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Abstract

Let X1; X2; : : : be a sequence of iid random variables having a continuous distribution; by
R1; R2; : : : denote the corresponding record values. All the distributions allowing linearity of
regressions either E(Rm+k |Rm) or E(Rm|Rm+k) are identi�ed. c© 2000 Elsevier Science B.V. All
rights reserved.
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1. Introduction

Let X1; X2; : : : be a sequence of independent and identically distributed (iid) random
variables (rvs) with a continuous distribution function (df) F . Let us de�ne U (1) = 1
and for n¿ 1

U (n) = min{k ¿U (n− 1): Xk ¿XU (n−1)} :
The record value sequence (Rn) is then de�ned by

Rn = XU (n); n= 1; 2; : : : :

In this paper we are interested in linearity of regression of a record statistic on an-
other one, not necessarily adjacent. Usually such investigations are preceded by discov-
ering their order statistics counterparts. According to such a scheme, Nagaraja (1977),
following Ferguson (1967) for order statistics, proved that if E(Rm+1|Rm) = aRm + b
for some real a and b and for some m¿1, then, except for a change of location and
scale, only the following three cases are possible:
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(1) a= 1 and F(x) = 1 − e−x, x¿ 0 (exponential type distribution),
(2) a¿ 1 and F(x) = 1 − x�, x¿ 1 (Pareto type distribution),
(3) a¡ 1 and F(x) = 1 − (−x)�, −1¡x¡ 0 (power type distribution), where

�= a=(1 − a).

Dually, Nagaraja (1988), making use of some analogy between conditional distribu-
tion of record values and order statistics distribution and exploiting Ferguson (1967)
result, observed that if E(Rm|Rm+1) = cRm+1 + d, then, except for a change of location
and scale:

(4) c = 1 and F(x) = 1 − e−ex , x ∈ R (negative Gumbel-type distribution),
(5) c¿ 1 and F(x) = 1 − e−(−x)� , x¡ 0 (negative Fr�echet-type distribution),
(6) c¡ 1 and F(x) = 1 − e−x

�
, x¿ 0 (Weibull distribution),

where � = c=[n(1 − c)]. Recall that (4)–(6) are asymptotic distributions of suitably
normalized minima of iid rvs. A similar duality for order statistics is rather obvious
– it su�ces to take negatives of the original observations. For record values it needs
some more e�ort and a useful work could be a thorough explanation of a bright idea
introduced in Nagaraja (1988), which helps to settle the problem – this is going to be
done in the Section 4, while investigating the dual problem in the non-adjacent case.

Up to late 1990s there was no visible progress in studying linearity of regression
for non-adjacent order statistics. In Weso lowski and Ahsanullah (1997) the �rst result
of this kind appeared for the spacing equal to 2. It was followed by the analogu-
ous result for the record values, namely, under the assumption of absolute continuity
it was proved in Ahsanullah and Weso lowski (1998) that the linearity of regression
E(Rm+2|Rm) = aRm + b holds only for the family of distributions (1)–(3) identi�ed in
Nagaraja (1977). Both the results were based on solutions of some di�erential equa-
tions for the densities – which approach will not be followed here. L�opez-Bl�azquez
and Moreno-Rebollo (1997) considered the problem for non-adjacent order statistics
and record values under some stringent smoothness assumptions on the df F . Un-
fortunately their solution of di�erential equation, being a crucial point of the proof,
raises some reservations. In Dembi�nska and Weso lowski (1998) the problem of lin-
earity of regression for any, possibly non-adjacent, order statistics has been completely
resolved under the mild and natural assumption of continuity of F . The present paper
develops some of the ideas of that paper in the case of linearity of regression for,
not necessarily adjacent, record values. Both the cases: (1) E(Rm+k |Rm) = aRm + b and
(2) E(Rm|Rm+k)=cRm+k+d are considered. Direct results, given in Section 2, are rather
easy, and need only simple computations, which are skipped. The families of distri-
butions include all the distributions contained in (1)–(3) and (4)–(6), respectively.
Section 3 covers the converse case (1), by applying an integrated Cauchy functional
equation methodology, while the dual converse case (2), is solved in Section 4 by a
careful explanation of the idea taken from Nagaraja (1988) combined with a result for
the order statistics dual to that from Dembi�nska and Weso lowski (1998).

Let us point out that a related question based on independence of Rm+k−Rm and Rm
was considered in Dallas (1981) and Nayak (1981) (see, also Rao and Shanbhag (1986)
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for a correct version of the proof). The recent monograph by Arnold et al. (1998),
especially Chapters 4:2:2, 4:3:2 and 4:5, can be consulted for a review of the state
of art in the area of characterization of distributions by properties of records up to
mid-1990s.

2. Linearity of regression

Let us start with a detailed de�nitions of six basic distributions making appearance in
the context of linearity of regressions for record values. In the de�nitions the shift and
location parameters are included to observe their relation with the slope and intercept
coe�cients of the regression lines.

Denote by POW(�; �; �) a power distribution de�ned by the probability density
function (pdf)

f(x) =
�(�− x)�−1

(�− �)�
I(�;�)(x);

where �¿ 0, −∞¡�¡�¡∞ are some constants. By PAR(� ; �; �) denote the
Pareto distribution with the pdf

f(x) =
�(� + �)�

(x + �)�+1 I(�;∞)(x);

where �¿ 0, and �, � are some real constants such that � + �¿ 0. By EXP(�; 
)
denote the exponential distribution with the pdf

f(x) = � exp(−�(x − 
))I(
;∞)(x);

where �¿ 0 and 
 are some real constants. By NG(�; 
) denote the negative Gumbel
distribution with the pdf

f(x) = � exp(�(x − 
))exp(−e�(x−
));

where �¿ 0 and 
 are some real constants. By NF(�; 
; �) denote the negative Fr�echet
distribution with the pdf

f(x) =
�(�− 
)�
(�− x)�+1 exp

(
−
(
�− 

�− x

)�)
I(−∞; �)(x);

where �¿ 0, and �, 
 are some real constants such that �−
¿ 0. Finally, by W(�; �; 
)
denote the Weibull distribution with the pdf

f(x) =
�(x − �)�−1

(
− �)�
exp

(
−
(
x − �

− �

)�)
I(�;∞)(x);

where �¿ 0, and �, 
 are some real constants such that 
¿�.
The conditional pdf of Rm+k given Rm is (see, for instance, Ahsanullah, 1995) as

given below:

fRm+k |Rm=x(y) =




1
�(k) [R(y) − R(x)]k−1 f(y)

1−F(x) for −∞¡x¡y¡ + ∞;
0 otherwise;

(1)
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where R(x) = −log(1 − F(x)).
Consequently,

E(Rm+k |Rm = x) =
∫ ∞

x
y

1
�(k)

[R(y) − R(x)]k−1 f(y)
1 − F(x)

dy (2)

for [L] a.a. x ∈ (lF ; rF) (where lF = inf{x: F(x)¿ 0} and rF = sup{x: F(x)¡ 1} and
[L] denotes the Lebesgue measure).

It can be easily veri�ed, by making use of (2), that for the exponential, power and
Pareto distributions

E(Rm+k |Rm) = aRm + b; (3)

where the constants a and b have the following forms:

1. For EXP(�; 
)

a= 1; b=
k
�
:

2. For PAR(�; �; �), �¿ 1 and

a=
(

�
�− 1

)k
¿ 1; b= �

� k − (�− 1)k

(�− 1)k
:

3. For POW(�; �; �)

a=
(

�
�+ 1

)k
¡ 1; b= �

(�+ 1)k − � k
(�+ 1)k

:

Using the formulas for the joint density function of Rm and Rm+k , see for instance
again Ahsanullah (1995), it follows that

fRm|Rm+k=y(x) =




(m+k)!
m!(k−1)!

1
Rm+k(y)

Rm(x)[R(y) − R(x)]k−1 f(x)
1−F(x) −∞¡x¡y¡ +∞;

0 otherwise:

Consequently

E(Rm|Rm+k = y) =
(m+ k)!
m!(k − 1)!

1
Rm+k(y)

∫ y

−∞
xRm(x)[R(y) − R(x)]k−1

× f(x)
1 − F(x)

dx (4)

for [L] a.a. x ∈ (lF ; rF).
It can be easily veri�ed, using (4) above, that for the negative Gumbel, negative

Fr�echet and Weibull distributions

E(Rm|Rm+k) = cRm+k + d;

where the constants c and d have the following forms:
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1. For NG(�; 
)

c = 1; d=
(m+ k)!
�m!

k−1∑
i=0

(−1)i+1

i!(k − 1 − i)!(m+ i + 1)2 ¡ 0:

2. For NF(�; 
; �) if �¿ 1=(m+ 1)

c =
�(m+ k + 1)�(m− 1

� + 1)

�(m+ 1)�(m− 1
� + k + 1)

¿ 1; d= �(1 − c):

3. For W(�; �; 
)

c =
�(m+ k + 1)�(m+ 1

� + 1)

�(m+ 1)�(m+ 1
� + k + 1)

¡ 1; d= �(1 − c):

3. Characterizations by linearity of regression of Rm+k on Rm

The following result shows that the examples of distributions (exponential, Pareto
and power) given in the preceding section are the only for which linearity of regression
(3) holds.

Theorem 1. Let X1; X2; : : : be iid rvs with a continuous df such that E(|Rm+k |)¡∞;
where m and k are �xed positive integers. If E(Rm+k |Rm) = aRm + b; for some real
numbers a and b; then only the following three cases are possible:

1. a= 1 and X1 ∼ EXP(�; 
) where �= k=b¿ 0 and 
 is an arbitrary real number;
2. a¿ 1 and X1 ∼ PAR(�; �; �) where � = k

√
a=( k

√
a− 1)¿ 1; �= b=(a− 1) and �

is a real number such that � + �¿ 0;
3. 0¡a¡ 1 and X1 ∼ POW(�; �; �) where � = k

√
a=(1 − k

√
a); � = b=(1 − a) and �

is a real number such that �¡�;

Remark. The condition E(|Rm+k |)¡∞ holds if E(X1) and E(X+
1 (lnX+

1 )m+k−1) are
�nite (see Nagaraja, 1978).

Before, we give the proof of the above result let us recall, following Rao and
Shanbhag (1986), an important result concerning possible solutions of an extended
version of the integrated Cauchy functional equation (for a wide review on applications
of integrated Cauchy functional equations for characterization problems consult the
monograph of Rao and Shanbhag, 1994).

Theorem 2. Consider the integral equation∫
R+

H (x + y)�(dy) = H (x) + c for [L] a:a: x ∈ R+;

where c is a real constant; � is a non-arithmetic �-�nite measure on R+ such
that �({0})¡ 1 and H :R+ 7→R+ is a Borel measurable; either non-decreasing or
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non-increasing function that is not identically equal to a constant [L] a.e. Then ∃� ∈
R such that∫

R+

exp(�x)�(dx) = 1

and H has the form

H (x) =

{

+ �(1 − exp(�x)) for [L] a:a: x if � 6= 0


+ �x for [L] a:a: x if �= 0

where �; �; 
 are some constants. If c = 0 then 
= −� and � = 0.

Now we are ready to prove our main result.

Proof of Theorem 1. Using a version of (1) for the conditional df one can write

E(Rm+k |Rm = x) =
∫ ∞

x
y

1
�(k) �F(x)

[R(y) − R(x)]k−1d[ − �F(y)]

F a.e., where �F = 1 − F . Consequently, the linearity of regression assumption, (3)
implies that

1
�(k)

∫ ∞

x
y
[
log
( �F(x)

�F(y)

)]k−1

d
[
−

�F(y)
�F(x)

]
= ax + b (5)

for F-almost all x’s. Following the argument applied in Ferguson (1967) it follows,
that (lF ; rF) is the support of the distribution de�ned by F and F is strictly increasing
in this interval. Notice also that since both the sides of (5) are continuous with respect
to x we can assume that the equation holds for any x ∈ (lF ; rF).

Substituting t = �F(y)= �F(x), i.e. y= �F
−1

(t �F(x)) (observe that �F
−1

exists because �F
is strictly decreasing in (lF ; rF)) in (5) one gets

1
�(k)

∫ 1

0

�F
−1

(t �F(x))(−log(t))k−1 dt = ax + b:

Observe that the left-hand side of the above equation is an increasing function of x.
Consequently a¿ 0. Now substitute �F(x) = w, hence x = �F

−1
(w), and thus

1
�(k)

∫ 1

0

�F
−1

(tw)(−log(t))k−1 dt = a �F
−1

(w) + b; w ∈ (0; 1):

Divide both sides by a and substitute once again t = e−u and w = e−v. Then

1
a�(k)

∫ ∞

0

�F
−1

(e−(u+v))uk−1e−u du= �F
−1

(e−v) +
b
a
; v ∈ (0;+∞):

Now let G(v) = �F
−1

(e−v). Consequently,∫
R+

G(u+ v)�(du) = G(v) +
b
a
; v ∈ (0;+∞);
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where � is a �nite measure on R+, which is absolutely continuous with respect to the
[L] measure and is de�ned by

�(du) =
1

a�(k)
uk−1e−u du:

Observe that G is strictly increasing on [0;∞) since it is a superposition of two
strictly decreasing functions. Consequently, the assumptions of Theorem 2 are ful�lled.
Hence, since G is continuous it follows that

G(v) =

{

+ �(1 − exp(�v)) if � 6= 0;


+ �v if �= 0;
(6)

v¿ 0, where �, �, 
, � are some constants and∫
R+

exp(�x)�(dx) = 1: (7)

From (7) we get

1 =
1

a�(k)

∫ ∞

0
xk−1e(�−1)x dx;

which means that �¡ 1, since the integral at the right-hand side has to converge.
Consequently

1
a

= (1 − �)k : (8)

Obviously, there is a unique �¡ 1 that ful�ls (8): �= 1 − k
√

1=a.
Observe that

1. a= 1 i� �= 0,
2. a¿ 1 i� 0¡�¡ 1,
3. a¡ 1 i� �¡ 0.

Coming back to (6), for a non-zero �, we can write:

�F
−1

(e−x) = 
+ �(1 − e�x)

which implies �F(z) = ((�+ 
− z)=�)−1=�, for z such that �(�+ 
− z)¿ 0.
Consider now three possible cases:

1. If a= 1 and �= 0 then from (6) we get:

�F
−1

(e−x) = 
+ �x:

Hence �¿ 0 and then �F(z) = e−(z−
)=� = e−�(z−
) for z¿
, where � = 1=�¿ 0.
Hence X1 ∼ EXP(�; 
), where

• �= k=b by the observation from Section 2,
• 
 is a real number.



202 A. Dembi�nska, J. Weso lowski / Journal of Statistical Planning and Inference 90 (2000) 195–205

2. If a¿ 1 and �¿ 0 then

�F(z) =
( −�
z − (�+ 
)

)1=�

=
(

− (�+ 
)
z − (�+ 
)

)1=�

=
(
� + �
z + �

)�

for z¿�, where �= −(�+ 
); � = 
; �= 1
� ¿ 0.

Thus X1 ∼ PAR(�; �; �), where

• �= 1
1− k

√
1=a

=
k√a

k√a−1
,

• �= b=(a− 1),
• � is a real number such that � + �¿ 0.

3. If 0¡a¡ 1 and �¡ 0 then

�F(z) =
(
�+ 
− z
�+ 
− 


)−1=�

=
(
�− z
�− �

)�
for z ∈ (�; �), where �= �+ 
; � = 
; �= −1=�¿ 0.
Thus X1 ∼ POW(�; �; �), where

• �= − 1
1− k

√
1=a

=
k√a

1− k√a ,

• �= b=(1 − a),
• �¡� is a real number.

4. Characterizations by linearity of regression of Rm on Rm+k

In this section we will determine the distributions for which

E(Rm|Rm+k) = cRm+k + d; (9)

where m and k are some positive integers. From (9) and (4) one gets immediately

(m+ k)!
m!(k − 1)!

1
Rm+k(y)

∫ y

−∞
xRm(x)[R(y) − R(x)]k−1 d(R(x)) = cy + d; (10)

F a.e. Now we are going to apply an idea, relating the conditional distribution of
records to distribution of order statistics (see, for instance, Lemma 4:3:3 in Arnold
et al. (1998)) having its origins in Nagaraja (1988). This is a clever device but the
original argument seems to bene�t from more clari�cations: First it is observed there
that the conditional joint distribution of R1; : : : ; Rn given Rn+1 is identical with the joint
distribution of the order statistics from a random sample of size n from the df

F1(x|y) =

{
R(x)=R(y); x¡y;

1; x¿y:

while one possibly should be rather interested in relations between the conditional
distribution of records, say Rn given Rn+1 and a conditional distribution of order statis-
tics, say Tk:n given Tk+1:n, from some observations on T with a df related possibly
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somehow to F . Then it is claimed that the reference to an analoguous result for or-
der statistics (Ferguson, 1967, in that case) brings the solution. Beneath, we give the
detailed argument, which con�rms in general Nagaraja’s intuitions.

Note that Eq. (10) is equivalent to the set of equations

(m+ k)!
m!(k − 1)!

1
Qm+k
z (y)

∫ y

lF
xQmz (x)[Qz(y) − Qz(x)]k−1 d[Qz(x)] = cy + d

for y ∈ (lF ; rF) and ∀z ∈ (lF ; rF), where

Qz(y) =

{
R(y)=R(z) for y6z;

1 for y¿z:

is a continuous df. Thus, condition (9) is equivalent to the set of conditions:

E(Y (z)
m+1:n|Y (z)

m+1+k:n) = cY (z)
m+1:n + d (11)

∀z ∈ (lF ; rF), where Y (z)
1 ; Y (z)

2 ; : : : are iid rvs with the df Qz and n is a natural number
such that n¿k + m+ 1.

To determine the distributions for which (11) holds we will use the following aux-
iliary result, which is a version of the main theorem from Dembi�nska and Weso lowski
(1998).

Lemma 1. Assume that X1; X2; : : : are iid rvs with a common continuous df F . Let
E(|Xk:n|)¡∞. If for some k6n− r and some real c and d

E(Xk:n|Xk+r:n) = cXk+r:n + d; (12)

then only the following three cases are possible:

1. c= 1 and F(x) = e�(x+
) for x6− 
; F(x) = 1 for x¿ − 
; where 
 and �¿ 0 are
some real numbers (the negative exponential distribution).

2. c¿ 1 and F(x) = ((� + �)=(−x + �))� for x¡ − �; F(x) = 1 for x¿ − �; where
�¿ 0; �; � are some real numbers; � + �¿ 0 (the negative Pareto distribution).

3. 0¡c¡ 1 and F(x) = 0 for x6− �; F(x) = ((� + x)=(� − �))� for x ∈ (−�;−�)
and F(x) = 1 for x¿ − �; where �¿ 1=k; �; � are some real numbers such that
�¡� (the negative power distribution).

Proof. Putting Yk = −Xk condition (12) turns into

E(Yn−k+1:n|Yn−k−r+1:n) = cYn−k−r+1:n − d (13)

(because Xk:n = −Yn−k+1:n). Now the result follows immediately from Theorem 1 of
Dembi�nska and Weso lowski (1998).

Thus, if (11) holds then only the following three cases are possible:

1. c = 1 and Qz(y) = e�(y−z) for y6z, ∀z ∈ (lF ; rF). Then ∀z ∈ (lF ; rF) and ∀y6z
e−�z log(1 − F(z)) = e−�y log(1 − F(y)):
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Hence ∀z ∈ (lF ; rF)

e−�z log(1 − F(z)) = const:

Consequently F(y) = 1 − e−e�(y−
)∀y ∈ R, where �¿ 0 and 
 ∈ R. Thus, F is a
negative Gumbel-type df.

2. c¿ 1 and Qz(y) = ((−z+ �)=(−y+ �))� for y¡z, ∀z ∈ (lF ; rF). Then, as in point
(1) it follows that F(y)=1−e−((�−
)=(�−y))� , for y ∈ (−∞; �), where �¿ 1=(m+1)
and �¿
; consequently F is a negative Fr�echet-type df.

3. 0¡c¡ 1 and Qz(y) = ((� + y)=(� + z))� for y ∈ (−�; z), ∀z ∈ (lF ; rF). Then,
similarly as above it follows that F(y) = 1− e−((y−�)=(�−�))� , for y ∈ (�;∞) where
�¿ 0 and �¿�, i.e. F is a Weibull type df.

The above discusion proves the result dual to Theorem 1.

Theorem 3. Let X1; X2; : : : be iid rvs with a continuous df such that E(|Rm|)¡∞;
where m is a positive integer. If for some positive integer k

E(Rm|Rm+k) = cRm+k + d;

where c and d are real numbers; then only the following three cases are possible:

1. c = 1 and X1∼NG(�; 
),
2. 0¡c¡ 1 and X1∼NF(�; 
; �),
3. c¿ 1 and X1∼W(�; �; 
).

The relations between c, d in the above theorem and the parameters of the respective
distributions are as described in Section 2.

Finally, let us point out that essentially the proof of Theorem 3 makes also use of
Theorem 2 (due to Rao and Shanbhag, 1986), since it was exploited for proving the
main result in Dembi�nska and Weso lowski (1998).
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