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1. INTRODUCTION

The modified power series distribution (MPSD(a, g(%))) defined by the
probability mass function (pmf) of the form

pk=a(k)[ g(%)]k�f (%), k # [0, 1, ...],
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where a, f, and g are nonnegative functions, %�0, was introduced by
Gupta (1974). As a generalization of the power series family it includes a
wide variety of discrete probability distributions; consequently it is not
only of theoretical but also of applied interest. A recent development in this
area was given by Gupta et al. (1995).

In this paper we study the identifiability of MPSD mixtures via posterior
means. Problems of this kind were considered for the first time by Johnson
(1957), where a Poisson mixture and a linear regression model were
treated. The development of the area includes, on one side, studying
other, possibly more general families of mixtures and, on the other side,
considering any consistent posterior mean without specifying its exact
form. More recently such questions for discrete models were investigated
by, among others, Cacoullos and Papageorgiou (1983), Xekalaki (1983),
Papageorgiou (1985), Kyriakoussis (1988), Kyriakoussis and Papageorgiou
(1991), Johnson and Kotz (1992), Arnold et al. (1993), Sapatinas (1995),
Weso*owski (1995, 1996), Papageorgiou and Weso*owski (1997), and
Gupta and Weso*owski (1999).

These problems fall in the general area of identifiability and identifica-
tion of statistical models. The basic reference here is the monograph by
Prakasa Rao (1992). Applications of the approach we adopted here in the
Bayesian context for studying properties of Bayes estimators of the uniform
scale parameter, i.e., in a continuous model, were given recently in Lillo
and Mart@� n (1999, 2000)��see also references in these papers for earlier
related results.

For a random vector (X, Y ) the mixture is defined by the conditional
distribution +Y | X . A starting point of our interest was the following result
from Weso*owski (1996): Denote by P(*) the Poisson distribution with the
pmf

p(k)=e&* *k

k !
, k # N=[0, 1, ...],

*>0. If +Y | X =
d

P(bcX), b>0, 0<c<1, and E(X | Y )=acY, a>0, then
(X, Y ) has a bivariate Poisson�Poisson conditionals distribution (i.e., both
the conditional distributions are of the Poisson type��see Arnold and
Strauss (1991)). Observe that this is a special case of MPSD mixture with
a(k)=bk�k !, g(X )=cX, and f (X )=exp(bcX). The aim of this paper is to
extend the above result by considering the question of unique determina-
tion (identifiability) for a wide class of MPSD mixtures by a consistent
posterior mean. A special case of such a problem with g(%)=1�% was
studied in Weso*owski (1995). On the other hand it also complements the
results for the power series distribution (PSD) mixtures obtained recently
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in Sapatinas (1995) and Weso*owski (1995). (Recall that the PSD is
included in the MPSD by taking g(%)=%).

In Section 2 the infinite support case is studied and it is shown that the
MPSD mixture is identifiable if only the parameter function g is decreasing.
Possible forms of the regression functions in the case of a power function
g are given. In the finite support case, Section 3, only MPSD mixtures with
a power function g are considered. In both the cases the theoretical results
are illustrated with examples involving special cases of MPSD mixtures
(Poisson, geometric, truncated geometric, binomial) and some exact forms
of posterior means. Translating it to the Bayesian language: problems of
unique determination of the prior for MPSD mixtures by Bayes estimates
of the mean are studied.

2. MPSD MIXTURES WITH INFINITE SUPPORT

Assume that (X, Y ) is a discrete random vector such that SX=supp
(X )/N and SY=supp(Y )/N. If p(n | k), n # SY , k # SX , is the mixture
kernel for +Y | X and m(n)=E(X | Y=n), n # SY , then the identifiability
problem, by the Bayes theorem, can be reduced to studying uniqueness of
the solution of the following equation

:
k # SX

[m(n)&k] p(n | k) pX (k)=0, n # SY , (1)

where pX is the unknown pmf of X. Such a general approach was discussed
in Arnold et al. (1993) revealing essential difficulties, particularly in the
case of infinite supports. Here we give a solution for a wide family of
MPSD mixtures. It should be emphasized that we follow neither the tradi-
tional method of using classical identifiability (see Teicher (1961)) as it is
done in Cacoullos and Papageorgiou (1983) and Sapatinas (1995), nor the
approach via transformation of X to another random variable (rv) with
distribution determined by moments (see Weso*owski (1995)). Instead we
develop a new method based on the limiting behaviour of the function m.

Theorem 1. Let (X, Y ) be a random vector with SX=SY=N and E(X )
<�. Assume that +Y | X=MPSD(a, g(X )), where g is a decreasing function.
Then the joint distribution of (X, Y ) is uniquely determined by the regression
function E(X | Y ).

Proof. The general equation (1) in the case of an MPSD mixture takes
the form

:
�

k=0

[m(n)&k] un(k) v(k)=0, n # N, (2)
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where u(k)=g(k)�g(0)<1, v(k)= f (0) pX (k)�[ f(k) pX (0)], k # N. Obviously,
u(0)=v(0)=1 and u is decreasing. Rewrite (2) as

m(n)+m(n) :
�

k=1

un(k) v(k)& :
�

k=1

kun(k) v(k)=0,

n # N. Observe that, since f (k)�a(0), \k�0, then for sufficiently large n's
the second term is majorized by m(n) un(1) and the absolute value of the
third by un(1) E(X ). Since limn � � un(1)=0 we obtain that limn � � m(n)=0.

Now dividing (2) by un (1) one gets the identity

m(n)
un(1)

+[m(n)&1] v(1)+ :
�

k=2

[m(n)&k] \u(k)
u(1)+

n

v(k)=0, n # N.

Again taking n � �, similarly as in the above argument, we conclude that
the limit exists and

v(1)= lim
n � �

m(n)
un(1)

.

Similarly, after obtaining v(i), i=1, ..., k&1, one can divide (2) by un(k) to
obtain the general recurrence formula

v(k)=
1
k

lim
n � �

:
k&1

i=0

[m(n)&i] \ u(i)
u(k)+

n

v(i), k=2, 3, ... .

Consequently the sequence (v(k))k=0, 1, ... is uniquely determined by the
function m. By the definition of v it follows that pX is identifiable up to a
multiplicative factor pX (0), which can be determined by the normalizing
condition ��

i=0 pX (i)=1. Finally the joint distribution of (X, Y ) is charac-
terized by +Y | X and pX . K

Theorem 1 immediately gives identifiability of the joint distribution with
Poisson or geometric conditional distributions considered in Arnold and
Sarabia (1991).

For the Poisson mixture the following extension of the main result of
Weso*owski (1996) (see also Section 1) holds:

Corollary 1. Let (X, Y ) be a random vector such that E(X )<� and
+Y | X=P(bcX), b>0, 0<c<1. Then the joint distribution of (X, Y ) is
uniquely determined by E(X | Y ).

Denote by ge( p) the geometric distribution defined by the pmf

p(k)=(1& p) pk, k # N.

For the geometric mixture, via Theorem 1, we have
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Corollary 2. Let (X, Y ) be a random vector such that E(X )<� and
+Y | X= ge(bcX), b, c # (0, 1). Then the joint distribution of (X, Y ) is uniquely
determined by E(X | Y ).

Both the above corollaries complement recent results on identifiability of
the Poisson and geometric mixtures via the form of E(cX | Y ) or E(c&X | Y )
obtained in Weso*owski (1995).

It follows from the proof of Theorem 1 that we have the following
recurrence relations for pX :

pX (k)=
f (k)

k
lim

n � �
:

k&1

i=0

[m(n)&i] \ g(i)
g(k)+

n pX (i)
f (i)

, k=1, 2, ..., (3)

which for any given function m allows us to get an exact expression for pX .
So our result not only lies in identifiability but also gives a method how to
find the joint distribution. Of course in many cases computations involved
in (3) might be difficult and laborious. However some special and interesting
cases can be quite easily settled; e.g., see below.

Formula (3) says that the distribution is uniquely determined by limiting
properties of the function m (as the argument tends to infinity). On the
other hand pX and +Y | X uniquely determine the function m. It means that
m is completely defined by its limiting properties (contained in (3)). Now
we are going to follow this direction more thoroughly.

Define

ci, j (n)=[m(n)& j] \g( j)
g(i)+

n

for j=0, ..., i&1, i, n=1, 2, ... . Then (3) implies

k
pX (k)
f (k)

= :
k&1

i=0

bk&i
pX (i)
f (i)

, k=1, 2, ..., (4)

where bj , j=1, 2, ..., are defined by

bj = lim
n � � \c j, 0(n)+ :

j&1

i=1

(cj, i (n)&bj&i) B i+ ,

j=2, 3, ..., b1= lim
n � �

c1, 0(n),

Bj =
1
j

:
j&1

i=0

bj&i Bi , j=1, 2, ..., B0=1.

The definition of b's is correct since all the limits exist.
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Now applying (4) to (2) we arrive at the following representation of the
regression function

m(n)=
��

k=1 k(g(k))n pX (k)� f (k)
��

k=0 (g(k))n pX (k)� f (k)

=
��

k=1 (g(k))n �k&1
i=0 bk&i pX (i)�f (i)

��
k=0 (g(k))n pX (k)�f (k)

=
��

k=0 [(g(k))n pX (k)� f (k)] ��
i=1 bi (g(i+k)�g(k))n

��
k=0 (g(k))n pX (k)�f (k)

, (5)

where the last equation follows by changing the order of summation and
then changing the variable in the numerator.

From here until the end of the section we consider g(x)=%x, % # (0, 1).

Proposition 1. If +Y | X=MPSD(a, %X), % # (0, 1), then

E(X | Y )= :
�

i=1

bi% iY, (6)

where bi , i=1, 2, ..., satisfy the identities (4).

Proof. It suffices to observe that g(i+k)�g(k)=%i for all k's in (5). K

Consequently any special form of E(X | Y ) given by (6) allows us to
calculate exact values for pX . In some special cases the calculations can be
easily performed. For example:

1. If E(X | Y )=b1%Y, i.e., b2=b3= } } } =0, then (4) implies

pX (k)=
bk

1

k !
f (k)
f (0)

pX (0), k=1, 2, ... . (7)

2. If E(X | Y )=q%Y�(1&q%Y), q # (0, 1), i.e.,

E(X | Y )= :
�

i=1

(q%Y) i,

then bi=qi, i=1, 2, ..., and (4) implies

pX (k)=qk f (k)
f (0)

pX (0), k=1, 2, ... . (8)
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In the next two remarks we apply the above considerations for charac-
terizing some Poisson and geometric mixtures (L and K denote suitable
normalizing constants):

Remark 1 (Poisson mixtures). Consider a Poisson mixture +Y | X=
P(bcX), b>0, 0<c<1, which is an MPSD mixture with f (k)=exp(bxk),
k=0, 1, ... . We study two cases:

Case 1. Assume that E(X | Y )=acY, a>0. Then (7) gives

pX (k)=L
ak exp(bck)

k !
, k=0, 1, ... .

Consequently

P(X=k, Y=n)=K
akbnckn

k ! n !
, k, n=0, 1, ...,

which is the bivariate Poisson�Poisson conditionals distribution derived as
the only distribution for which both the conditional distributions are
Poisson in Obrechkoff (1938) (see also Arnold et al. (1992)). Thus we have
just reproved Weso*owski's (1996) result. Similar characterizations of this
distribution involving the same mixture and either of E(c\X | Y )=
exp[a(c\1&1) cY] have been given recently in Weso*owski (1995).

Case 2. Assume now that E(X | Y )=acY�(1&acY), 0<a<1. Conse-
quently (8) implies that

pX (k)=Lakebck
, k=0, 1, ... .

Hence

P(X=k, Y=n)=K
akbnckn

n !
, k, n=0, 1, ...

which is the bivariate geometric�Poisson conditionals distribution. Again it
follows from Arnold and Strauss (1991) that it is the only bivariate
distribution for which +Y | X=P(s(X )) and +X | Y= ge(t(Y )), where ge( p),
0<p<1, is the geometric distribution defined earlier. Observe that in our
case t(Y )=acY and E(Y | X )=bcX.

Remark 2 (Geometric mixtures). Consider a geometric mixture +Y | X=
ge(bcX), b, c # (0, 1), which is an MPSD mixture with f (k)=1�(1&bck),
k=0, 1, ... . Again two cases will be studied:
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Case 1. Assume that E(X | Y )=acY, a>0. Then (7) gives

pX (k)=L
ak

(1&bck) k !
, k=0, 1, ...

and consequently (X, Y ) has the Poisson�geometric conditionals distribution
defined in Case 2 of Remark 1. Obviously +X | Y=P(acY) and E(Y | X )=
bcX�(1&bcX).

Case 2. Assume that E(X | Y )=acY�(1&acY), 0<a<1. Then (8)
implies that

pX (k)=L
ak

1&bck , k=0, 1, ... .

Consequently

P(X=k, Y=n)=Kakbnckn, k, n=0, 1, ...

which is the bivariate geometric�geometric conditionals distribution, as
introduced in Arnold and Strauss (1991) (see also Arnold et al. (1992)).
Recall that it is the only distribution with both conditional distributions of
the geometric form. Other characterizations of this distribution involving
the same mixture and either of E(c\ | Y )=(1&acY)�(1&acY\1) were
given recently in Weso*owski (1995).

3. MPSD MIXTURES WITH FINITE SUPPORT

In this section we treat the case SX=SY=[0, 1, ..., M], where M is a
given positive integer. Then (1) defines a system of linear equations

:
M

k=1

[m(n)&k] p(n | k) w(k)=&m(0) p(n, 0), n=0, 1, ..., M,

with unknown w(k)= pX (k)�pX (0), k=1, 2, ..., M. Consequently the mixture
is identifiable if the coefficient matrix [[m(n)&k] p(n | k)]k, n=1, ..., M is
nonsingular (for more general comments see Arnold et al. (1993)). Hence
the solution of the identifiability problem depends on some additional, not
only the consistency, properties of the function m. It also seems to be the
case in the general finite MPSD mixture. However, if g is a power function
it appears that the finite MPSD mixture is identifiable without any further
restrictions on m.
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Theorem 2. Let (X, Y ) be a random vector with SX=SY=[0, 1, ..., M].
Assume that +Y | X=MPSD(a, g(X )), where g is a power function. Then the
joint distribution of (X, Y ) is uniquely determined by any consistent regression
function E(X | Y ).

Proof. Assume that the mixture is not identifiable, i.e., there are two
different pmfs p1 and p2 on SX such that

m(n)=
�M

k=1 ktknp1(k)� f (k)

�M
k=0 tknp1(k)� f (k)

=
�M

j=1 jt jnp2( j)�f ( j)

�M
j=0 t jnp2( j)� f ( j)

for any n=0, 1, ..., M, where t is a given positive parameter. Consequently

:
M

k=1

:
M

j=0

ktn(k+ j) p1(k) p2( j)
f (k) f ( j)

= :
M

k=0

:
M

j=1

jtn(k+ j) p1(k) p2( j)
f (k) f ( j)

,

which can be rewritten in the form

:
M

i=1

tinzi=0, n=0, 1, ..., M, (9)

where

zi= :
i

j=1

p1( j) p2(i& j)& p1(i& j) p2( j)
f (i& j) f ( j)

, i=1, 2, ..., M. (10)

Observe that (9) is a system of linear equations with unknown zi ,
i=1, 2, ..., M, and nonsingular coefficient matrix [tkn]k, n=1, ..., M . Conse-
quently zi=0, i=1, ..., M.

The next step lies in proving that there exist numbers A, B, and k,
i=1, ..., M, such that p1(i)=k iA and p2(i)=ki B, i=1, ..., M. Here we use
induction with respect to i. For i=1 it is easily seen that (10) and z1=0
imply p1(1)�p1(0)= p2(1)�p2(0)=k1 . Now assume that the result holds for
i=1, ..., m and consider i=m+1. Since, by induction assumption,

p1( j) p2(i& j)=kj ki& j AB= p1(i& j) p2( j), j=1, ..., i, i=1, ..., m

then again zm+1=0 via (10) implies that

p1(m+1) p2(0)= p1(0) p2(m+1).
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Consequently p1 and p2 differ only by a constant factor A�B, which must
be 1, via the normalizing condition. Finally the joint distribution of (X, Y )
is unique. K

Now some special cases will be considered.
Denote by b(M, p) the binomial distribution defined by

pk=\M
k + pk(1& p)M&k, k=0, 1, ..., M,

where p # (0, 1) and M is a positive integer. Let

p(q, t, %)=
qt%

qt%+1&q
(11)

for some 0<q, t<1 and %>0. Then b(M, p(q, t, %)) is an MPSD distribution
with a(k)=qk(1&q)M&k, g(%)=t% and f (%)=(qt%+1&q)&M. Consequently
Theorem 2 implies

Corollary 3. Let (X, Y ) be a random vector with SX=SY=[0, 1, ...,
M] and +Y | X=b(M, p(q, t, X )), where p(q, t, X ) is defined in (11). Then
the joint distribution of (X, Y ) is uniquely determined by E(X | Y ).

Identifiability of this type of binomial mixture by the form of E(t\X | Y )
has been proved recently in Weso*owski (1995). The above result can be
used to give a new characterization of a kind of bivariate binomial�binomial
conditionals distribution originally derived in Arnold and Strauss (1991) as
the only distribution for which both conditional distributions are binomial.

Corollary 4. If +Y | X=b(M, p(q2 , t, X )) and E(X | Y )=Mp(q1 , t,
Y ), where 0<q1 , q2 , t<1, and M is a positive integer then (X, Y ) has the
bivariate binomial�binomial conditionals distribution defined by the pmf

P(X=i, Y= j)=K \M
i +\

M
j + q i

1q j
2(1&q1)M&i (1&q2)M& j t ij,

i, j=0, 1, ..., M.

The above result complements a recent characterization of the general
binomial�binomial conditionals distribution based on +Y | X=b(n2 , p(q2 , t,
X )) and any one of

E(t\X | Y )=\1&q1+q1 tY\1

1&q1+q1tY +
n1

,
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where 0<q1 , q2 , t<1, and n1 , n2 are positive integers, given in Weso*owski
(1995).

Similarly identifiability of a truncated geometric mixture can be established:

Corollary 5. Assume that (X, Y ) is a random vector such that

P(Y=n | X=k)=
(1& pk) pkn

1& pk(M+1) , k, n=0, 1, ..., M,

where 0<p<1 and M is a positive integer. Then E(X | Y ) uniquely
determines the joint distribution of (X, Y ).

Proof. It follows immediately from Theorem 2 since +Y | X is an
MPSD mixture with g(%)= p%, a(k)=1 and f (k)=(1& pk)�(1& pk(M+1)),
k=0, 1, ..., M. K
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