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Abstract

It is shown that linearity of convex mean residual life identi3es the distribution up to a scale in
the class of distributions with zero mean. On this basis new characterizations of the uniform and,
unexpectedly, the Student distribution with two degrees of freedom are obtained. It is observed
that, strictly speaking, the conjecture of Nagaraja and Nevzerov about uniqueness property of
the convex mean residual life time is incorrect. The condition under study is in obvious relations
with linearity of regression of observations with respect to order statistics. c© 2001 Elsevier
Science B.V. All rights reserved.
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1. Introduction

Let X1; X2; : : : ; Xn be independent identically distributed random variables (rv’s) with
a distribution function (df) F and the support [a; b], −∞ 6 a¡b 6 ∞. Denote by
Xi:n, i = 1; : : : ; n, the respective order statistics. Since the Ferguson (1967) paper a lot
of work has been devoted to determining the distribution of X by linearity of regression
E(Xi+k:n|Xi:n)—for the adjacent case (i.e. k = ±1) in addition to Ferguson (1967) one
can consult Nagaraja (1988a, b), Pakes et al. (1996) or the monograph by Arnold et
al. (1992), while the non-adjacent case was considered more recently for instance in
Weso lowski and Ahsanullah (1997), LJopez-BlJazquez and Moreno-Rebollo (1997) or
DembiJnska and Weso lowski (1998).

Here, we are interested in the linearity of regression of an observation on the ith
order statistic, i.e. E(X1|Xi:n), which at the 3rst glance seems to be of similar nature as
the problems mentioned above. However it appears that a completely new approach,
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connected with the study of properties of convex mean residual life function (cmrlf)
has to be developed and consequently only a partial answer will be given.

As observed in Nagaraja and Nevzerov (1997) (NN in the sequel):

E(X1|Xi:n = x) =
x
n

+
n− 1
n

[
E(X |X 6 x) + (1 − 
)E(X |X ¿x)]; x ∈ (a; b);

where 
 = (i − 1)=(n − 1), and X is rv with the df F , if only the expectation E(X )
is 3nite. The observation lead these authors to investigate the cmrlf: MX;
, 
 ∈ [0; 1],
de3ned by

MX;
(x) = 
E(X |X 6 x) + (1 − 
)E(X |X ¿x); x ∈ (a; b)

for any rv X with 3nite expectation. The basic problem is concerned with identi3cation
of the distribution of X by the function MX;
. It has been completely solved only in
two special cases of 
=0 or 1—see for instance Kotlarski (1972), Galambos and Kotz
(1978) (Chapter 2.3) or more recent contributions as Zoroa et al. (1990), Galambos
and Hagwood (1992) or Lillo and Martin (1999) (an application to uniform mixtures).

In NN the following uniqueness result is proved.

Theorem 1. (Nagaraja and Nevzerov (1997).) Let X and Y be rv’s with a common
support [a; b]; −∞6 a¡b6∞; and continuous df’s F and G; respectively. Assume
that E(X ) exists and ∃ x0 ∈ (a; b) such that:

E(X |X 6 x0) = E(Y |Y 6 x0) (1)

and

F(x0) = G(x0): (2)

Then F = G i= MX;
 = MY;
, where 
 = F(x0) ∈ (0; 1).

Additionally it is observed in NN (Remark 2) that (2) holds if E(X )=E(Y ). In their
Remark 3 these authors say: “ . . . while the assumptions (3.4) ((2) in our setting) and
(3.5) ((1) in our setting) play a crucial role in the proof above, the key question is
whether the cmrlf M (x) =
E(X |X 6 x) + (1−
)E(X |X ¿x) uniquely identi3es c.d.f.
F . When M (x) has a simple form, F can be determined explicitly and in such cases,
(3.4) and (3.5) will be clearly unnecessary. We conjecture that the characterization
does hold even without these assumptions.”

This remark was the starting point of our interest in the subject. First, we discover
that if M “has a simple form”, even with further restrictions on the family of distribu-
tions under considerations, the condition (1) can not be omitted in order to pin down
the df F . Consequently, strictly speaking, the NN conjecture is incorrect. On the other
hand some scale families of distributions are uniquely determined by M of “a simple
form”, and in such a sense the NN intuition is correct.

In general identi3ability of the distribution of X by the function MX;
 does not seem
to be a trivial task. Here we restrict our attention to linear MX;
, 3rst observing that
changes of location and scale of the distribution of X preserve the linearity of the cmrlf.
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Consequently linear cmrlf ’s of the form MX;
(x) =Ax for some constant A are studied
within the class of zero mean rv’s, which appear to be invariant under scaling. In the
case of 
 = 1

2 (which for the order statistics means the regression of an observation
with respect to the sample median) three special scale families of distributions are
characterized by choosing concrete values of A: uniform for A= 1

2 , Student t2 for
A = 1 and a related one for A = 2

3 . Also a general uniqueness theorem is derived for
any A ¿ 1

2 , which appears to be the smallest admissible value. If FA is a df of the
rv X with MX;1=2(x) = Ax then it is shown that X has a symmetric distribution, FA is
absolutely continuous, the limit limA→∞FA = F exists and is a df. The formula for F
is obtained. Finally, graphs of selected densities of FA’s are presented.

2. Linear convex mean residual life function

Observe that

M�X+�;
(x) = �MX;
((x − �)=�) + �

if �¿ 0 or

M�X+�;
(x) = −�M−X;
((�− x)=�) + �

if �¡ 0. Since for a continuous type rv X it follows that

MX;
(x) = −M−X;1−
(−x);
then if �¡ 0 one has

M�X+�;
(x) = �MX;1−
((x − �)=�) + �:

Consequently if MX;
 is linear then M�X+�;
 is also linear for any � �= 0 and any real
�. Moreover, if MX;
(x) = Ax, x ∈ [a; b], then it follows by the above formulas that
M�X;
(x) = Ax, x ∈ [�a; �b]:

Observe that, following the de3nition M = MX;
 can be written as

M (x) =
1 − 


1 − F(x)
c +


− F(x)
F(x)(1 − F(x))

∫ x

a
t dF(t); x ∈ (a; b);

where c = E(X ). Consequently:

F(x)(1 − F(x))

− F(x)

M (x) − c(1 − 
)
F(x)


− F(x)
=
∫ x

a
t dF(t); x ∈ (a; b)

and taking diRerentials one gets:

[(1 − 2F(x))(
− F(x))M (x) + F(x)(1 − F(x))M (x) − c
(1 − 
)

−x(
− F(x))2] dF(x) = −F(x)(1 − F(x))(
− F(x)) dM (x): (3)

Let’s restrict further investigation to X ’s such that E(X ) = 0 and MX;
 of the form:

MX;
(x) = Ax; x ∈ supp(X ):
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Then (3) takes the form

A−1(
− F)2 − (1 − 2F)(
− F) − F(1 − F)
F(1 − F)(
− F)

dF =
1
x

dx; x ∈ (a; b):

Integrating both sides, while remembering that F is a df, one gets

F
=A−1(x)(1 − F(x))(1−
)=A−1(
− F(x)) = −Kx; x ∈ (a; b) (4)

for any x ∈ supp(X ) and for any positive constant K . Hence F(0) = 
. Observe that
taking the limits as x→ a or x→ b in (4) we get that a=−∞=−b iR A¿max{
; 1−
}
and −∞¡a¡b¡∞ iR 
 = 1

2 and A= 1
2 . Note that the above equation implies that

A¡max{
; 1−
} is impossible, unless X is degenerated at zero. Observe also that by
changing X into KX one obtains (4) with K = 1. Finally, the argument given above
can be repeated backwards starting with (4) and ending with MX;
(x) = Ax, x ∈ [a; b].
Consequently (4) is equivalent to the linearity of cmrlf in the support of X .

Starting from this point on we concentrate on the case of 
 = 1
2 , since this is the

only value of 
 for which we are able to complete a thorough analysis of the family
of distributions characterized by linear cmrlf, including explicit form of cdfs for some
special values of A.

Now denoting g(x) = −(1 − 2F(x)), x ∈ [a; b], we get

g(x) = x(1 − g2(x))B; x ∈ [ − a; a]; 0¡a6∞; (5)

where B= 1−1=(2A) ∈ [0;∞), which is equivalent to (4) with the constant K 3xed at
K = 21−1=A—in general we should have 21=A−1Kx at the rhs of (5). Fixing the value of
K will allow us to have the unique solution of (4), which results in the uniqueness of
the respective scale families for the original problem. First we list some special cases
in which explicit solutions can be written.

Theorem 2. Assume that X is a rv with zero mean and supp(X ) = [a; b], −∞6
a¡b6∞. If

MX;1=2(x) = Ax; x ∈ (a; b);

then A¿ 1
2 and under a change of scale

(i) if A = 1
2 then X has the df

F(x) = 1
2 (1 + min{max{−1; x}; 1});

i.e. X has a uniform type distribution in [ − 1; 1];

(ii) if A = 1 then X has the df

F(x) =
1
2

(
1 +

x√
1 + x2

)
;

i.e. X has a Student t2 type distribution;
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(iii) if A = 2
3 then X has the df

F(x) =
1
2

(
1 +

√
2x√√

4 + x4 + x2

)
:

Proof. The argument following (4) implies A¿ 1
2 . Since (5) is equivalent to linearity

of cmrlf in the class of zero-mean rv’s, the proof is based on solving (5) in special
cases.

For A = 1
2 we get B = 0 and (5) implies that

g(x) = x; x ∈ [ − a; a]:

Hence F(x) = 0:5(1 + x) for x ∈ [ − a; a]. Now by properties of the df it follows that
a = 1, which says that X is uniform in [ − 1; 1]. Observe that this is the only case
with 3nite a. In all the remaining cases, by the remark preceding the formulation of
the theorem it follows that a = ∞.

Consider now the case of A = 1, i.e. B = 1
2 . Then (5) implies that for any x ∈ R

g2(x) = x2(1 − g2(x)):

This equation can be easily solved for any x ∈ R, and in general the solution has the
form

g(x) = ± x√
1 + x2

; x ∈ R:

Since g has to be a non-decreasig function it follows that the positive sign in the above
solution has to be chosen, whence assertion (ii).

Now for A = 2
3 we get B = 1

4 and by (5) it follows that:

g4(x) = x4(1 − g2(x)); x ∈ R:

This equation of the fourth order in g is easily solvable, by solving it for g2(x). After
taking care of the properties of g following from the representation F = (1 + g)=2 the
only solution has the form:

g(x) =

√
2x√√

4 + x4 + x2
; x ∈ R;

which is the case (iii).
To end the proof it suSces to observe that in each of the cases E(X ) exists and is

equal to zero.

While we are unable to provide closed formulas for other values of A, the uniqueness
up to a change of scale is ensured by

Theorem 3. In the family of distributions with zero mean the cmrlf of the form

MX;1=2(x) = Ax; x ∈ R; (6)

uniquely determines the distribution of X up to a scaling factor.
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Proof. Since (6) is equivalent to (4), and, after 3xing the constant K in (4) at
K = 21−1=A, to (5), we can restrict our attention to studying the uniqueness of proba-
bilistic solutions of (5), i.e. solutions g which de3ne a df by the formula F=(1+g)=2.

Observe 3rst that if g is a solution then h de3ned by h(x) = −g(−x) also solves
(5), since

h(x) = −(−x)(1 − g2(−x))B = x(1 − (−g(−x))2)B = x(1 − h2(x))B:

Consequntly it suSces to consider (5) only for non-negative x’s and for g(x) ∈ [0; 1).
Of course, g(0) = 0. Further, if we have two solutions for some x¿ 0, say g1 and g2

then by (5) we get

g1(1 − g2
1)B = g2(1 − g2

2)B:

But the function H : [0; 1) → [0;∞) de3ned by

H (x) = x=(1 − x2)B; x ∈ [0; 1);

is strictly increasing (check for instance the derivative), which implies that g1 = g2.
Since g is an odd function then E(X ) = 0 and the unique g satisfying (5) determines
the distribution of X .

Remark. If additionally the value of E(X |X 6 x0) is 3xed then the unique represen-
tative of the scale family is determined (i.e. the unique value of K in (4))—see (1)
in the NN theorem. This observation in our setting, i.e. x0 = 0, F(x0) = 
 = 1

2 , and
E(X ) = 0, follows from:

E(X |X 6 x0) = limx→x0

M (x)F(x)

− F(x)

= limx→0
Ax

1 − 2F(x)
and by (4)

E(X |X 6 0) = limx→0
Ax

−Kx[F(x)(1 − F(x))]1=(2A)−1 = − A
K

21=A−2:

For instance if in the uniform case, i.e. for A= 1
2 , one has E(X |X 6 0)=−L=2 for some

positive constant L, then K = 1=L, which means that X has the uniform distribution in
(−L; L).

Since MX;1=2(x) = Ax uniquely determines the distribution of X (up to a change of
scale) we will relate g’s, F’s and probability measures !’s to the slope A of the cmrlf
by introducing A as a subscript. To have a unique representative of each of the scale
families involved we denote by gA, FA XA and !A the versions of respective notions
de3ned by (5), i.e. with K = 21−1=A.

Observe that if we take B= 1 (i.e. the impossible case of A=∞) in (5) the resulting
quadratic equation for g∞ brings the solution:

g∞(x) =
2x

1 +
√

1 + 4x2
; x ∈ R:

Consequently the df has the form:

F∞(x) =
1
2

(
1 +

2x

1 +
√

1 + 4x2

)
; x ∈ R:
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Consider now the family M = {!A :A ∈ [1=2;∞]} of probability measures in
(R;B(R)).

Theorem 4. All the probability measures in M are absolutely continuous and sym-
metric. The map A→!A from [ 1

2 ;∞] onto M is continuous with respect to weak
convergence of probability measures. The probability distributions (!A)A∈[1=2;∞] trun-
cated to [0;∞) are stochastically decreasing with A. For A¿ 1

2 the moment of the
order 2A=(2A − 1) does not exist; and any moment of the order ¡ 2A=(2A − 1) is
@nite.

Proof. Observe that (5) de3nes the function x = x(g) mapping (−1; 1) onto R (or
(−1; 1) for B = 0) by

x(g) = g=(1 − g2)B; g ∈ (−1; 1):

Since the function x = x(g) is strictly increasing and diRerentiable then its inverse,
equal to g (we checked it in the proof of Theorem 3) is also diRerentiable on R (or
(−1; 1)). Hence F is absolutely continuous.

Let us observe 3rst that (!A)A∈[1=2;∞] is stochastically decreasing. To this end let us
take any B1=1−1=(2A1)¡B2=1−1=(2A2), (i.e. A1 ¿A2). Assume that gA1 (x)¡gA2 (x)
for some x ∈ R+. Then by (5)

gA1 (x) = x(1 − g2
A1

(x))B1 ¿ x(1 − g2
A2

(x))B1

= x(1 − gA2 (x))(B1=B2)B2 ¿ x(1 − gA2 (x))B2 = gA2 (x);

which is contradictory. Consequently gA1 (x) ¿ gA2 (x) for any x ∈ R+ and FA2 (x) ¿
FA1 (x) for any ∞¿ A1 ¿A2 ¿ 1

2 .
Now to show the continuity of !A with respect to the weak convergence it is enough

to show that at any point x ∈ R+ if An→A as n→∞, A; A1; A2; : : : ∈ [ 1
2 ;∞] one has

FAn(x) → FA(x). Take an increasing sequence An ↑ A, then FAn(x) is a decreasing
sequence by the stochastic monotonicity property. Since it is bounded from below
by 0, it has to converge. On the other hand respective gAn(x)’s ful3ll (5) with B =
Bn = 1 − 1=(2An). And since they are convergent, the limit has also to ful3l (5) with
B= 1− 1=(2A). Consequently limn→∞gAn(x) = gA(x) for any x ∈ R by the uniqueness
property of Theorem 3. A similar argument is valid for the decreasing sequence An ↓ A.
Since in both the cases the limits are equal the result follows.

The last assertion about the moments follows immediately if one rewrites (4) for
positive x’s as:

x−"(2F(x) − 1)1=B = K1=Bx1=B−"F(x)(1 − F(x));

where " is any number in [0; 1=B).

Remark. Graphs of selected densities of XA’s are presented in Fig. 1. The picture
shows that the changes are quite visible with A moving 3rst slowly from the lower
boundary A= 1

2 (the uniform [−1; 1] distribution) to the right, but the changes become
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Fig. 1. The graphs of selected densities from the class M .

smaller and smaller as A grows up to 1 or 2, and almost invisible for large values of
A—for instance the graphs for A= 1000 and any larger A, also A=∞, are essentially
indistinguishable, while diRerent, of course.
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