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The Lukacs–Olkin–Rubin theorem without
invariance of the “quotient”

by

Konstancja Bobecka and Jacek Wesołowski (Warszawa)

Abstract. The Lukacs theorem is one of the most brilliant results in the area of
characterizations of probability distributions. First, because it gives a deep insight into
the nature of independence properties of the gamma distribution; second, because it uses
beautiful and non-trivial mathematics. Originally it was proved for probability distribu-
tions concentrated on (0,∞). In 1962 Olkin and Rubin extended it to matrix variate
distributions. Since that time it has been believed that the fundamental reason such an
extension is possible, is the assumed property of invariance of the distribution of the “quo-
tient” (properly defined for matrices). The main result of this paper is that the matrix
variate Lukacs theorem holds without any invariance assumption for the “quotient”. The
argument is based on solutions of some functional equations in matrix variate real func-
tions, which seem to be of independent interest. The proofs use techniques of differential
calculus in the cone of positive definite symmetric matrices.

1. Introduction. If for two independent, positive, nondegenerate ran-
dom variables (rv’s) their quotient and sum are also independent then the
original rv’s necessarily have the gamma distributions with the same scale
parameter. This beautiful and important result, known as the Lukacs theo-
rem, has drawn considerable attention of researchers in distribution theory
since its publication in Lukacs (1955).

Further investigations of the characteristic property of the gamma law
discovered by Lukacs were led at least in two basic directions: (i) weaken-
ing the independence condition to constancy of regressions—see Bolger and
Harkness (1965), Hall and Simons (1969), Wesołowski (1990), Li, Huang,
and Huang (1994), Huang and Su (1997) or Bobecka and Wesołowski (2001);
(ii) considering rv’s with values in more abstract structures as: (0,∞)2 in
Wang (1981) or Bobecka (2001), stochastic processes in Wesołowski (1989),
positive definite symmetric matrices in Olkin and Rubin (1962), symmetric
cones in Casalis and Letac (1996) and Letac and Massam (1998).
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In this paper we are concerned with matrix valued rv’s.
Let V+ denote the cone of positive definite symmetric real n× n matri-

ces. It is a subset of the Euclidean space V of symmetric real n×n matrices
endowed with the inner product (a, b) = trace(ab) for a, b ∈ V. Then the
Lebesgue measure is introduced by assigning a unit mass to the unit cube in
V. Additionally denote by M the space of all n× n real matrices, which is
Euclidean with the inner product (a, b) = trace(aT b), where T denotes trans-
position, and by V+ the closed cone of positive symmetric n × n matrices.
Let e be the identity matrix in V. Define also D = {x ∈ V+ : e− x ∈ V+},
which is an analogue of the interval (0, 1) in V.

The Wishart (gamma) distribution γp,a in V+ is defined for any a ∈ V+
and any p ∈ Λn = {1/2, 2/2, . . . , (n− 1)/2} ∪ ((n− 1)/2,∞) by its Laplace
transform as follows:

�

V+

exp(−(θ, y)) γp,a(dy) = (det(e+ θa−1))−p,

for any θ + a ∈ V+. If p > (n− 1)/2 then γp,a is absolutely continuous with
respect to the Lebesgue measure and its density has the form

γp,a(dy) =
(det a)p

Γn(p)
(det y)p−(n+1)/2 exp(−(a, y))IV+(y) dy, y ∈ V+,

where Γn is the n-variate Gamma function; see, for instance, Muirhead
(1982), p. 61.

Olkin and Rubin (1962) formulated and proved a version of the Lukacs
theorem in V+. As pointed out in Casalis and Letac (1996) their statement
is not completely clear and the proof is even more difficult to follow. As
these authors say, “. . . understanding the Olkin–Rubin proof (. . .) appears
to be a strenuous task [we gave up after their identity (23)]”. Instead they
offered a clear statement of the Lukacs–Olkin–Rubin theorem together with
a proof which is also not easy to follow unless one is familiar with analysis on
symmetric cones and variance functions of natural exponential families (even
the shorter proof given in Letac and Massam (1998) still needs considerable
familiarity with these non-trivial domains). Here we state the Lukacs–Olkin–
Rubin theorem following Casalis and Letac (1996):

Theorem 1. Let X and Y be two independent rv’s concentrated on V+
such that X + Y belongs to V+ almost surely and is not concentrated on
some half line. Let w : V+ →M be a measurable function such that , for all
y ∈ V+, one has w(y)(w(y))T = y. Define

U = (w(X + Y ))−1X((w(X + Y ))T )−1, V = X + Y.

If U and V are independent and are not concentrated on the same one-
dimensional space and for any orthogonal matrix O the distributions of U
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and OUOT are the same then there exist a ∈ V+ and p, q ∈ Λn such that
p+ q > (n− 1)/2 and X ∼ γp,a and Y ∼ γq,a.

The argument given in all the known proofs of this result, using the
Laplace transform method, is heavily based on the invariance property of
U , i.e. on the fact that U and OUOT have the same distribution for any
orthogonal n × n matrix O. Therefore for the last forty years there was a
strong belief that this invariance property, which holds trivially in (0,∞),
was rather fundamental for the Lukacs theorem in the case of matrix variate
distributions, or more generally for distributions on symmetric cones. The
main discovery of the present paper is that the invariance is not essential
for characterizing the Wishart distribution.

Observe that one of the possible choices for w is w(y) = y1/2 for y ∈ V+—
possibly the most natural one. Our considerations will be restricted to this
choice of w and to distributions having positive twice differentiable densi-
ties on V+. As mentioned above, typically problems related to the Lukacs
theorem were attacked by Laplace transforms or characteristic functions.
The idea of using the approach via densities came to our mind after suc-
cessful use of smooth densities in proving a result, of a somewhat similar
flavour to the Lukacs theorem, for the generalized inverse Gaussian and
gamma laws, based on the so-called Matsumoto–Yor independence property
—see Matsumoto and Yor (2001). It was accomplished essentially in Letac
and Wesołowski (2000) and then refined, by considering a less restrictive
smoothness assumption imposed on densities, in Wesołowski (2001). Let us
point out that, additionally, the argument we offer here seems to be some-
what simpler, or at least more homogeneous, than the previous proofs of the
original Lukacs–Olkin–Rubin theorem. It heavily depends on the methods
of differential calculus in the cone of positive definite symmetric matrices.
The statement and proof of our main result are given in Section 3. Section 2
is devoted to a thorough study of some functional equations on V+, which,
while being of independent interest, play a crucial role in the proof of the
strong version of the Lukacs–Olkin–Rubin theorem. Let us stress that the
basic difficulty which has to be dealt with in the cone V+ is concerned with
noncommutativity of multiplication, leading to non-trivial computations,
while the case n = 1, i.e. (0,∞) is rather easy.

2. Functional equations. For any y ∈ V+ introduce linear operators
P(y) and L(y) on V, i.e. two elements of the space L(V) of endomorphisms
on V, defined by

P(y)h = yhy, L(y)h = hy + yh,

for h ∈ V. These two operators are important objects for the Jordan algebras
theory and for analysis on symmetric cones of which the cone V+ is the most
important example—see Faraut and Korányi (1994).
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Observe that their inverses, denoted by P−1(y) and L−1(y), exist. We
have P−1(y) = P(y−1) and the existence of L−1(y) follows for instance from
Theorem 5.1 of Olkin and Rubin (1964). Moreover, observe that the opera-
tors P and L are related by

P(y−1) ◦ L(y) = L(y) ◦ P(y−1) = L(y−1),(2.1)

P(y−1) ◦ L(y2) = L(y2) ◦ P(y−1).(2.2)

Also since L(y) is linear in y, we have IdV = L(sy) ◦ L−1(sy) = sL(y) ◦
L−1(sy) for any real s, where IdV is the identity in L(V). Consequently,

L−1(sy) = s−1L−1(y)(2.3)

for any non-zero s ∈ R and any y ∈ V+.
Since y = L(y)(e/2), it follows that

L−1(y)y = e/2.(2.4)

Finally observe that for any y ∈ V,

L2(y) = L(y2) + 2P(y).(2.5)

These elementary properties of the operators P and L will be intensively
exploited in the course of solution of two functional equations, which is the
main objective of this section.

Theorem 2. Let a : D → R and g : V+ → R be functions such that

a(x) = g(yxy)− g(y(e− x)y)(2.6)

for any x ∈ D and y ∈ V+. Assume that g is differentiable. Then there exist
λ, β ∈ R such that for any x ∈ D and y ∈ V+,

a(x) = λ log[detx(e− x)−1], g(y) = λ log(det y) + β.

Proof. Differentiation of (2.6) with respect to x (note that differentia-
bility of a follows immediately from (2.6) since g is differentiable) gives

a′(x) = P(y)[g′(P(y)x) + g′(P(y)(e− x))].(2.7)

Inserting x = 1
2e in (2.7) and replacing y by (2y)1/2 we get

g′(y) = P(y−1/2)b,(2.8)

where b = 1
4a
′(e/2) ∈ V.

We will show that there exists λ ∈ R such that b = λe.
Observe that by taking y = e in (2.7) we get

a′(x) = g′(x) + g′(e− x).

Inserting this identity back into (2.7) we obtain

g′(x) + g′(e− x) = P(y)g′(P(y)x) + P(y)g′(P(y)(e− x)),

which can be rewritten in the form

P(y−1)g′(x)− g′(P(y)x) = −[P(y−1)g′(e− x)− g′(P(y)(e− x))].
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For any s ∈ (0, 1), change x to sx in the above equation. Observing that

g′(sx) = P((sx)−1/2)b = s−1P(x−1/2)b = s−1g′(x),

we see on multiplication by s that for any s ∈ (0, 1),

P(y−1)g′(x)− g′(P(y)x) = −s[P(y−1)g′(e− sx)− g′(P(y)(e− sx))].

Consequently, on letting s→ 0 and using the representation (2.8), we get

P(y−1)g′(x) = g′(P(y)x)(2.9)

for any x ∈ D, y ∈ V+.
Differentiate now (2.6) with respect to y to get

xyg′(P(y)x) + g′(P(y)x)yx

= (e− x)yg′(P(y)(e− x)) + g′(P(y)(e− x))y(e− x),

which, due to (2.7) and (2.9), can be rewritten as

xy[P(y−1)a′(x)] + [P(y−1)a′(x)]yx = L(y)P(y−1)g′(e− x).

Hence by (2.1) we get

xa′(x)y−1 + y−1a′(x)x = L(y−1)g′(e− x).

And thus for any y ∈ V+,

y[xa′(x)− g′(e− x)] + [a′(x)x− g′(e− x)]y = 0.

Observe that if yw + wT y = 0 for any y ∈ V+ and w ∈ M then w = 0.
This follows on taking first y = e, which yields w = −wT , and then yw = wy
for any y ∈ V+. Consequently (see the argument at the end of this proof),
there exists λ ∈ R such that w = λe = wT = −w = −λe and hence λ = 0.

Therefore, since a′(x)x − g′(e − x) = [xa′(x) − g′(e − x)]T the above
equation implies that

a′(x)x = g′(e− x) = xa′(x),

which further yields

xg′(e− x) = g′(e− x)x, x ∈ D.
Thus, by substituting x for e−x we have (e−x)g′(x) = g′(x)(e−x). Hence
xg′(x) = g′(x)x. Now (2.8) implies that x(x−1/2bx−1/2) = (x−1/2bx−1/2)x,
yielding xb = bx for any x ∈ D.

Take now for any i, j ∈ {1, . . . , n} the matrix xi,j = 1
2e+ εei,j, where ei,j

is the matrix with all entries zero except the (i, j) and (j, i) entries which
are one. Observe that i = j is allowed and even necessary to consider in the
case n = 2. Then for sufficiently small ε > 0 it follows that xi,j ∈ D and
substituting such x’s in bx = xb, where b = [bi,j ], gives bi,k = bj,k = 0 for
any k 6= i, j and bi,i = bj,j . Since this observation is valid for any i and j, it
follows that b has to be a multiple of e.
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Substituting b = λe where λ ∈ R in (2.8) gives g′(y) = λy−1. Hence

g(y) = λ log(det y) + β, λ, β ∈ R.(2.10)

Finally, inserting (2.10) into (2.6) we get

a(x) = λ log[detx(e− x)−1].

In the course of the proof of our next result we will need the following

Proposition 1. Assume that for some b ∈ V,

2P(b)y = L(b2)y, y ∈ V+.(2.11)

Then there exists λ ∈ R such that b = λe.

Proof. By (2.11) we get, for any y ∈ V,

0 = (L(b2)y − 2P(b)y, y) = (b2y, y)− (byb, y) + (yb2, y)− (byb, y)

= (yb, by)− (by, by) + (yb, by)− (yb, yb)

= (yb− by, by) + (yb, by − yb) = (yb− by, by)− (yb− by, yb)
= (yb− by, by − by) = (yb− by, (yb− by)T ) = ‖yb− by‖2,

where ‖ · ‖ denotes the norm defined by the inner product.
It follows that for any y ∈ V+ we have by = yb. Similarly to the final part

of the preceding proof we conclude that b = λe for some real number λ.

Now we are ready to study the second functional equation; its proof is
somewhat more involved than the previous one, though also based essentially
on differentiation of functions of a matrix argument. But this time we will
use second derivatives, i.e. instead of operating in the space V some of our
equations in the proof will be in L(V).

Theorem 3. Let a1 : D → R and a2, g : V+ → R be functions satisfying

a1(x) + a2(y) = g(yxy) + g(y(e− x)y)(2.12)

for any x ∈ D and y ∈ V+. Assume that g is twice differentiable. Then there
exist δ ∈ V and λ, σ, σ1, σ2 ∈ R such that for any x ∈ D and y ∈ V+,

a1(x) = λ log[detx(e− x)] + σ1,

a2(y) = 4λ log(det y) + (δ, y2) + σ2,

g(y) = λ log(det y) + (δ, y) + σ,

where 2σ = σ1 + σ2.

Proof. Differentiation of (2.12) with respect to x gives

a′1(x) = P(y)[g′(P(y)x)− g′(P(y)(e− x))] ∈ V.(2.13)

Differentiating (2.13) once again with respect to x we arrive at

a′′1(x) = P(y) ◦ [g′′(P(y)x) + g′′(P(y)(e− x))] ◦ P(y) ∈ L(V).(2.14)
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Substitute x = 1
2e in the above equation and then replace y by (2y)1/2 to

get
g′′(y) = P(y−1/2) ◦B ◦ P(y−1/2),(2.15)

where B = 1
8a
′′
1

(1
2e
)
∈ L(V).

Now our aim is to show that B is a multiple of IdV , where IdV is the
identity operator in V.

Substituting y = e in (2.14) gives

a′′1(x) = g′′(x) + g′′(e− x).(2.16)

By inserting (2.16) back into (2.14) we obtain

g′′(x) + g′′(e− x) = P(y) ◦ [g′′(P(y)x) + g′′(P(y)(e− x))] ◦ P(y),

which can be rewritten in the form

g′′(x)− P(y) ◦ g′′(P(y)x) ◦ P(y)

= −[g′′(e− x)− P(y) ◦ g′′(P(y)(e− x)) ◦ P(y)].

For any s ∈ (0, 1), change x to sx in the above equation. Since by (2.15),

g′′(sx) = P((sx)−1/2) ◦B ◦ P((sx)−1/2) = s−2g′′(x),

on multiplication by s2 we deduce for any s ∈ (0, 1) that

g′′(x)− P(y) ◦ g′′(P(y)x) ◦ P(y)

= −s2[g′′(e− sx)− P(y) ◦ g′′(P(y)(e− sx)) ◦ P(y)].

Letting now s→ 0 and using (2.15) on the rhs, we obtain

P(y−1) ◦ g′′(x) ◦ P(y−1) = g′′(P(y)x).(2.17)

Now differentiate (2.13) with respect to y to get, for any h ∈ V,

(2.18) y[g′(P(y)x)− g′(P(y)(e− x))]h+ h[g′(P(y)x)− g′(P(y)(e− x))]y

= − P(y)[g′′(P(y)x) + g′′(P(y)(e− x))][yxh+ hxy]

+ P(y)g′′(P(y)(e− x))[yh+ hy].

Observe now that by (2.13) and (2.14) equation (2.18) can be written as

y[P(y−1)a′1(x)]h+ h[P(y−1)a′1(x)]y

= −[a′′1(x)P(y−1)][yxh+ hxy] + P(y)g′′(P(y)(e− x))L(y)h.

Then using (2.17) and (2.1) we get

a′1(x)y−1h+ hy−1a′1(x) + a′′1(x)[y−1hx+ xhy−1] = g′′(e− x)L(y−1)h.

Substitute h = y in the above equation and use (2.15) to obtain

a′1(x) + a′′1(x)x = P((e− x)−1/2)B[(e− x)−1].
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Observe now that a′1(e−x) = −a′1(x) and a′′1(e−x) = a′′1(x). Then replacing
x by e− x above we arrive at

−a′1(x) + a′′1(x)(e− x) = P(x−1/2)B(x−1).

Now using (2.16) and (2.15) we have

−a′1(x)+[P(x−1/2)◦B ◦P(x−1/2)+P((e−x)−1/2)◦B ◦P((e−x)−1/2)](e−x)

= P(x−1/2)B(x−1),

which implies
a′1(x) = −P(x−1/2)b+ P((e− x)−1/2)b,(2.19)

where b = B(e) ∈ V.
This equation will lead to a new formula for a′′1(x) which will then be

compared with the one obtained earlier. Observe first that

(x−1/2)′h = −P(x−1/2)L−1(x1/2)h.

Now, using the above formula, differentiate (2.19) with respect to x and
then compare to (2.14) to arrive via (2.15) at

x−1/2b[P(x−1/2)L−1(x1/2)h] + [P(x−1/2)L−1(x1/2)h]bx−1/2

+ (e− x)−1/2b[P((e− x)−1/2)L−1((e− x)1/2)h]

+ [P((e− x)−1/2)L−1((e− x)1/2)h]b(e− x)−1/2

= P(x−1/2)B[P(x−1/2)h] + P((e− x)−1/2)B[P((e− x)−1/2)h].

Insert now sx instead of x for s ∈ (0, 1) and use (2.3), then multiply both
sides by s2 and finally take s→ 0 to get, for any x ∈ D,

bx−1/2[L−1(x1/2)h] + [L−1(x1/2)h]x−1/2b = B[P(x−1/2)h].(2.20)

Replace first x1/2 with x in (2.20), and then multiply both sides by t−2 for
any positive number t. Then

b(tx)−1[L−1(tx)h] + [L−1(tx)h](tx)−1b = B[P((tx)−1)h],

and, consequently,

by−1[L−1(y)h] + [L−1(y)h]y−1b = B[P(y−1)h](2.21)

for any y ∈ V+. Substitute now y = e in (2.21) to infer, since L−1(e)h = h/2,
that

B(h) = 1
2(bh+ hb) = 1

2L(b)h(2.22)

for any h ∈ V. Evaluating now (2.21) at h = L(y)P(y)b leads, via the
commutativity property (2.1), to

2L(b2)y = L(b)P(y−1)L(y)P(y)b = L(b)L(y)b = L(b2)y + 2P(b)y.

Consequently, 2P(b)y = L(b2)y for all y ∈ V+ and by Proposition 1 it follows
that b = −λe for some real number λ. Thus, (2.22) implies B = −λ IdV .
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Consequently, from (2.15) we get

g′′(y) = P(y−1/2)(−λIdV)P(y−1/2) = −λP(y−1).

Observing that (y−1)′ = −P(y−1), we get

g′(y) = λy−1 + δ, δ ∈ V.
Since [log(det y)]′ = y−1 and [(δ, y)]′ = δ we obtain

g(y) = λ log(det y) + (δ, y) + σ, σ ∈ R.
Then from (2.13) it follows that

a′1(x) = λ[x−1 − (e− x)−1],

and hence
a1(x) = λ log[detx(e− x)] + σ1, σ1 ∈ R.

Finally, from (2.12) we get

a2(y) = 4λ log(det y) + (δ, y2) + σ2,

where σ2 = 2σ − σ1.

Remark 1. Observe that in the simplest case n = 1, i.e. V+ = (0,∞)
and D = (0, 1), equations (2.6) and (2.12) can be written, respectively, as

a(x) = g(xy)− g((1− x)y), x ∈ (0, 1), y > 0,

and
a1(x) + a2(y) = g(xy) + g((1− x)y), x ∈ (0, 1), y > 0.

We are not aware of any result concerning solutions of such univariate equa-
tions, but with the differentiability assumption they can be solved fairly
easily due to the fact that the multiplication is now commutative. These
equations seem somewhat related to ones arising in problems connected with
characterizations of information measures—see for instance Maksa (1987) or
Kannappan and Sahoo (1993).

3. The matrix variate Lukacs theorem. The solutions to the func-
tional equations, obtained in the previous section, will lead us to our main
result, which is a new, strong version of the Lukacs–Olkin–Rubin theorem.
Its basic feature, as mentioned in the introduction, is the lack of the assump-
tion of the invariance of the distribution of the “quotient”. This assumption
was crucial in Olkin and Rubin (1962), Casalis and Letac (1996) or Letac
and Massam (1998). On the other hand smoothness of densities is assumed.
However, this assumption seems to be of rather technical nature, as the re-
sults related to the Matsumoto–Yor property suggest: the original assump-
tion that the densities be continuously twice differentiable, imposed in Letac
and Wesołowski (2000) has recently been reduced to just differentiability in
Wesołowski (2001).
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Also it is of considerable interest whether other division algorithms (see
the formulation of Theorem 1), besides the one defined by w(y) = y1/2 (the
only one we are using here), can be dealt with by the approach through
densities developed in this paper.

In what follows we will need the following result on the determinant of a
certain linear mapping in V; see Letac and Wesołowski (2000) for its proof.

Proposition 2. Let c ∈ M. Denote by gc the endomorphism of the lin-
ear space V defined by x 7→ cxcT . Then the absolute value of the determinant
of gc is |det c|n+1.

Now we are ready to prove our main result.

Theorem 4. Let X and Y be independent rv’s valued in V+ with strictly
positive twice differentiable densities. Set V =X+Y and U=V −1/2XV −1/2.
If U and V are independent then there exist p, q > (n− 1)/2 and a ∈ V+
such that X ∼ γp,a and Y ∼ γq,a.

Proof. Let ψ : V+ × V+ → D × V+ be defined by

ψ(x, y) = (u, v) = ((x+ y)−1/2x(x+ y)−1/2, x+ y)

for x, y ∈ V+. Obviously (U, V ) = ψ(X,Y ). Note that ψ is a bijection. Now
our aim is to find the Jacobian of the map ψ−1, which is defined by

(x, y) = (v1/2uv1/2, v1/2(e− u)v1/2) = (P(v1/2)u,P(v1/2)(e− u)),

that is, the determinant of the linear map
(
du

dv

)
7→
(
dx

dy

)
=
(
dx/du dx/dv

dy/du dy/dv

)(
du

dv

)
.

Since
dx

du
= P(v1/2),

dy

du
= −P(v1/2)

and
dy

dv
= IdV −

dx

dv
,

we have

J =

∣∣∣∣
P(v1/2) dx/dv

−P(v1/2) IdV −dx/dv

∣∣∣∣ =

∣∣∣∣
P(v1/2) dx/dv

0 IdV

∣∣∣∣ = Det[P(v1/2)],

where Det denotes the determinant in the space L(V). Hence, from Propo-
sition 2 we get

J = [det v1/2]n+1 = [det v](n+1)/2.

Now we can find the joint density of (U, V ). Since (X,Y ) and (U, V )
have independent components, the following identity holds for all u ∈ D
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and v ∈ V+:

fU (u)fV (v) = (det v)(n+1)/2fX(v1/2uv1/2)fY (v1/2(e− u)v1/2),(3.1)

where fX , fY , fU and fV denote the densities of X, Y, U and V, respectively.
Upon taking logarithms in (3.1) we get

g1(u) + g2(v) = g3(P(v1/2)u) + g4(P(v1/2)(e− u)),(3.2)

where

g1(u) = log fU (u),(3.3)

g2(v) = log fV (v)− n+ 1
2

log (det v) ,(3.4)

g3 = log fX ,(3.5)

g4 = log fY .(3.6)

Inserting e− u for u in (3.2) gives

g1(e− u) + g2(v) = g3(P(v1/2)(e− u)) + g4(P(v1/2)u).(3.7)

On subtracting (3.7) from (3.2) we obtain

(3.8) g1(u)− g1(e− u)

= g3(P(v1/2)u)− g4(P(v1/2)u)− [g3(P(v1/2)(e− u))− g4(P(v1/2)(e− u)].

Define
a(u) = g1(u)− g1(e− u), g = g3 − g4.

Then upon replacing v by v1/2 equation (3.8) can be rewritten as

a(u) = g(P(v)u)− g(P(v)(e− u)).

Now, by Theorem 2 it follows that

a(u) = λ log[detu(e− u)−1], g(v) = λ log(det v) + β,

for some λ, β ∈ R. Hence

g3(v) = g4(v) + g(v) = g4(v) + λ log(det v) + β.(3.9)

Inserting (3.9) back into (3.2) gives

g1(u) + g2(v) = g4(P(v1/2)u) + λ log[det(P(v1/2)u)] + β+ g4(P(v1/2)(e− u)),

which can be rewritten in the form

a1(u) + a2(v) = g4(P(v1/2)u) + g4(P(v1/2)(e− u)),(3.10)

where

a1(u) = g1(u)− λ log(detu),(3.11)

a2(v) = g2(v)− λ log(det v)− β.(3.12)

Replacing v by v2 in (3.10) gives

a1(u) + a2(v2) = g4(P(v)u) + g4(P(v)(e− u)).
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Hence, by Theorem 3 it follows that

a1(u) = λ1 log[detu(e− u)] + σ1,

a2(v) = 2λ1 log(det v) + (δ, v) + σ2,

g4(v) = λ1 log(det v) + (δ, v) + σ,

for some δ ∈ V and λ1, σ1, σ2 ∈ R, σ1 + σ2 = 2σ.
By (3.6) we get

log fY (v) = λ1 log(det v) + (δ, v) + σ.

Hence
fY (v) = det vλ1 exp(δ, v) expσ,

and since fY is a density it follows that λ1 > −1 and a = −δ ∈ V+. Then
Y ∼ γq,a, where q = λ1 + (n+ 1)/2 > (n− 1)/2.

Now, since by (3.9),

g3(v) = (λ+ λ1) log(det v) + (δ, v) + σ + β,

from (3.5) it follows that

fX(v) = [det v]λ+λ1 exp(δ, v) exp(σ + β),

which implies that λ + λ1 > −1 and consequently X ∼ γp,a, while p =
λ+ λ1 + (n+ 1)/2 > (n− 1)/2.

Remark 2. Recall that the matrix variate beta distribution βp,q on D
is defined by the density

βp,q(du) =
(detu)p−(n+1)/2(det(e− u))q−(n+1)/2

Bn(p, q)
du

where p, q > (n− 1)/2 and Bn(p, q) is the n-dimensional Euler beta function
defined by

Bn(p, q) =
Γn(p)Γn(q)
Γn(p+ q)

(see for instance Muirhead (1981), p. 108).
Observe that in the above proof by (3.11) we have

g1(u) = (λ+ λ1) log[detu] + λ1 log[det(e− u)] + σ1.

Then by (3.3),

fU (u) = [detu]λ+λ1 [det(e− u)]λ1 expσ1,

where λ + λ1 > −1 and λ1 > −1. Hence U ∼ βp,q where p = λ + λ1 +
(n+ 1)/2 > (n− 1)/2 and q = λ1 + (n+ 1)/2 > (n− 1)/2.

Also from (3.12) we get

g2(v) = (λ+ 2λ1) log(det v) + (δ, v) + σ2 + β.
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Hence by (3.4),

fV (v) = [det v]λ+2λ1+(n+1)/2 exp(δ, v) exp(σ2 + β).

And thus V ∼ γp+q,a, where as above a = −δ ∈ V+.
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