-fields 9 = ()t)t>o which is non-increasing. Recall that (Xt, qt)t>o is called a reverse 

martingale if it is integrable and E(Xs I gt) = Xt for any 0 < s < t. 
An analogue of the celebrated Levy characterization of the Wiener process, proved in 

Wesolowski (1990b) (see also Wise (1992)) states that: if (Xt, t)t>o, (Xt2 - t, t)t>o are 
martingales and (Xt/t, t, t)t>0, ((X2-t)/t2, t)t>o are reverse martingales then X is a Wiener 
process. Here we present a version of this result for the Poisson process. 

For the process X define, as in the previous section, the process Y = (Yt)t>o by Y = X - t 
Vt > 0. 

Theorem 3.1. Let X be a square integrable non-decreasing process. If 

(Yt, ,t)t>o, (Y -t, St)t>O 

are martingales and 

(Yt/t, t)t>0o, ((yt2 - Y - t)/t2, ~t)t>o 

are reverse martingales then X is a Poisson process. 

Proof Observe that the assumptions imply for any 0 < s < t that E(Yt Ys) = Ys, 
E(Ys I Yt) = (s/t)Yt, var(Yt I Ys) = t - s and var(Ys I Yt) = (s(t - s)/t2)Yt. Consequently 
it follows from Bryc (1985) that E(Y3) exists Vt > 0. 

Also it follows easily that E(Yt) = 0 and E(Yt2) = t Vt > 0. Using basic properties of 
conditioning we can now compute 

E(Y Yt2)= E[E(Ys I t)Y2] = -E(t3). 
t 

On the other hand we also have 

2 2 2 3 
E(r,YS2) = E[YsE(Y, I F)] = E[y,(Y2 - (t - s))] = E(YV). 

Now apply the same approach to E(YsYt): 

E(Y3) = E[YE(Yt I) = E(Y ] = ) = E[E(2 )Y] 

2 2 

= s2E E( 2 gt Yt -+ E[E(Ys + s I gt)Yt] 

s ss s. 
= t-E[(Yt -Yt-t)Yt] + tE(Yt2) + sE(Yt) 2E(Yt3)--+ s. 

Taking into account these relations we get the identity 

S S 2 S 

sE(Y - E( Yt3)--- + s V0 < 
s 

< t. 
t t 
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This yields E(Yt3) = t Vt > 0. The result now follows from Theorem 2.1. This yields E(Yt3) = t Vt > 0. The result now follows from Theorem 2.1. This yields E(Yt3) = t Vt > 0. The result now follows from Theorem 2.1. This yields E(Yt3) = t Vt > 0. The result now follows from Theorem 2.1. 
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Observe that instead of reverse martingality conditions it suffices to consider only the 
nearest future, i.e. for any 0 < s < t 

E(Ys I Yt) = -Yt, t 

and 
s(t - s) 

var(Ys I Yt) = -t Yt. 

Also it follows from the above proof and Theorem 2.1 that the assumption about (y2 -t, ht)t>o 
can be reduced to 

var(Yt I Ys) = t-s 

for any 0 < s < t. 

4. Joint past and nearest future conditioning 

Although martingale characterizations are not a very recent device, investigations which 
take into account conditional moments given the past and the future states jointly appeared 
first in 1980s. In a series of papers (Pluciniska (1983), Wesolowski (1984), Bryc (1985)) it 
was proved that the Gaussian process is uniquely determined by its second order conditional 
structure (linearity of regressions and non-randomness of conditional variances) - see also 

Chapter 8 in the monograph Bryc (1995). The ideas developed originally for Gaussian pro- 
cesses were then transformed for the Poisson process by Bryc (1987), where it was proved 
that a square integrable process X = (Xt)t>o with E(Xt) = t and cov(Xs, Xt) = min{s, t}, 
Vs, t > 0, is Poisson if only the conditions 

E(Xs I Xrl, ... , Xrn, Xr) = ol Xr + P1, (4) 

E(Xs I Xrl ....X, Xr ,, X ,Xt) = a2Xr + P2Xt + tl, (5) 

var(Xs Xrl,...,Xrn,Xr) = , (6) 

var(Xs I Xrl,, ..., Xrn, Xr, Xt) = (Xt - Xr) (7) 

hold for any 0 < rl < ... < rn < r < s < t, n = 1, 2,..., where al, a2, 1, f2, Y, y are 
some real constants (depending possibly on r,...., rn, r, s, t). 

This result was slightly refined in Wesolowski (1988) by reducing the assumptions to (4), 
(5) and (7). Also similar results were given for other processes in Wesolowski (1989, 1993). 
Here we will further reduce the assumptions of Bryc's theorem, first to (5) and (7), and then 
show that the essence is hidden in (7) only. 

Theorem 4.1. Assume that X = (Xt)t>o is a square integrable process such that E(Xt) = t 
and cov(Xs, Xt) = s V 0 < s < t. If the conditions (5) and (7) hold then X is a Poisson 
process. 

Proof Obvious computations give 

t -s s-r 
a'2 = , f2 = 7, =0. 

t- r t -r 

Our aim is to show that (4) holds with a = 1 and Pl = s - r. To this end write 
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and consider 

E[E(Xs I Y, Xr) - (Xr + s - r)]2 = E[E(E(Xs IY, Xr, Xt)IY, Xr) - (Xr + s - r)2, 

where t > s is arbitrary. This from (5) is equal to 

_t-s s-r E E\-rXr+ _--rXt I Y, Xr)-(Xr+s-r) 
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But under (5) 

E(var(Xs I Y, Xr, Xt)) 

t -s s --r 
= E (Xs -s)-t _ (Xr - r) - - (Xt - t) 

t- -r t-r 

= var(Xs) + var(Xr) + G r) var(Xt) - 2t cov(Xr, Xs) 
t- r t- t-r t-r 

s - r (t - s)(s - r) 
2--- cov(X,, Xt) + 2 cov(Xr, Xt). 

t-r (t -r)2 

Consequently applying the formulas for the first moments and covariances one easily gets 

E(var(Xs I Y, Xr, Xt)) 

(t-s\2 /s - r 2 t-s s-r (t - s)(s - r) 
=s+ r+ t-2 -22- 2 s+2 r 

t - r \t-r t- r t-r (t - r)2 

(t - s)(s - r) 
t-r 

Now the result follows from the uniqueness of the function minimizing E(Xs -0(Y, Xr, Xt))2. 
Observe that only condition (5), together with the form of ordinary moments of the first and 

second order was taken into account in the proof of Theorem 4.1 and the above considerations. 

Consequently the same argument leads to analogous extensions of characterizations of the 

Wiener, gamma and other processes - see Wesolowski (1989, 1990b, 1993). 
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