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Three dual regression schemes for the Lukacs theorem
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Abstract. In the paper we study regressional versions of Lukacs’ character-
ization of the gamma law. We consider constancy of regression instead of Lu-
kacs’ independence condition in three new schemes. Up to now the constancy
of regressions of U ¼ X=ðX þ Y Þ given V ¼ X þ Y for independent X and Y
has been considered in the literature. Here we are concerned with constancy of
regressions for X and Y while independence of U and V is assumed instead.
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1. Introduction

Denote by gp;b the gamma distribution defined by the density

gp;bðdxÞ ¼ bp

GðpÞ xp�1e�bxIð0;yÞðxÞ dx;

where b; p are positive numbers (scale and shape parameters, respectively). By
bp;q denote the beta distribution with the density

bp;qðdxÞ ¼ Gðp þ qÞ
GðpÞGðqÞ xp�1ð1� xÞq�1

Ið0;1ÞðxÞ dx;

where p; q are positive numbers.
Let c : ð0;yÞ2 ! ð0; 1Þ � ð0;yÞ be a mapping defined by

cðx; yÞ ¼ x

x þ y
; x þ y

� �
:



For a random vector ðX ;YÞ with nondegenerate, positive components de-
fine ðU ;VÞ ¼ cðX ;YÞ. It is well known that ðX ;YÞ@ gp;b n gq;b i¤ ðU ;VÞ@
bp;q n gpþq;b for positive numbers p; q; b (n denotes the product of two mea-
sures).

One of the most fascinating results in the area of characterization of prob-
ability distributions is the Lukacs (1955) theorem which says that if both
ðX ;YÞ and ðU ;VÞ ¼ cðX ;YÞ have independent components then X and Y
have gamma distributions with the same scale parameter. Since then many au-
thors have considered di¤erent extensions and complements of Lukacs’ result.
Many of them were concerned with regression schemes, i.e. the assumption
that X and Y are independent was kept, but instead of independence of U and
V conditions of constancy of regressions

EðU rjVÞ ¼ c; EðU sjVÞ ¼ d ð1:1Þ

for some real constants c; d, and some fixed pairs of integers ðr; sÞ were im-
posed. In this way Bolger and Harkness (1965) characterized the gamma law
by considering the pair ðr; sÞ ¼ ð1; 2Þ. Then Wesołowski (1990) obtained the
characterization for the pair ðr; sÞ ¼ ð1;�1Þ. In Li, Huang and Huang (1994)
it was shown that the characterization holds also in the case ðr; sÞ ¼ ð�1;�2Þ.
In the meantime Hall and Simons (1969) showed that for the pair ðr; sÞ ¼ ð1; 3Þ
the result does not hold. Analogous constancy of regression conditions in more
abstract settings were also considered; for instance, bivariate random vectors
in Wang (1981), stochastic processes in Wesołowski (1989), positive definite
symmetric matrices and Jordan algebras in Letac and Massam (1998). Related
regression conditions of the form

EðY r jX þ YÞ ¼ cðX þ Y Þr; EðX r jX þ YÞ ¼ dðX þ YÞr

were studied in Hall and Simons (1969) for r ¼ 2 and in Huang and Su (1997)
for r ¼ �1.

However it is still not known if the role of U and V in regression conditions
(1.1) can be exchanged without influencing the characterization property. Here
we would like only to indicate that combining two constancy of regressions
conditions with di¤erent conditioning as EðU jVÞ ¼ c and EðV jUÞ ¼ d does
not determine uniquely the gamma law, which is shown in the following:

Example 1. Take X and Y to be independent identically distributed (iid) ran-
dom variables (rv’s), such that PðX ¼ aÞ ¼ PðX ¼ bÞ ¼ 1=2 for two distinct
and positive numbers a; b. Then, obviously, EðU jVÞ ¼ 1=2, which holds true for
any iid integrable rv’s, and direct computations lead immediately to:
EðV jUÞ ¼ a þ b.

On the other hand it was proved in Khatri and Rao (1968) (see also Ka-
gan, Linnik and Rao (1973), Ch. 6) that if we take three or more variables in
the above scheme then the characterization follows. More precisely, these au-
thors, assuming that X1; . . . ;Xn, n b 3, are independent rv’s, considered the
condition

EðX1 þ 	 	 	 þ Xn jX1=Xn; . . . ;Xn�1=XnÞ ¼ const:
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In the present paper we are concerned with schemes which are in a natural
way dual to the regression schemes described by (1.1), i.e. instead assuming
that X and Y are independent we assume that U and V are independent, at the
same time the constancy of regressions of U given V is changed to constancy
of regressions of Y given X or X given Y:

EðY rjXÞ ¼ c; EðY sjXÞ ¼ d;

or

EðX rjYÞ ¼ c; EðX sjYÞ ¼ d

for some pairs of ðr; sÞ and some real constants c and d. Thus here the role of
X and Y in regression conditions can be interchanged. We are concerned pre-
cisely with the same pairs as in the previous setting, i.e. we prove character-
izations in three cases: ðr; sÞ ¼ ð1; 2Þ, or ð1;�1Þ or ð�1;�2Þ. It should be
stressed that our argument in the proofs does not make any use of the Laplace
transform technique, which has always been the basic tool for dealing with
Lukacs’ theorem related problems. Instead we rely on the method of moments,
which seems to be used for the first time in this area.

Also it is shown, that similarly as in the previous approach, mixing re-
gression conditions by taking di¤erent conditioning does not characterize the
gamma law.

2. Results

Throughout this section we assume that ðX ;YÞ is a random vector with non-
degenerate positive components and ðU ;VÞ ¼ cðX ;Y Þ, where c was defined
in the previous section. Observe, that since c is a bijection, equivalently, one
can start with a random vector ðU ;VÞ with nondegenerate components, first
in ð0; 1Þ and second positive, and define ðX ;YÞ ¼ c�1ðU ;VÞ.

First we consider a result which is dual to the characterization of the gamma
law obtained in Bolger and Harkness (1965).

Theorem 1. Let U and V be independent. Assume that

E½Y jX � ¼ c; E½Y 2jX � ¼ d; ð2:1Þ

for some real constants c; d.
Then d > c2 and there exists a > 0 such that ðU ;VÞ@bp;q n ga;b, where b ¼

c=ðd � c2Þ > 0, p ¼ a � bc > 0 and q ¼ bc > 0. Moreover ðX ;YÞ@gp;b n gq;b.

Proof. Conditions (2.1) can be rewritten as

E½V jUV � ¼ c þ UV ; ð2:2Þ

and

E½V 2ð1� UÞ2 jUV � ¼ d: ð2:3Þ
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Let us note that since U A ð0; 1Þ we have EðU kÞ < y for k ¼ 1; 2; . . . To show

that all the moments EðV kÞ are finite we apply induction with respect to k.
For k ¼ 1; 2 it follows from the conditions (2.2) and (2.3). Now, let us as-
sume that EðV kÞ < y for some k and observe that if rv’s A, B ðB b 0Þ, C ¼
AEðBjAÞ are integrable then the product AB is also integrable – see Lemma in
Wesołowski (1993). Hence, by taking

A ¼ ðUVÞk; B ¼ Vð1� UÞ; C ¼ AEðBjAÞ ¼ ðUVÞk
c;

we obtain that V kþ1U kð1� UÞ is integrable. Thus EðV kþ1Þ < y and by the
induction argument we get that all the moments of V are finite.

From (2.2) it follows that

E½VðUVÞk� ¼ E½ðc þ UVÞðUVÞk�; k ¼ 0; 1; . . . ; ð2:4Þ

which takes the form

hðkÞ ¼ c þ gðkÞhðkÞ; k ¼ 0; 1; . . . ; ð2:5Þ

where

hðkÞ ¼ E½V kþ1�
E½V k� ; gðkÞ ¼ E½U kþ1�

E½U k� ; k ¼ 0; 1; . . .

On the other hand (2.3) implies that

E½V 2ð1� UÞ2ðUVÞk� ¼ dE½ðUVÞk�:

Thus, we obtain the equation

hðk þ 1ÞhðkÞ � 2gðkÞhðk þ 1ÞhðkÞ

þ gðk þ 1ÞgðkÞhðk þ 1ÞhðkÞ ¼ d; k ¼ 0; 1; . . . ð2:6Þ

Substituting gðkÞhðkÞ and gðk þ 1Þhðk þ 1Þ from (2.5) into (2.6) we obtain

hðk þ 1Þ ¼ hðkÞ þ d

c
� c; k ¼ 0; 1; . . . ð2:7Þ

Let us observe that since c ¼ EðY Þ, d ¼ EðY 2Þ, we have c > 0 and VarðYÞ ¼
d � c2 > 0. If we denote

b ¼ c

d � c2
> 0;

the equation (2.7) takes the form

hðkÞ ¼ hð0Þ þ k=b; k ¼ 0; 1; . . . ð2:8Þ

46 K. Bobecka, J. Wesołowski



Let us define a ¼ bhð0Þ ¼ bEV . Then the above equation leads to

EðV kÞ ¼ Gða þ kÞ
bkGðaÞ ; k ¼ 1; 2; . . .

Hence, by the uniqueness of the moments sequence for the gamma distribution,
we get V @ ga;b.

From (2.5) it follows that

gðkÞ ¼ hðkÞ � c

hðkÞ ¼ a � bc þ k

a þ k
; k ¼ 0; 1; . . .

Thus

EðU kþ1Þ ¼ EðU kÞ a � bc þ k

a þ k
; k ¼ 0; 1; . . . ð2:9Þ

Denote p¼ a�bc, q¼ bc and observe that q > 0, p¼ bEV �bc¼ bEUEV > 0.
Then the equation (2.9) takes the form

EðU kÞ ¼ p þ k � 1

p þ q þ k � 1
EðU k�1Þ ¼ Gðp þ qÞGðp þ kÞ

GðpÞGðp þ q þ kÞ ; k ¼ 1; 2; . . .

The uniqueness of the moments sequence for the beta distribution implies that
U @ bp;q. Now in the standard way we compute the joint density of ðX ;YÞ ¼
ðUV ; ð1� UÞVÞ to conclude that ðX ;YÞ@ gp;b n gq;b. r

The analoguous result with X and Y interchanged follows immediately.

Corollary 1. If we replace the assumption (2.1) in Theorem 1 by

E½X jY � ¼ c; E½X 2jY � ¼ d ð2:10Þ

then ðX ;Y Þ@ gq;b n gp;b, with b; p; q defined as in Theorem 1.

Proof. The conditions (2.10) are equivalent to

E½UV jVð1� UÞ� ¼ c;

E½ðUVÞ2 jVð1� UÞ� ¼ d:

Denote Z ¼ 1� U . It su‰ces to observe that Z, V are independent and then
from Theorem 1 we get ðZ;VÞ@ bq;p n ga;b. Hence ðX ;YÞ@ gq;b n gp;b. r

Our next result takes care about the pair ðr; sÞ ¼ ð1;�1Þ and is dual to
Wesołowski (1990).

Theorem 2. Let U and V be independent. Assume that

E½Y jX � ¼ c; E½Y�1jX � ¼ d ð2:11Þ

for some real constants c; d.
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Then cd > 1 and there exists a > 1 such that ðU ;VÞ@ bp;q n ga;b, where

b ¼ d

cd � 1
> 0, p ¼ a � bc > 0, q ¼ bc > 1. Moreover ðX ;Y Þ@ gp;b n gq;b.

Proof. Conditions (2.11) can be rewritten as

E½Vð1� UÞ jUV � ¼ c; ð2:12Þ

E
1

Vð1� UÞ jUV

� �
¼ d; ð2:13Þ

Let us note that similarly as in Theorem 1 all the moments of U and V are

finite. Observe that E
1

1� U

� �
< y. Note also that

U k

1� U
¼ 1

1� U
�
Xk�1
j¼0

U j ¼
Xy
j¼k

U j <
1

1� U
;

E
U k

1� U

� �
< E

1

1� U

� �
< y:

From (2.13) it follows that

E V k�1 U k

1� U

� �
¼ dðUVÞk; k ¼ 0; 1; . . .

The above equation can be written as

EðV k�1Þ
Xy
j¼k

EðU jÞ ¼ dEðV kÞEðU kÞ; k ¼ 0; 1; . . .

If we denote

GðkÞ ¼
Xy
j¼k

EðU jÞ;

hðk � 1Þ ¼ EðV kÞ
EðV k�1Þ ; k ¼ 0; 1; . . .

(observe that EðV�1Þ < y) our equation takes the form

GðkÞ ¼ dhðk � 1Þ½GðkÞ � Gðk þ 1Þ�; k ¼ 0; 1; . . .

what can be also written as

PðkÞ ¼ 1� 1

dhðk � 1Þ ; k ¼ 0; 1; . . . ð2:14Þ

48 K. Bobecka, J. Wesołowski



where

PðkÞ ¼ Gðk þ 1Þ
GðkÞ ; k ¼ 0; 1; . . . ð2:15Þ

The equation (2.12) is the same as in Theorem 1. Thus we get

E½U k�E½V kþ1� ¼ cE½U k�E½V k� þ E½U kþ1�E½V kþ1�;

what can be written as

½hðkÞ � c�½1� PðkÞ� ¼ hðkÞPðkÞ½1� Pðk þ 1Þ�; k ¼ 0; 1; . . . ð2:16Þ

Substituting PðkÞ and Pðk þ 1Þ from (2.14) into (2.16) we obtain:

hðkÞ ¼ hðk � 1Þ þ c � 1

d

¼ hð�1Þ þ ðk þ 1Þ=b; k ¼ 0; 1; . . . ;

where

hð�1Þ ¼ 1

EðV�1Þ ; b ¼ d

cd � 1
:

Observe that

cd ¼ E½Vð1� UÞ�Eð½Vð1� UÞ��1Þ

¼ ½EVEV�1�½Eð1� UÞEð1� UÞ�1� > 1:

Hence b ¼ d

cd � 1
> 0. Define a ¼ bEV ¼ bhð0Þ > 0. Then we get

EðV kÞ ¼ Gða þ kÞ
bkGðaÞ ; k ¼ 1; 2; . . . ;

and thus V @ ga;b.

Now, from (2.14) we obtain

PðkÞ ¼ dhðk � 1Þ � 1

dhðk � 1Þ ¼ d½hð�1Þ þ k=b� � 1

d½hð�1Þ þ k=b� ; k ¼ 0; 1; . . . ð2:17Þ

Let us note that a ¼ bhð0Þ ¼ bhð�1Þ þ 1, hence (2.17) can be rewritten as

PðkÞ ¼
a � b

d
� 1þ k

a þ k � 1
¼ p þ k

p þ q þ k � 1
; k ¼ 0; 1; . . . ; ð2:18Þ
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where p ¼ a � 1� b=d ¼ a � bc, q ¼ a � p ¼ 1þ b=d > 1 and

p ¼ d

cd � 1
EV � 1

cd � 1
� 1 ¼ bEX > 0:

On the other hand, from (2.15) we have

PðkÞ ¼
E

U kþ1

1� U

� �

E
U k

1� U

� � ; k ¼ 0; 1; . . .

Hence our equation (2.18) takes the form

E
U kþ1

1� U

� �
¼ p þ k

p þ q þ k � 1
E

U k

1� U

� �
; k ¼ 0; 1; . . . ;

which implies that

EðU kÞ ¼ p þ k � 1

p þ q þ k � 1
EðU k�1Þ

¼ Gðp þ qÞGðp þ kÞ
GðpÞGðp þ q þ kÞ ; k ¼ 1; 2; . . .

Hence U @ bp;q. Thus, as in Theorem 1, it follows that ðX ;Y Þ@ gp;b n gq;b.

r

And, again, the roles of X and Y in the previous result can be exchanged.

Corollary 2. If we replace the assumption (2.11) in Theorem 2 by

EðX jYÞ ¼ c; EðX�1jYÞ ¼ d; ð2:19Þ

then ðX ;Y Þ@ gq;b n gp;b, where p; q; b are defined in Theorem 2.

Our final scheme is dual to one adopted in Li, Huang, and Huang (1994),
and deals with the pair ðr; sÞ ¼ ð�1;�2Þ.

Theorem 3. Let U and V be independent rv’s. Assume that

E½Y�1jX � ¼ c; E½Y�2jX � ¼ d ð2:20Þ

for some real constants c; d.
Then d > c2 and there exists a > 2 such that ðU ;VÞ@ bp;q n ga;b, where

b ¼ cd=ðd � c2Þ> 0, p ¼ a� 1� b=c > 0, q ¼ 1þ b=c > 2. Moreover ðX ;Y Þ@
gp;b n gq;b.
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Proof. Conditions (2.20) can be rewritten as

E
1

Vð1� UÞ jUV

� �
¼ c; ð2:21Þ

E
1

V 2ð1� UÞ2
jUV

" #
¼ d: ð2:22Þ

Since U A ð0; 1Þ we have EðU kÞ < y for k ¼ 1; 2; . . . To show that all the
moments EðV kÞ are finite we apply induction with respect to k ¼ �2;�1; 0;
1; . . . : Observe that by the regression conditions it follows that Eð1� UÞ�2 <
y and EV�2 < y. Let us assume that EðV kÞ < y for some k. From (2.21)
we have

U kþ1V kþ1c ¼ E V k U kþ1

ð1� UÞ jUV

� �
;

hence

y > EðV kÞE 1

1� U

� �
> EðV kÞE U kþ1

1� U

� �
¼ EðV kþ1ÞEðU kþ1Þc

Thus EðV kþ1Þ<y and by the induction argument we get that all the moments
of V are finite.

Let us note that the condition (2.21) is as the one in Theorem 2. Hence we
have the equation

PðkÞ ¼ 1� 1

chðk � 1Þ ; k ¼ 0; 1; . . . ð2:23Þ

where

PðkÞ ¼ Gðk þ 1Þ
GðkÞ ;

hðk � 2Þ ¼ EðV k�1Þ
EðV k�2Þ ; k ¼ 0; 1; . . .

The condition (2.22) implies

EðV k�2ÞE U k

ð1� UÞ2

" #
¼ dEðV kÞEðU kÞ; k ¼ 0; 1; . . .

which can be written in the form

E
U k

ð1� UÞ2

" #
¼ d½GðkÞ � Gðk þ 1Þ�hðk � 1Þhðk � 2Þ; k ¼ 0; 1; . . .
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where as in the proof of Theorem 2

GðkÞ ¼
Xy
j¼k

EðU jÞ; k ¼ 0; 1; . . .

Let us observe that ( 0 denotes di¤erentiation with respect to U )

E
U k

ð1� UÞ2

" #
¼ E U k 1

1� U

� �0� �
¼ E

2
4U k

Xy
j¼0

U j

 !035

¼
Xy
j¼k

ð j � k þ 1ÞEðU jÞ ¼
Xy
j¼k

Gð jÞ; k ¼ 0; 1; . . .

Thus we get

Xy
j¼k

Gð jÞ ¼ d½GðkÞ � Gðk þ 1Þ�hðk � 1Þhðk � 2Þ; k ¼ 0; 1; . . .

Then taking di¤erences for k and k þ 1 we obtain

GðkÞ ¼ d½GðkÞ � Gðk þ 1Þ�hðk � 1Þhðk � 2Þ

� d½Gðk þ 1Þ � Gðk þ 2Þ�hðkÞhðk � 1Þ;

which can be written as

1 ¼ dhðk � 1Þf½1� PðkÞ�hðk � 2Þ � PðkÞ

½1� Pðk þ 1Þ�hðkÞg; k ¼ 0; 1; . . . ð2:24Þ

Substituting now PðkÞ and Pðk þ 1Þ from (2.23) into (2.24) it follows that

hðk � 1Þ ¼ hðk � 2Þ þ 1

c
� c

d
¼ hðk � 2Þ þ 1

b
; k ¼ 0; 1; . . . ;

where

b ¼ cd

d � c2
¼ E½Y�1�E½Y�2�

Var½Y�1� > 0:

Defining a ¼ bEV ¼ bhð0Þ > 0, we obtain, as in the previous proofs, that V @
ga;b. Thus (2.23) takes the form

PðkÞ ¼
a � b

c
� 1þ k

a þ k � 1
; k ¼ 0; 1; . . . ;
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and we get

EðU kÞ ¼ p þ k � 1

p þ q þ k � 1
EðU k�1Þ

¼ Gðp þ qÞGðp þ kÞ
GðpÞGðp þ q þ kÞ ; k ¼ 1; 2; . . . ;

where

p ¼ a � b

c
� 1 ¼ b½hð�1Þ � c�1� ¼ b

1

EðVÞ
½Eðð1� UÞ�1Þ � 1�

Eðð1� UÞ�1Þ
> 0;

q ¼ a � p ¼ 2þ c2

d � c2
> 2:

Hence U @ bp;q. Thus, as in Theorem 1, ðX ;Y Þ@ gp;b n gq;b. r

The parallel result follows easily, as in the previous cases.

Corollary 3. If we replace the assumption (2.20) in Theorem 3 by

EðX�1jYÞ ¼ c; EðX�2jYÞ ¼ d; ð2:25Þ

then ðX ;Y Þ@ gq;b n gp;b with p; q; b defined as in Theorem 3.

Finally, let us note that the conditions:

EðY jXÞ ¼ c; EðX jY Þ ¼ d;

where c and d are constants, are not su‰cient for the non-degenerate positive
random variables X and Y to be gamma distributed, assuming only that U ¼

X

X þ Y
and V ¼ X þ Y are independent. It is demonstrated by the following:

Example 2. Suppose that U ¼ X

X þ Y
and V ¼ X þ Y are non-degenerate in-

dependent rv’s such that

PðU ¼ aÞ ¼ PðU ¼ 1� aÞ ¼ 1

2
;

PðV ¼ aÞ ¼ 1� a ¼ 1� PðV ¼ 1� aÞ

for some 0:50 a A ð0; 1Þ.
Then the direct computation shows that

EðY jXÞ ¼ EðX jY Þ ¼ að1� aÞ:
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