Sociedad de Fstadistica e Investigacion Operativa
Test (2001) Vol. 10, No. 1, pp. 121-131

Discrete distributions for which the regression of the

first record on the second is linear

Fernando Lépez-Blazquez®
Departamento de Estodistico e Investigacidn Operafive
Universidad de Sevilla, Spain

Jacek Wesolowski
Wydziat Matemotyks @ Nawk Informacyinych
Politechnike Warszawska, Polund

Abstract

The linearity of regression of the first record on the second is examined for discrete
random varialbles. Both ordinary and weak records are considered. The analysis
involves the determination of all possible linear relationships and all possible prol»-
ability distributions. Several characterizations of geometric distributions are also
shown.
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1 Introduction

For a sequence X = {X,}n>1 of independent identically distributed (iid)
random variables let us define record times as U(1) = 1, U(n) = inf{j >
Un—1): X; > Xppon), for n=2,3,.... Then R, = Xy, is called the
n-th record of the sequence X. The linearity of the regression of 12,1, given
R, within the class of continuous distributions was studied for the first time
in Nagaraja (1977), where a family of three distributions with this property
was identified. Nagaraja (1988) also described a class of distributions for
which the regression of R, on H,1 is linear, and obgerved that the expo-
nential distribution is the only distribution for which both the regressions
for the adjacent records are linear. All these results were obtained under
the assumption that the commeon distribution of X; is continuous.
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Instead of the regular records defined above, for the discrete distribu-
tions Vervaat (1973) proposed to use weak records, which are defined by
weak record times V(1) = 1, V(n) =inf{j > V(n - 1) : X; > Xvonyhs
for n = 2,3,.... Then, W, = XV(n) is called the n-th weak record. This
definition seems to be much more natural in the discrete case, since it gives
no priority to the index of the ohservation, which agrees with the intuition
for the iid observations. Observe that in the case of continuous distribu-
tions R,, = W,, a.s. Furthermore, in the discrete case weak records are also
defined for distributions with bounded support, while for ordinary records
this is not possible, without additional assumptions.

We restrict ourselves to supports of X;’s of the form {0,1,..., N} with
N possibly equal to infinity, The joint distributions for weak records can
be easily derived

n—1

POW) = kiyeo W =) = o, [[ 25, 0< kg <k <N, (LD

—1 G, -

where py = P(Xy = k) and gx = D ;o4 p5, kK 2 0. Obviously, &, < N if
N =00 in (1.1). -

In the case of ordinary records, as a bounded support is not permitted,
N = oo and the joint distribution is

n—1

.
P(Ry =K1y B = k) =i, [] qiﬁ 0< ki< - < ko < 0.
p=] tFrTl

Consequently, P(W,1 =W, = k) =p/q., 0 <k <1, and P(R,1q =
R, = k) = pi/geiq, 0 < k < 1 < oo, so both conditional distributions
have a simple form. Consequently, the problem of the linearity of the re-
gression of R,y on R, was solved in Korwar (1984), where the family of
distributions consisting of the geometric tail and negative hypergeometric
of the second type tail distributions was characterized - see also comments
in the monograph of Arnold, Balakrishnan and Nagaraja (1998). The same
problem for the regression of W, 41 on W, was solved in Stepanov (1993)
and Wesolowski and Ahsanullah (2000), where the question of the linear-
ity of the regression of W, 1o on W, was also completely resolved. More
characterizations through weak records can be seen in Aliev (1998).

Nothing is known about regressions in the opposite direction, i.e. for
E(R,|Rop1) or E(W, W, 41) which seem to be much more complicated.
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This is mainly due to the fact that the formulae for the respective condi-
tional distribution, even for the simplest adjacent case, are quite compli-
cated. This paper is devoted to a thorough discussion of the linearity of
the regression in the easiest case, i.e. for n = 1. Section 2 is devoted to
weak records, while ordinary records are considered in Section 3.

2 Linearity of regression for weak records

The joint probability mass function of the first two weak records can be
easily determined as

From (2.1) it can be immediately deduced that the conditional distribution
of Wy given Wo is

(,'j 3

0<j3<k

= < <
=0 Cp

PWy=j |Wy=k)=

with ¢; = pj/q;, 7 = 0. It is obvious that ¢; € (0,1], for all j in the support
of X7. In particular ¢y = pg and if IV is finite then ¢y = L.

Note that given a probability mass function the quantities ¢; are cal-
culated as the ratio between p; and g;. From the ¢;’s the probability mass
function can be obtained, at least formally, as

i-1
o= o, pj = ¢ H (1—em), 7> 1. (2.2)

m=H{

For technical reasons that will be more fully understood in the proof of
our main result, we need some conditions that ensure that given positive
real numbers ¢;s, the sequence of p;’s, defined in (2.2) is a probability mass
function with p; > 0, 7 > 0.

Lemma 2.1. Assume that {c¢;};>0 5 a sequence of numbers belonging to
(0,1]. Let N =inf{j > 0: ¢; = 1}, (inf(d) = oo). Define o sequence
(05}, by (22). If

(a) N < 0o or
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(b) N =00 and 3 77 cj =00
then {p; };\:0 is a probability mass function and p; > 0, j=0,1,...,N.

Proof. If N is finite the proof follows immediately since g5 — px. Thus
we will consider only the case N = co. It is obvious that p; > 0, for all
J > 0. Let us consider the partial sums 5, = Zi‘:‘:o p;. By induction, it can
be proved that 1 — 5, = H?:U(l —¢j), for all k > 1. Consequently, we have
to show that limg (1 — S;) = 0 or equivalently,

k—1
li log(l — ¢;) = —oo. 2.3
Y log(1 — ;) = —oo (23)

F=0

Condition (2.3) obvicusly holds, without any additional assumptions, if
the sequence {(:j};?in does not converge to zero. If the sequence {(:_;i}?i[] has
a limit equal to zero the result follows from the inequality, log(l —z) < —x

for any z € (0, 1), and the assumption that } % ¢; = co. C

The distribution defined by a sequence {c¢;} as in (2.2), under the condi-
tions specified in Lemma 1, is called the generalized geometric distribution,
including obviously the ordinary geometric distribution if all ¢;’s are equal.
Such distributions will be identified in this section as the only discrete
distributions with the support {0,1,..., N} that have the property of the
linearity of the regression

E(Wy | W) = 8Wy + (2.4)
for some real numbers o and 3.

Theorem 2.1. Let X; be o sequence of discrete non-degenerate random
varicbles with the support {0,1,..., N} for which the linearity of the re-
gression of Wy given Wy defined by (2.4) holds. Then o =0, 3 € (0,1)
and the probability mass function of X; is of the generalized geometric type
defined by (2.2) and with § = 3/(1 — 73)

(o) if 3 € (1/2,1) then N is finile and

T(j + 8)N!
o — LUHIN o oy

= N;
7 F(AT +6)JP 3

g mgd
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(b) if 3 = 1/2 then N = co and ¢j = ¢y for any j > 0, ie. {pi}i=o
is the probability mass function of the geometric distribution: p; =
en(l — e}, j = 0;

{e) if 3¢ (0,1/2) then

LG +9)

Wcﬂy 720, «e& (U, 1)-

¢j =

Proof. The property of the linearity of the regression given in (2.4) implies

that
i

k
ch_,- = (8k + «) Z ¢, (2.5)
J=0 =0
for all k ¢ {0,1,..., N}, with ¢; = p; /q; ¢ (0,1]. In particular, for & =0,
equation (2.5) gives U = axeyp = ey and, asg pg > 0, we obtain o = 0.

It is obvious that the slope & must be a positive number. Moreover, as
W, < W3 as. then 3 must be less than or equal to one. Obgerve that for
3 =1 we obtain from (2.5) that ¢ = 1 and N = 0, and consequently the
X;’s are concentrated at zero, which is not possible. Finally, we conclude
that @ € (0,1).

Subtract from (2.5) evaluated at k + 1, identity (2.5) evaluated at k to

obtain
k41

(R(1—8) + Dexy =8> ¢y, (2.6)
Jj=0
for k € {0,1,...,N -1}

Write expression (2.6) for k — 1 and subtract this from the original one.

It follows that

(k—1(1-58)+1

Cptl = i
LT RO -8 M

kef{l,... ,N—1}. (2.7)
Observe that identity (2.5) with k& = 1 gives ¢; = 3¢ /(1 — 3). Therefore,
(2.7} is also valid for k& = 0 and can be rewritten as

k+ao

] = ——— “- o N - '
Ch+1 k+ 1Ck7 k 6{07 ) 1}: (2 8)

with § = 3/(1— 3).
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By recurrence, it follows from (2.8) that

[(k+46)
Yy = —— ¢ LN .
Ck 1—\(5)}{4 <o, k € {01 1 } (2 9)
Observe further that
k
log(ck) = log(ey) + Zlog(l + -1/, k=1,2,.... (2.10)
i=1

Since the series )77 log(1 + (6 — 1)/j) for 6 > 1 (which is equivalent to
3 > 1/2) diverges to oo (note that for sufficiently large j log{1+(5—1)/4) >
(6 — 1)/(24)), then it follows that ¢ — oo as k — co. Since all ¢;’s are
bounded by 1 it follows that N < co. Consequently, cx = 1, and by (2.9)
it follows that

I'(d)N!
DN +8)

and so the first part of the theorem is proved.

On the other hand, it follows immediately from (2.9) that for & = 1,
ie. 3 =1/2, we have ¢; = ¢q for any k =0,1,...,N. Then N = co and
{p;};>0 is geometric, i.e. p; =p(1—p)f, j=0,1,..., with p= c.

For § € {0,1) (which is equivalent to 8 € (0,1/2)) we have log{1 —

(I —é)/4) < —(1 —&)/j for any j = 1,2,.... Consequently the series
ey log(L+ (0 — 1)/j) diverges to —oo and it follows from (2.10) that
limg .o ¢ = 0. Now, by the previous lemma, it suffices to show that, in
this case, > 7 cx = oo. To this end we use the Raabe criterion, which

Po = cp =

says that it suffices to show that limg_, o k(1 — ¢x1/cx) 15 less than one.

But s s
(G LA N
(o) mh(o ATy e

]

The discrete distributions for which E(Wi, | W;) is linear for a given
fixed ¢ € {1,2,...} were studied in Stepanov (1993) and Wesclowski and
Ahsanullah (2000). This family consists of the geometric and negative hy-
pergeometric of the first and second type distributions. From these results
and Theoremn 2.1 we obtain immediately a characterization of geometric
distributions which can be considered as the discrete version of the charac-
terization of the exponential law obtained in Nagaraja (1988).
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Corollary 2.1. Assume that X; has support {0,..., N} (N < o). If both
the regressions E{W| | W3) and E(W; | W) are linear then the common
distribution of the X;’s is geomelric.

FProof. It follows that both the negative hypergeometric probability mass
functions are not of the generalized geometric type as specified in Theorem

2.1. L]

3 Ordinary records

The joint probability mass function of the first two ordinary records can be
easily determined as

P(Ry =j, B2 = k) = prpj/gin, (3.1)

for any 0 < j < k < co. From (3.1) it follows that the conditional distri-
bution of iy given K, is defined by

()I,j
k=1 ?
=0 d?'

P(Ri=j | R =k)= 0<j<k<oo

with d; = p;j/qj41, 7 > 0.

Note that given a probability mass function the quantities d; are calcu-
lated as the ratio between p; and g;4¢. From the d;’s the probability mass
function can be obtained, as

do d,‘ i 1

e, pj: 1+d_; 1+dm

iz 1 3.2
]_‘I—d[]’ » J — ( )

m=0

Agalin, for technical reasons, we need some conditions that ensure that
given positive real numbers d;, j > 0, the sequence p;, j > 0, is a probability
mags function; then, obviously, it is a probability mass function of the
generalized geometric type as defined by (3.2) with ¢; = d;/(1+d;), j = 0.

Lemma 3.1. Lei {d;};>0 be a sequence of positive real numbers. If
Z?iu d; = too, then the sequence {p;};>o defined as in (3.2) is a proba-
bility mass function with p; > 0, for all 7 > 0.
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Proof. Define ¢; =d;/(1+d;), 7 =0,1,.... Observe that d; = ¢;/(1—¢;) <
¢j since ¢; € (0,1), j > 0. Since the series ) 77, dj diverges to infinity it
follows that Zj‘ia ¢; = oo. The result is then an immediate consequence of
Lemma 2.1. Ll

Our aim is to characterize discrete distributions for which
E(RJ | Rz) = !1/3] RQ —I— Xy, (33)

for some real numbers o and 9. Such a characterization is given in the
following theorem.

Theorem 3.1. Let X;, j =1,2,..., be discrete iid random variables with
the common support {0,1, ...} for which the lincarity of the regression of
Ry on Ry defined by (3.3) holds. Then oy = — 3, 51 ¢ (0,1) and the
common probability mass function of X;’s is of the generalized geomelric
type defined by (3.2) with dy > 0,

I'(k + 6)

dn = 4 B> 1.

and § = 31 /(1= 5).

Proof. The property of the linearity of the regression given in (3.3) implies
that

k—1 k=1
j=a §=0

for all & > 1, with d; = p;/gj+1 > 0. In particular, for k = 1, expression
(3.4) gives 0 = (81 + a)do and as dy > 0, we obtain oy = — 3.

Observe also that the slope 3; must be a positive number, otherwise for
large values of k the right side of (3.4) will be negative, which is impossible,
since the left side is always non-negative. Moreover, as Ry < Hp as,
E(Ry | R2) = 31(R2 — 1) < Ry a.s. or equivalently, 5y < k/(k — 1) for all

k > 1, from which we conclude that 3 < 1.

Following similar arguments ag in the proof of Theorem 2.1, we get the
recurrence formula
E+4

— G >

A1 =

with § = 31 /(1 — 31).
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Performing the recurrence according to (3.5), it can be shown that

= = ———dy, k>0 (3.6)

On comparing (3.6) with (2.9) in the proof of Theorem 2.1, and repeat-
ing the argument given there, we get

o0, ifd>1
lim dr = do, fa=1
Freo 0, if 6« 1

Now, according to Lemma 2.1, it suffices to prove that 23‘10 d;y = co.
If § > 1 it is ocbvious. And for 4 < 1 it follows immediately by the Raabe
criterion again as in the proof of Theorem 2.1. Ll

A particular case of Theorem 3.1 occurs when the slope 3 is 1/2. In
that case the probability mass function obtained from (3.2) and (3.6) is
geometric, It appears that it is the only distribution for which both the
regressions for weak records Wi onto Wy and for ordinary records Ry onto
Rz, are both simultaneously linear, as is shown in the following corollary.

Corollary 3.1. The unigue discrete distributions with support on the non-
negative integers, for which E(W, | Wo) and E(Ry | Ry) arve both linear,
are geometric distributions,

Proof. Suppose that the Xj’s are not geometric with support {0,1,...}.
Since (W | Wa) and (R | Rz) are both linear then by Theorems 2.1
and 3.1, it follows that

E(W, | W) = 3W,, E(R; | Ry) = 5(Ry— 1),

for certain 3 € (0,1/2) and 3 & (0,1). Let 6 = 3/{1 — 3) and &, =
81/(1— B1). As the X;'s are not geometric, § and & do not equal 1. From
(2.8) and (3.1), we have

k+46
¢

Cht — m

o k>0, (3.7)

and

, (3.8)
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with ¢ = pi/gr and d. = pr/qrr1, k > 0.. Observe that from the defini-
tions of ¢ ’s and d’s it follows that

Pr /Gt dy,
.. = f— 1 k 2 0
T e T a ) a1+ dg

Similarly dj, = ¢ /(1 — ¢ ), k > 0. Hence by (3.8) one gets

Craq = dryr (k + 81 )dx _ (k+ 01 )e k=0
k41 1+ diss (k + 1) + (k + &y )dk (k + 1) - (l — (5'1)(:;;.7 Eg 9)

Equating (3.7) and (3.9) and taking into account that ¢ # 0, for all k > 0,
we get

k+1)(6—46
cn = w (3.10)
(k4 6)(1—=141)
From (3.10), as ¢z # 0, we must have 6 # d;. Taking limits when & goes to
infinity on both sides of (3.10), we have

d—d&
1— 6

li}{n cp = € (0,00), (3.11)
but for § £ 1, see the proof of Theorem 2.1, limg ¢ = 0 or co, which is
contradictory to (3.11). l:l

Similarly, as in the case of weak records as a consequence of Theorem
3.1, and earlier results on characterizations of the distribution of X;’s by
linearity of E(Ry | Ry) (geometric tail and negative hypergeometric tail
distributions - see Korwar 1984), we derive immediately the following char-
acterization of the geometric distribution (being another discrete version of
Nagaraja's (1988) characterization of the exponential distribution).

Corollary 3.2. Assume that X;’s have the support {0,1,...}. If both
the regressions I(Ry | Ry) and E(Ry | Ry) are linear then the common
distribution of X;’s is geometric.
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