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SUMMARY. Let X and Y be non-negative independent random variables. Characterizations

of the generalized inverse Gaussian and gamma distributions through the constancy of regression

of X−1 − (X + Y )−1 on X + Y are considered.

1. Introduction

Tweedie (1957), in a fundamental paper devoted to the inverse Gaussian dis-
tribution, proved that if X1, . . . , Xn are independent identically distributed (iid) in-
verse Gaussian random variables (rv’s) then

∑n
i=1 Xi and

∑n
i=1 X−1

i −n2(
∑n

i=1 Xi)−1

are independent. For the converses of this one can consult Khatri (1962) and Letac
and Seshadri (1985). In Seshadri (1983) the inverse Gaussian law is characterized
by the constancy of regression of

∑n
i=1 X−1

i − n2(
∑n

i=1 Xi)−1 on
∑n

i=1 Xi under
appropriate moment conditions. For a review of characterization problems for the
inverse Gaussian distribution, see Seshadri (1993).

For the gamma law an important characterization through an independence
property is due to Lukacs (1955), based on the independence of Y1/Y2 and Y1 + Y2,
where Y1, Y2 are independent random variables. The regression version of this
statement was obtained in WesoÃlowski (1990) (see also Hall and Simons (1969),
Wang (1981) and Li, Huang and Huang (1994) for related results).

These are separate results for the inverse Gaussian and the gamma distribu-
tions. A characterization of the generalized inverse Gaussian (GIG) that involves
the gamma distribution was given by Letac and Seshadri (1983). It goes as follows:
if X has the same law as (X + Y )−1, where X and Y are independent and Y is
gamma, then X follows the GIG law.
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Let us denote by µ−p,a,b the GIG law defined by the density:

f(x) = C1x
−p−1 exp(−(ax + b/x)/2)I(0,∞)(x);

and by γp,a/2 the gamma law with the density

g(y) = C2y
p−1 exp(−ay/2)I(0,∞)(y),

where C1 and C2 are appropriate norming constants and p, a, b are positive numbers.
Recently Matsumoto and Yor (1998) observed that if X ∼ µ−p,a,b and Y ∼ γp,a/2

are independent then U = 1/(X+Y ) and V = 1/X−1/(X+Y ) are also independent
with distributions µ−p,b,a and γp,b/2, respectively. (Actually their result was proved
for the case a = b.) The converse of this statement, relying only on the independence
property and being a simultaneous characterization of the GIG and gamma laws, has
been proved in Letac and WesoÃlowski (2000). A closely related functional equation
has been studied recently in WesoÃlowski (2000).

Observe that if we consider the scaled rv’s X̃ = (a/b)1/2X, Ỹ = (a/b)1/2Y , then
X̃ ∼ µ−p,

√
ab,(ab)1/2 , Ỹ ∼ γp,(ab)1/2/2 and for Ũ = 1/(X̃ + Ỹ ) and Ṽ = 1/X̃ − Ũ it

follows immediately that Ũ ∼ µ−p,(ab)1/2,(ab)1/2 and Ṽ ∼ γp,(ab)1/2/2.
In the present paper we replace the independence of U and V by the constancy

of regression of V on U under suitable moment conditions. Also a dual problem for
the constancy of regression of 1/V on U will be considered. The price we pay for
relaxing independence is that the characterization is not simultaneous because we
have to assume one law to obtain the other.

2. Constancy of Regression of V on U

Let X and Y be two independent positive rv’s, such that E(1/X), E(X) and
E(Y ) are finite. For U = 1/(X + Y ) and V = 1/X − 1/(X + Y ) we consider the
following constancy of regression condition, namely

E(V |U) = c,

where c = E(V ). Since V = Y/(X(X +Y )) equivalently we can write this condition
as

E(Y/X|X + Y ) = c(X + Y ). (1)

Observe that (1) is equivalent to

E
(
(Y/X)es(X+Y )

)
= cE

(
(X + Y )es(X+Y )

)
, (2)

for any s, for which both sides are finite. To see this, use conditioning with respect
to (X +Y ) on the left side of (2). Then (2) follows from (1) directly and (1) follows
from (2) by the uniqueness of the Laplace transform since (2) implies

E(E(Y/X|X + Y )es(X+Y )) = E(c(X + Y )es(X+Y ))
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for any s ≤ 0 and at both sides we have the Laplace transforms of finite measures
on (0,∞), which are equal.

Define now

hX(s) = E
(
X−1esX

)
, LY (s) = E

(
esY

)
, s ∈ Θ,

where Θ = {s : hX(s) < ∞, LY (s) < ∞} and (−∞, 0] ⊂ Θ. Then (2) can be
rewritten as

hX(s)L′Y (s) = c h′′X(s)LY (s) + c h′X(s)L′Y (s), s ∈ Θ. (3)

We start with a characterization of the GIG law assuming that Y has a gamma
distribution.

Theorem 1. Assume E(1/X), E(X) are finite and that Y ∼ γp,a/2 for some
positive numbers p and a. If the regression of V on U is constant, i.e. (1) holds,
then X ∼ µ−p,a,b, where b = 2p/c and c = E(V ).

Proof. Since Y ∼ γp,a/2

LY (s) =
(

a

a− 2s

)p

, L′Y (s) =
2pap

(a− 2s)p+1
, s ∈ (−∞, a/2).

Hence (3) takes the form

(a− 2s) h′′X(s) + 2p h′X(s)− b hX(s) = 0 (4)

with b = 2p/c, and the above equation holds in some set Θ1 containing (−∞, 0].
Define now a function w by

hX(s) = (a− 2s)(p+1)/2w(s), s ∈ Θ1.

Consequently

h′X(s) = −(p + 1)(a− 2s)(p−1)/2w(s) + (a− 2s)(p+1)/2w′(s),

h′′X(s) = (p2 − 1)(a− 2s)(p−3)/2w(s)− 2(p + 1)(a− 2s)(p−1)/2w′(s)

+(a− 2s)(p+1)/2w′′(s) , s ∈ Θ1.

Plugging these into equation (4) we obtain

(a− 2s)w′′(s)− 2w′(s)− [(p + 1)2/(a− 2s) + b]w(s) = 0 , s ∈ Θ1. (5)

Now for z = ((a− 2s)b)1/2 and for the function v defined by v(z) = w(s), we get

dw

ds
= −dv

dz

b

z
,

d2w

ds2
=

d2v

dz2

(
b

z

)2

− dv

dz

b2

z3
,
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z > 0. Inserting the above in (5) we arrive at the modified Bessel equation

z2v′′(z) + zv′(z)− (z2 + (p + 1)2)v(z) = 0, z > 0.

The space of the solutions of the equation is spanned by two modified Bessel func-
tions K(p+1) and I(p+1) (see, for instance, Abramovitz and Stegun (1964)).

Going back to the formula connecting hX and w we see that, since hX is a
Laplace transform of a bounded measure on (0,∞), it goes to zero as s goes to
−∞; consequently the same is true for w. Now by the definition of v it follows that
limz→∞ v(z) = 0. But I(p+1)(z) explodes as z → ∞, and hence the only possible
solution is the modified Bessel function of the third kind K(p+1) = K−(p+1).

We conclude that hX(s) = c3(a − 2s)(p+1)/2K−(p+1)((b(a − 2s))1/2), s ∈ Θ1,
where c3 is a suitable constant. Hence Θ1 = (−∞, a/2) and hX is the Laplace
transform of the function x−1f(x), where f is the density of µ−p,a,b. 2

Now we consider a parallel situation assuming that the distribution of X is GIG
and seek the distribution of Y .

Theorem 2. Assume that X ∼ µ−p,a,b for some positive numbers p, a and b
and that E(Y ) is finite. If the regression of V on U is constant, and equal to 2p/b,
i.e. (1) holds with c = 2p/b, then Y ∼ γp,a/2.

Proof. Since X ∼ µ−p,a,b

hX(s) = c4(b(a− 2s))(p+1)/2K−(p+1)((b(a− 2s))1/2), s < a/2,

where c4 is an appropriate constant.
Let z = (b(a − 2s))1/2. Then z′ = −b/z and z′′ = −b2/z3. Now, to avoid

cumbersome notation we will supress the indices of the K function. Then

hX(s) = c4z
p+1K(z),

h′X(s) = −c4b[(p + 1)zp−1K(z) + zpK ′(z)],

h′′X(s) = c4b
2zp−3[z2K ′′(z) + (2p + 1)zK ′(z) + (p2 − 1)K(z)],

(the primes on the left sides denote derivatives taken with respect to s, while those
on the right sides are derivatives taken with respect to z). But from the modified
Bessel equation we have z2K ′′(z) + zK ′ − (z2 + (p + 1)2)K(z) = 0 and this then
gives

h′′X(s) = c4b
2zp−3[(z2 + 2p(p + 1))K(z) + 2pzK ′(z)] , s ∈ Θ1,

where Θ1 is some set containing (−∞, 0]. We plug the above formulas into (3) to
obtain

L′Y (s)
(
zp+1K(z) + 2p[(p + 1)zp−1K(z) + zpK ′(z)]

)

= 2pbLY (s)zp−3[(z2 + 2p(p + 1))K(z) + 2pzK ′(z)].

After obvious simplifications we arrive at

z2L′Y (s) = 2pbLY (s) , s ∈ Θ1.
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Now since z2 = b(a − 2s) we immediately obtain LY (s) = (a/(a − 2s))p, s ∈ Θ1.
Hence Θ1 = (−∞, a/2) and consequently LY is the Laplace transform of the γp,a/2

distribution.

3. Constancy of Regression of 1/V on U

Let X and Y be two independent positive rv’s such that E(X2), E(1/Y ) and
E(Y ) are finite. With U and V defined in Section 2 we consider the constancy of
regression of 1/V on U , i.e. the condition

E(V −1|U) = d,

where d is a constant equal to E(1/V ). An equivalent form reads

E(X/Y |X + Y ) = d/(X + Y ). (6)

Just as in Section 2, we get

L′′X(s)hY (s) + L′X(s)h′Y (s) = dLX(s)h′Y (s), (7)

where
LX(s) = E

(
esX

)
, hY (s) = E

(
Y −1esY

)
, s ∈ Θ,

and Θ = {s : LX(s) < ∞, hY (s) < ∞}.
Now assuming that the distribution of Y is gamma we derive a characterization

of the GIG law for X.

Theorem 3. Assume that E(X2) is finite and Y ∼ γp,a/2 for some numbers
p > 1 and a > 0. If the regression of 1/V on U is constant, i.e. (6) holds, then
X ∼ µ−p,a,b, where b = 2(p− 1)d and d = E(1/V ).

Analogous to Theorem 2 we have

Theorem 4. Assume that X ∼ µ−p,a,b for some positive numbers p, a and b,
and that E(1/Y ), E(Y ) are finite. If the regression of 1/V on U is constant and
equal to b/(2(p− 1)), i.e. (6) holds with d = b/(2(p− 1)), then Y ∼ γp,a/2.

Since both the theorems have proofs following the lines of the proofs from the
previous section, they are skipped.

In each of the cases of constancy of regression considered in this paper we were
not able to obtain simulatneous characterization of both the distributions: GIG and
gamma. Then an interesting open question arises, if such a characterization holds
true if both the conditions E(V |U) = c and E(V −1|U) = d are satisfied. We expect
that the answer is in affirmative.
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Series A, 31, 385–390.

Khatri, C.G. (1962). A characterization of the inverse Gaussian distribution, Annals of Math-
ematical Statistics 33, 800–803.

Letac, G., Seshadri, V. (1983). A characterization of the generalized inverse Gaussian dis-
tribution by continued fractions, Zeitschrift für Wahrscheinlichkeitstheorie und Verwandte
Gebiete 62, 485–489.

Letac, G., Seshadri, V. (1985). On Khatri’s characterization of the inverse-Gaussian distribu-
tion, Canadian Journal of Statistics, 13, 249–252.

Letac, G., Weso lowski, J. (2000). An independence property for the product of GIG and
gamma laws, Annals of Probability, 28, 1371–1383.

Li, S.-H., Huang, W.-J., Huang, M.-N.L. (1994). Characterizations of the Poisson process
as a renewal process via two conditional moments, Annals of the Institute of Statistical
Mathematics, 46, 351–360.

Lukacs, E. (1955). A characterization of the gamma distribution, Annals of Mathematical
Statistics, 26, 319–324.

Matsumoto, H., Yor, M. (1998). Some extensions of Pitman’s theorem involving exponential
Brownian functional via generalized inverse Gaussian distributions, Preprint Nov.98.

Seshadri, V. (1983). The inverse Gaussian distribution: some properties and characterizations,
Canadian Journal of Statistics, 11, 131–136.

Seshadri, V. (1993). The Inverse Gaussian Distribution – A Case Study in Exponential Fami-
lies. Clarendon Press, Oxford.

Tweedie, M.C.K. (1957). Statistical properties of the inverse Gaussian distribution I, Annals
of Mathematical Statistics, 28, 362–377.

Wang, Y. (1981). Extensions of Lukacs’ characterization of the gamma distribution. In Analytic
Methods in Probability Theory, Lecture Notes in Mathematics 861, Springer, New York,
166–177.

Weso lowski, J. (1990). A constant regression characterization of the gamma law, Advances in
Applied Probability, 22, 488–489.

Weso lowski, J. (2000) On a functional equation related to the Matsumoto-Yor property,
Aequationes Mathematicae, to appear.

Vanamamalai Seshadri
Department of Mathematics and

Statistics
McGill University
Montreal, Canada
E-mail: vansesh@hotmail.com

Jacek Weso lowski
Wydzia l Matematyki i Nauk

Informacyjnych
Politechnika Warszawska
Warszawa, Poland
E-mail:wesolo@alpha.mini.pw.edu.pl


