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Abstract  

The linearity of regression of tlJe first record on the  second is examined for discrete  

ra.ndom variables. Bo th  ordinaa~" and wea.k records axe considered.  The ana.lysis 
involves the  de te rmina t ion  of all possible l inear rela.~ionships and all possible prob  
aLility dis t r ibut ions .  Several chaa:acteriza.tions of geometr ic  d is t r ibut ions  are also 
ah own. 
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1 I n t r o d u c t i o n  

For a sequence X {X~,}~,>1 of independent  identically dis tr ibuted (lid) 
randon~ v~r iables  let us define record ti~,es as a(1)  1, a(~,,) in f { j  > 
U(n 1):  X j  > Xco. , -,.)}, for n - -  2,3, . . . .  T h e n / ~ ,  = Xc;.,, is called the 
n-th record of the  sequence X. The linearity of the regression of Rr,+l given 
R~, within the class of continuous distributions was studied for the first time 
in Nagara ja  (1977), where a family of three distributions with this property 
was identified. Nagaraja  (1988) also described a class of distributions for 
which the regression of R,, on R~,+] is linear, and observed that  the expo- 
nential distribution is the only distribution for which both  the regressions 
for the adjacent records are linear. All these results were obtained under 
the assumption that  the common distribution of X j  is continuous. 
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Instead of the regular records defh]ed above, for tile discrete distribu- 
tions Vervaat (1973) proposed to use weak records, which are defined by 
weak record times V(1) ---- 1, V(r~,) -- inf{j  > V(r~, 1) : Xj _> Xv(,, 1)}, 
for n 2 , 3 , . . . .  Then, II/~,. X~,,(,~.) is called the n-th weak record. This 

d e ' f i t ] o n  seems to be much more natural  in the discrete case, since it gives 
no priority to the index of the observation, which agTees with the intuition 
for the iid observations. Observe that  in the case of continuous distribu- 
tions R,,. 1.1/;,. a.s. Furthermore,  ix] the discrete case weak records are also 
defkled for distributions ~4th bounded support ,  wtfile for ordinary records 
this is not possible, without  additional assumptions.  

We restrict ourselves to supports  of Xj ' s  of the form {0, 1 , . . . ,  N}  ~qth 
N possibly equal to infinity. The joint distributions for weak records can 
be easily derived 

rt 1. H /)t,:~ 
P ( w ,  t ~ , . . . , w , ,  ~,.) p~, . . . .  0 _< ~, _<... _< k,, _< N, (Li )  

r = l  q/ ' :~ 

where pk = P(X~  = k) and qk ~y_>~ pr k _> O. Obviously, k~, < N if 
N co in (1.1). 

h the case of ordinary records, as a bounded  support  is not permitted,  
N = oo and the joint distr ibution is 

~. 1. 

P(R~ k~,...,R~, k~,.) P~'~, I I  p k ,  , o < ~.j < . . .  < i~:~, < c o .  
r = l  q/,'.,. + 1. 

Consequently, P(II/].,+I = IIW;,. = ~:) = pt/q~., 0 <_ 1~ <_ I, and P(R,,.+]. = 
/I R. k) p,/qk+:J, 0 < k < 1 < co, so both conditional distributions 
have a simple form.. Consequently, the problern of the linearity of the re- 
gression of H~,+] on H~, was solved it] Korwar (1984), where the family of 
distributions consisting of the geometric tail and negative hypergeometric 
of the second type tail distributions was characterized - see also comments 

it] the monograph of ArnoM, Balakrishnan and Nagara ja  (1998). The same 
problem for the regTession of W,+]  on W,, was solved it] Stepanov (1993) 
and Wesoiowski and Ahsarmllah (2000), where the question of the linear- 
ity of the regression of t,V,,.+2 on I.V,, was also completely resolved. More 
characterizations through weak records eat] be seen iu Aliev (1998). 

Nottfing is known about  regressions in the opposite direction, i.e. for 
E(R~, IR~,+]) or E([I/;, tIV,,+]) which seem to be much more complicated. 
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This  is mainly  due to the fact  t ha t  the %rmu.lae for the respective condi- 
t ional  distribul, ion, even for the  simplest  ad jacent  cas% are quite compli- 
cated.  This paper  is devoted  to a tho rough  discussion of the  l ineari ty of 
the  regression in the easiest case, i.e. for r~ = 1. Section 2 is devoted  to 
weak records, while ord inary  records are considered in Section 3. 

2 Lineari ty  of regress ion for weak records  

The joint  probabi l i ty  mass funct ion  of the first two weak records can lye 

easily de te rmined  as 

(2.1) 

From (2.1) it can be immedia te ly  deduced  t h a t  the condi t ional  d i s t r ibu t ion  

of l,l/] given IV2 is 

cj 0 _ < j _ < k  
p ( w ,  = ,j t ~v~ = k ) -  E)~=~ ' ~, , 

x~qth c.i pj/qj ,  j > 0. It is obvious t ha t  cj ~ (0, 1], for all j in the suppor t  
of X1. In  partictflar Co = P0 a n d  if _N is finite t h e n  c5~ = 1. 

Note t h a t  given a probabi l i ty  mass funct ion the quant i t ies  <!i are cal- 
cula ted as the  rat io between pj  and qj. From the  cj's the  probabi l i ty  mass 
funct ion can be obtained,  at  least  formally, as 

j 1 

~,0 <,0, ~,j <'.J I I  (1-c~,,),  j > 1. (2.2) 
m = 0 

For technical  reasons tha t  will lye more fully unde r s tood  in the  proof  of 
our main  resul% we need some condit ions t h a t  eixsure t h a t  given positive 

real nuxnbers c.i's , the sequence of p./'s, defined in (2.2) is a probabi l i ty  mass 
function, wi th  P,i > 0, j _> 0. 

L e m m a  2.1. Assume that {cj}.i~o is a sequence of ~.umbers belongin9 to 
(0,11 . L e t N  = inf{j  _> 0 : cj = 1}, (inf(0) = oo). Define a sequence 
{p~}y~, ~:~ (2.2). II 

(a)  N < oc  o7" 
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o o  

(b) N oo and ~:i=o c.i oc 

th.en { ./})=o is a probabilit.q mass flm.ction and pj > O, j = O, J_, . . . ,  N.  

Proof. If ~V is N~ite the proof follows immediately since q:\; p~\:. Thus 
we x;qll consider only the case N co. It is obxdous that  pj > O, for all 

j > O. Let us consider the partial sums S't.  }-~-i=0 PJ" By induction, it can 

~: 1 be proved that  1 -  St~ [I j=0(  - cj), for al l  k > 1. Consequently, we have 
to show that  lim~,(1 S~.) = 0 or equivalently, 

k - I  

li n l o g ( 1  - 
k 

j=o 
-oo .  (2.3) 

Condition (2.3) obviously holds, without  any additional assumptions,  if 
O0 C o o  the sequence {cj}j= o does not converge to zero. If the sequence { "J}j=0 has 

a limit equal to zero the result follows from the inequality, log(1 - x) < - x  
o o  for any x ~ (0, 1), and the assumption that  ~.~j=0 cd = oo. El 

The distr ibution defined by a sequence {cj} ~s in (2.2), under the condi- 
tions specified in Lemma 1, is called the generalized geometric distribution, 
including obviously the ordinary geometric distribution if all ci 's are equal. 
Such distributions ~11 be identified in this section as the only discrete 
distributions with the support  {0, 1 , . . . ,  N}  that  have the property of the 
linearity of the regression 

for some real mmlbers cv and fl. 

(2.4) 

T h e o r e m  2.1. Let XN be a sequence v.f discrete non-degenerate r~ndorn 
variables with, the support {0, 1 , . . . , N }  for' which the linear'it:q of the re- 

and th.e probability mass function of X 3 is of the generalized .qeornetric t~tpe 
d 4 n e d  by (2.2) and with. 5 d / (1  - , 3 )  

r ( j  + a);v! 
r ( N  + a)j!' 

j 0 , 1 , . . . , N ;  
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#~) ~f .:~ 1/2 the,, N 0o ~,,d (...j ~:o fo , -~ ,~  j > 0, i.~. {pj}.j~,) 
is the probability mass functio~ of the geometric disb"ibution: pj = 

c~) (1 co).(, j >_ o " 

r ( j  + ~)~'0, j > 0, ~r e (0,1). c ; -  r(d)j! 

Proofi The  p rope r ty  of the  l ineari ty of the  regression given in (2.4) implies 
t ha t  

k 

~ s c j  (y~- + ~) 
j=0 

, , , ~ r for all k ~ {0, 1, , 5  }, with  c.j = pj /q j  
equa t ion  (2.5) gives 0 ctco (~Po and, as 

~ , . j ,  (2.5) 
j=0 

(0, 1]. In part icular ,  for k = 0, 
i% > 0, we ob ta in  ct 0. 

It is obvious  t ha t  the  slope .3 retest be  a posi t ive number .  Moreover,  as 
I, Vj _< W:2 a.s. t hen  .5? mus t  be less t h a n  or equal  to one. Observe  t h a t  for 
,3 = 1 we ob ta in  f rom (2.5) t h a t  co = 1 and N = 0, and consequent ly  the  
X / s  are concen t ra ted  at zero, which is not  possible.  Finally, we conclude 
tha t  ,?~ e (0, 1). 

Sub t r ac t  f rom (2.5) evMuated  at k + 1, ident i ty  (2.5) evMuated  at  k to  
obta in  

k + l  

(k(1 3) + 1)c~,+, = ~ Z c~, (2.6) 
.j o 

for k ~ { 0 , 1 , . . . , N -  1}. 

Wri te  expression (2.6) for k - 1 an d  sub t r ac t  this from the  original o~e. 

It follows tha t  

(~" - 1 ) (1  - , : ~ )  + 1 
~:~+~ (~- + 1)(1 :~) ~'~' k ~ { 1 , . . . , ~ -  1}. (2.7) 

Observe t ha t  ident i ty  (2.5) wi th  k 1 gives Cl .3c0/(1 - .3). Therefore,  
(2.7) is Mso valid for k 0 and  can be  re~Tit ten as 

k + 6  
oh'+1 - -  k + i ca., h~ C { 0 , . . . , N  1}, (2.8) 

wit  h 6 ,:~/(1 - ..3). 
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By recurrence, it follows from (2.8) tha t  

P(~" + 6) {0, X}. c ~ : -  r (~)k!  c0, k c . . . ,  (2.9) 

Observe further that  

k 

log(c~) = log(co)+ E log(1 + ( d -  1)/j)  , k = 1,2, . . . .  (2.10) 
j 1 

Si,~ce the  se:'ies E.~Z: tog(1 + (~; 1)/j) for ~; > 1 (wt~i~-h is equivalent to 
.3 > 1/2) diverges to oo (note that  for sumeiently large j l og ( l+  (~ 1) / j )  > 
( 3 -  1)/(2j)) ,  then it follows tha t  % --- oe as ~: ~-~ oo. Since all cj's are 
bounded by 1 it follows tha t  N < o~. Consequently, cx -~ 1, a~M by (2.9) 
it follows tha t  

p0 = ~:0 - F ( N  ~ a) 

and so the first part of the theorem is proved. 

Oa the other hand, it follows iramediately from (2.9) that. for d ~ 1, 
i . e . . J =  1/2, we have c~. = c 0  for any k = 0 , 1 , . . . , N .  T h e n N  = o o  and 
{pj}.i>o is geometric, i.e. pj =- p(1 - p)J, j = 0, 1 , . . . ,  with p = co. 

For 6 6 (0, 1) (which is eeaiv~lent  to  f l e  (0, 1 /2))  we have log(1 - 
(i d-)/j) < - ( 1  - 6)/j for any j = 1 , 2 , . . . .  Consequently the series 
E 2 - ,  log(i  + (d 1)/ j )  diverges to oo aud it follows from (2.10) tha t  
l irn,,~o c~: = 0. Now, by the previous lemma, it suffices to show that ,  in 

O O  this case, Y]k=0 c~, = oo. To this end ae  use the t /aabe criterion., which 
says that  it suffices to show that  [im~-~o~ ];(1 c,.+j/ca) is less than  one. 
But 

k ( 1  c~+.,)c~_ : k ( 1 -  kk§247 : k ~  - 6 ~ ~ ~  

The discrete distributions for which E(Ws+-j I I:~}) is linear for a given 
fixed i 6 {1, 2 , . . .  } were studied in Stepattov (1993) and Weso}owski and 
Ahsanullah (2000). This family consists of the geometric and negative hy- 
pergeometric of the first and second type distributions. From these results 
and Theorenl 2.1 we obtain immediately a ch~racterizatiotl of geometric 
distributions which can be considered as the discrete version of the charac- 
terization of the exponeatial law obtained in Nagaraja (1988). 
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C o r o l l a r y  2.1. Assume that X j  has support { 0 , . . . , N }  (N _< oc). / f  boffz 

di,stributiun of the X j ' s  is geometric. 

Proof. I~ follows tha t  bo~h ~he negative hypergeometMc probability mass 
functions are not of the generalized geometric type as specified in Theorem 
2.1. El 

3 O r d i n a r y  records  

The joint probability mass function of the first two ordinary records can be 
easily de~ermined as 

> ( R ,  = j ,  R~ = k) = p~,pj/q,~+,, (8.1) 

for any 0 _< j < k < co. From (3.1) it %llows tha t  the conditional distri- 
bution of Rj given R2 is defiued by 

P ( R ,  = j I R~ = k) - 

~qth dj. pj/q~+.,., j > o. 

dj 
k. 1 ' 

Er=0 dr 
O_<j<k<oo 

Note tha t  given a probability mass flmction the quwltities dj are calcu- 
lated as the ratio between pj and qj+~. From the dj's the probability mass 
flmction can be obtained, as 

do d.i i l l  j 1 
po p j > 1. ( a 2 )  

l + do' l + dj l l )  l + d. , ,  

Again, %r technical reasons, we need sortie conditions tha t  ensure that  
given positive real numbers dj, j _> 0, the sequence pj, j _> 0, is a probability 
mass function; tilen, obviously, it is a probability mass function of the 
generalized geometric type  as defined by (3.2) with cj -- @/(1 + dj), j _ 0. 

L e n n n a  3.1. Let {di}j>_o be a sequence of positive r~itl number,s. I f  

bility mass function with pj > O, for all j > O. 
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Proof. Define c.j = dj / ( l+dj ) ,  j = 0, 1, . . . .  Observe  t ha t  dj = c.j/(1 c i ) _< 
ej since ej E (0, 1), j ___ 0. Since the series ~j~-o dj diverges to infinity it 

oo follows tha t  ~ j = 0  ej oo. The  result  is then  an immedia te  consequence  of 
L e m m a  2.1. [-I 

Our aim is to character ize  discrete d is t r ibut ions  for wlfich 

E(R1 I = + (a.a) 

for some real mmibers  ctl and .3-1. Such a charac ter iza t ion  is given in the  
following theorem.. 

T h e o r e m  a . 1 .  Let  X j ,  j = 1, 2, . . . ,  be discrete lid random variables w#h 

th.e common support {0, 1 , . . .  } for' which the linearity of the 7Wression of 
R-, o,~ R2 d 4 , , e d  by (3.3) holds. Then a]  = .~31, .3~ ~ (0, 1) and tt, e 
common probabilitu mass function of X j ' s  is of fl~.e generalized geometric 
t~pe dqfined bg (3.2) with. el() > O, 

- r ( k  + 6) 
do, k _  i. 

Proo[i The  p roper ty  of the  l ineari ty of the  regression given in (3.3) implies 
that 

~ j d ~  ( /hk + ~ l ) ~ d ~ ,  (3.4) 
j = 0  j = 0  

for all k > 1, wi th  dj pj/qj+l > 0. In par t icular ,  for k 1, express ion 
(3.4) gives 0 = (031 @ G'l.)(t0 and as d0 > 0, vv'e ob ta in  31 = s 

Observe  also tha t  the  slope .31 must  be  a posit ive number ,  o the r~ i se  for 
large values of k the  right side of (3.4) will be negative,  which is impossible,  
since the leR side is always non-negat ive .  Moreover,  as -gi < R3 a.s., 
E(]~j ]R~)  = .({1 (R2 1) < R2 a.s. or eqtfivalently, .571 < ~ / (k  1) for all 
k > 1, f rom which we couclude tha t  .& < 1. 

Following similar a rguments  as in the  proof  of T h e o r e m  2.1, we get the  
recurrence formula  

k + 5  
d,-+l - k + l  da' k _ 0 ,  (3.5) 

with  5 = .31/(1 .31). 
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Performing the recurrence according to (3.5), it can be shown tha t  

4 r(~: + 5) <,, ~" > 0. (3.6) 
p(a)~-! 

On comparing (3.6) with (2.9) in the  proof of Theorem 2.1, and repeat- 
ing the argxmmnt given there, we get 

oc, if d > l  
lira d~. do, if 5 1 

~ ' -~  0, if 6 < i 

O O  Now, according to Lemma 2.1, it suffices to prove that E j=0  d.i CX~. 
If 5 __> 1 it is obvious. And for 6 < 1 it follows immediately by the Raabe 
criterion again as in the  proof of Theorem 2.1. ~1 

A particular case of Theorem 3.1 occurs when the  slope fll is 1/2. In 
tha t  case the probability mass function obtained from (3.2) and (3.6) is 
geometric. It appears that  it is the only distribution for which both the 
regressioiks for weak records I451 onto t{~ and for ordinary records Rj onto 
H,2, are both simultaneously linear, as is shown in the followqng corollary. 

C o r o l l a r y  3.1. The uniq.ue discrete distributions wiffz support o,~ the r~on- 
negative i,ttege,'s, ]b," which t3(IV1 I l~/~) and E(R1 I R2) are both linear, 
are geometric distributior~.s. 

Proof. Suppose that  the Xj's  are not geometric with support  {0, 1~... }. 
Since E(W, l t~2) and E(R1 I R~) are 10oth linear the~ by Theorems 2.1 
and 3.1, it follows tha t  

E(I,V~ ] W.2) = fllEe, E(R1 ]Bz) = .ill (R2 1), 

for certain 9 e (0,1/2) and ,.~1 e (0,1). Let ~ 9 / ( 1 -  .f~) and al 
.31/(1 ,31). As the Xj's are not geometric, 5 and 6-1 do not equal 1. From 
(2.8) a n d  (3.1), we have 

mid 

k + 5  
c~,, k > O, (3.7) c~,+1 k + 1 

k + 5 1 G  k > o ,  (3.8) d~+-j k + 1 ' 
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with c~. = p~./q~, and d~. = P~./qa.+], k > 0.. Observe that  from the defini- 
tions of ck's and d~'s it follows tha t  

/ 
d~ 

c,~ (P~ + qJ~+l)/qk+l 1 + d~ k > O. 

Similarly dA: c~- / (1-  G~), k > 0. Hence by (3.8) one gets 

~'~'+] 1 + ~ + ,  (k + 1) + (k + ~,)d~ (L- + 1) (1 ~:,)c~,' ~ > 0. 

(3.9) 
Equating (3.7) and (3.9) and taking into account tha t  ct, r 0, for all k > 0, 
we get 

(~- + 1)(~-  ~)  (3.~0) 

From (3.10), as G, r 0, we must have 6 # 5~. Taking limits when k goes to 
infinity on bodl  sides of (3.10), we have 

6 -- 6] 
mnc~ - ~ (0,oo), (3.11) 

k 1 - d] 

but for 5 7& 1, see the proof of Theorem 2.1~ limt. G. 0 or co, wifich is 
contradictory to (3.11). El 

Similarly, as in the c~se of weak records as a consequence of Theorem 

3.1, and earlier results on characterizaUons of the distribution of Xj 's  by 
linearity of E(R2 I R~) (geometric tail and negative hypergeometric tail 
distributions - see Korwar 1984), we derive immediately the following char- 
acterization of the geometric distribution (being another discrete version of 
Nagaraja 's  (1988) characterization of the exponential distribution). 

C o r o l l a r y  3.2. Assume that X ) ' s  have the support {0, 1 , . . .  }. / f  both 
th.. ,-..~,-e,~,~o,,.~ E(R, I R,) ~.,,d E(R, I R,) ~,-e l~.,.~,- ,,~.,,, ~.h.. ~,o,,~.,o,, 
distribution o,f X i b is geometric. 
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