
Statistics & Probability Letters 47 (2000) 69–73

An extension of the Darmois–Skitovitch theorem
to a class of dependent random variables

Abram Kagana ;1, Jacek Weso lowskib;∗

aDepartment of Mathematics, University of Maryland, College Park, MD 20742, USA
bMathematical Institute, Warsaw University of Technology, 00-661 Warsaw, Plac Politechniki 1, Poland

Received September 1997; received in revised form May 1999

Abstract

Linear transformation of a factorizable distribution is a product measure i� it is Gaussian under some natural assumptions.
The result extends the classical Darmois–Skitovitch theorem. c© 2000 Elsevier Science B.V. All rights reserved
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1. Introduction

The following remarkable result was proved independently in Darmois (1953) and Skitovitch (1953) and
is now known as the Darmois–Skitovitch theorem (DST).

Theorem 1. Let X1; : : : ; Xn be independent random variables. If linear forms L1 = a1X1 + · · · + anXn

and L2 = b1X1 + · · · + bnXn are independent then for each index i (i = 1; : : : ; n) for which aibi 6= 0; Xi is
normal.

This theorem stimulated much research aimed at extending the DST in di�erent directions such as: (i)
considering more abstract structures for the X ’s while preserving independence relations (see, e.g., Ghurye and
Olkin, 1962; Krakowiak, 1985; Feldman, 1988); (ii) replacing independence of linear forms by constancy of
regression conditions (see, e.g., Lukacs and King, 1954; Laha, 1956; Kagan and Zinger, 1985); (iii) analytical
weakening of the independence condition on the linear forms (Kagan, 1987, 1988a,b); (iv) replacing X1; : : : ; Xn

with a stochastic process (see Pluci�nska and Weso lowski, 1995).

∗ Corresponding author.
1 The main idea of this paper arose while the �rst author was visiting Warsaw University of Technology in October 1995.
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In this paper, while preserving independence of linear forms, a special form of dependence for X1; X2; : : : ; Xn

is considered. It is based on factorization properties of the characteristic function (ch. f.) of a random vector
which was introduced in Kagan (1988b):

De�nition 1. A random vector X=(X1; : : : ; Xn) (or its distribution) belongs to the class Dn; k (is k-factorizable)
i� its ch. f. � has the form

�(t1; : : : ; tn) =
∏

16i1¡···¡ik6n

Ri1···ik (ti1 ; : : : ; tik ) (1)

for any (t1; : : : ; tn) ∈ Rn; where Ri1···ik is a continuous complex-valued function such that Ri1···ik (0; : : : ; 0) = 1
for any 16i1 ¡ · · ·¡ik6n.

The random vector X (or its distribution) belongs to the class Dn; k(loc) (is locally k-factorizable) if the
representation (1) holds in some neighborhood of the origin.

Properties and examples of Dn; k measures were thoroughly studied in Section 2 of Kagan (1988b). (Observe
that 1-factorizability means independence of components and in this sense the above de�nition extends the
concept of independence.) The main result of that paper was the following version of the DST:

Theorem 2. Let (L1; : : : ; Lm) denote the vector of linear forms in independent random variables X1; : : : ; Xn.
That is;

Lj = aj1X1 + · · · + ajnXn; j = 1; : : : ; m:

If the joint distribution of (L1; : : : ; Lm) belongs to the class Dm;m−1(loc) then for each index k (k = 1; : : : ; n)
for which a1k · : : : · amk 6= 0; (i.e.; Xk enters each of the forms) Xk has a normal distribution.

A group theoretic version of this theorem has been given by Lisyanoy (1995). The study of factorizable
measures has been continued in Weso lowski (1991a,b,1994,1997) involving, for example, the ch. f. represen-
tation, relationships to Gaussian conditional structure, the central limit problem, and decomposition questions.

Here a kind of a dual version of Theorem 2 is considered. While keeping the linear forms independent, the
joint distribution of the X ’s is assumed to be factorizable. As a consequence, normality of the linear forms
but not of the parent X ’s is obtained. This is partially due to the fact that the Cram�er decomposition theorem
may not hold for Dn; k classes in general.

2. The DST for factorizable measures

Consider a k-factorizable random vector X , and denote by L a vector of independent linear forms in its
components. It turns out that under rather general assumptions the linear forms themselves are necessarily
Gaussian. Unfortunately, it does not allow one to conclude that even the univariate marginals of the X are
Gaussian except for the case of k = 1, i.e., independence.

The main result is contained in:

Theorem 3. Let n¿ 1. Assume that X ∈Dn; k for some k; 16k6n; and L=(L1; : : : ; Lm)=AX ∈Dm;1; where
A = [aij] is an m× n real matrix; for some m; k + 16m6n.

Then Lj is a normal random variable if ej ∈ span {aj1 ; : : : ; ajk} for any 16j1 ¡ · · ·¡jk6n; where al =
(a1l; : : : ; aml) is the lth column of the matrix A; l = 1; : : : ; n; and ej = (0; : : : ; 0; 1; 0; : : : ; 0) is the jth element
of the canonical basis in Rm; j = 1; : : : ; m.
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Before we give the proof of this result, let us emphasize that normality of linear forms in k-factorizable
random variables does not imply that the Xk ’s are also normal. This follows from the more general consid-
erations in Weso lowski (1997). An explicit and easy example is the following: consider Gaussian random
vector (Y1; Y2; Y3) and an independent non-Gaussian random vector (U1; U2; U3) with independent components.
De�ne X1 = Y1 − U2 + U3; X2 = U1 + Y2 − U3; X3 = −U1 + U2 + Y3. Then it can be easily checked that
X = (X1; X2; X3) ∈ D3;2 and is non-Gaussian, while L = X1 + X2 + X3 = Y1 + Y2 + Y3 is Gaussian.

Proof of Theorem 3. Denote by �j the ch. f. of Lj; j = 1; : : : ; m. Then by the independence assumption one
has, for any t = (t1; : : : ; tm) ∈ Rm;

m∏

j=1

�j(tj) = E exp(i(t;L)) = E exp(i(t; AX)) = E exp(i(ATt;X)) = �X (ATt);

where �X is the ch. f. of X . Consequently, the factorization property (1) of X implies
m∏

j=1

�j(tj) =
∏

16j1¡···¡jk6n

Rj1 ;:::; jk ((aj1 ; t); : : : ; (ajk ; t))

for any t ∈ Rm. Next, we take logarithms of the both sides of the above equation. Then, in a neighborhood
of the origin,

m∑

j=1

 j(tj) =
∑

16j1¡···¡jk6n

rj1 ;:::; jk ((aj1 ; t); : : : ; (ajk ; t)); (2)

where the  ’s and r’s are logarithms of the respective �’s and R’s.
Suppose the multiindex j=(j1; : : : ; jk); 16 j1 ¡ · · ·¡jk6n, takes J di�erent values. Let us enumerate them

by numbers from 1 through J in an arbitrary order. Once the order is chosen, the notation j=k; k ∈ {1; : : : ; J}
means that the multiindex j takes the value number k in our enumeration.

Denote by A( j) the matrix with rows aj1 ; : : : ; ajk . Then (2) can be rewritten as

m∑

j=1

 j(tj) =
J∑

j=1

r j(A( j)t) (3)

where t takes values in a neighborhood of the origin in Rm.
Now take any vector u1 (with su�ciently small norm) orthogonal to all rows of A(1) and consider u1 + t

instead of t in (3). Subtracting (3) from such a new equation one easily sees that the �rst term of the sum
on the right hand side cancels. Hence

m∑

j=1

 j;1(tj) =
J∑

j=2

r j;1(A( j)t);

where

 j;1(a) =  j(a) −  j(a− b); j = 1; : : : ; m;

for any |a|; |b| su�ciently small and

r j;1(A( j)t) = r j(A( j)[t + u1]) − r j(A( j)t):

After having performed the lth step (1¡l6J ) one has the equation
m∑

j=1

 j;l(tj) =
J∑

j=l+1

r j;l(A( j)t);
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where

 j;l(a) =  j;l−1(a) −  j;l−1(a− b); j = 1; : : : ; m;

for any |a|; |b| su�ciently small and

r j;l(A( j)t) = r j;l−1((Aj)[t + ul]) − r j;l−1(A( j)t)

for t from a neighborhood of the origin and with any ul (with su�ciently small norm) orthogonal to all rows
of A(l). Finally, after J steps, the right-hand side vanishes, so that

m∑

j=1

 j; J (tj) = 0;

where the left-hand side contains only summands  j; J (tj) such that ej is not contained in the hyperplanes
spanned by rows of A( j); j = 1; : : : ; J . Let B be the set of such j’s. Then for any j ∈ B and small |t| it
follows that  j; J (t) = 0. Upon returning to the original  j’s and following the known results (see, e.g., Kagan
et al., 1973, Chapter 1.5.) we obtain  j(t) = Qj(t); j ∈ B, where t takes values in a neighbourhood of the
origin and Qj is a polynomial of degree at most J − 1.

According to the classical theorem due to Marcinkiewicz (1938), if in some neighborhood of the origin a
ch. f.  (t)=exp(P(t)), where P is a polynomial, then  is the ch. f. of some normal distribution. Application
of this fact to �j concludes the proof.

Remarks. 1. Theorem 3 is a straightforward extension of the original DST. It follows from the fact that
in the case of independence, i.e. when k = 1, independence of a pair of linear forms based on a common
set of independent X ’s can be always reduced to the situation when all the X ’s are present in each of the
linear forms by simply deleting those which are not present in both. This is possible since in the resulting
equation for the ch. f., cancellation can be done in a neighborhood of the origin. Hence the DST follows from
Theorem 3 via the Cram�er decomposition theorem.

2. In general, the Cram�er theorem does not work for k-factorizable X ’s. The fact that the m-dimensional
linear transformation L(X) has a Gaussian distribution does not imply that X is Gaussian too – see the
example after Theorem 3. However, for m¿k the additional assumption that all (k − 1)-variate marginals of
the X are Gaussian implies joint normality (see Theorem 2 in Weso lowski, 1997). Hence it follows that if
it is assumed additionally in Theorem 3 that the (k − 1)-dimensional marginals of X are normal, then X is
n-variate Gaussian.

3. Observe that if k =m−1; n=m and A is non-singular, then Lj is normal if only b1j · : : : ·bmj 6= 0, where
B = A−1. This is a trivial consequence of the main result of Kagan (1988b).

4. From the method used in the proof of Theorem 3 it follows that, if L1 and (L2; : : : ; Lm) are independent
(under the obvious assumption on coe�cients of linear forms) then L1 is Gaussian.

5. The assumption of Theorem 3 that the hyperplanes span{aj1 ; : : : ; ajk} do not contain respective vectors
from the canonical basis cannot simply by omitted. (Similarly, the analogous condition cannot be omitted
from the hypotheses of the DST.)

In fact, take X = (X1; X2; X3) such that X1 is independent of (X2; X3). Then, plainly X ∈D3;2. If now
L1 = X1 + a12X2 + a13X3; L2 = a22X2 + a23X3; L3 = a32X2 + a33X3, then L1; L2; L3 are independent whenever
the linear form a12X2 + a13X3; L2; L3 are independent (i.e. (X2; X3) is Gaussian).

Therefore, in principle, the normality of L1 cannot be deduced from independence of L1; L2; L3 since the
distribution of X1 can be arbitrary.
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