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Central limit theorems for permanents of random m×n matrices of iid columns
with a common intercomponent correlation as n−mQ. are derived. The
results are obtained by introducing a Hoeffding-like orthogonal decomposition
of a random permanent and deriving the variance formulae for a permanent
with the homogeneous correlation structure.
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1. INTRODUCTION

Denote by A=[aij] an m×n real matrix with m [ n. Then a permanent of
the matrix A is defined by

Per(A)= C
(i1 ,..., im): {i1,..., im} … {1,..., n}

a1 i1 · · · am im

In this paper we study asymptotic behavior of random permanents, and
assume that X=[Xij] is an m×n (m [ n) real random matrix of square
integrable, identically distributed components and such that its columns are
independent random vectors with fixed intercomponent correlation. For
i, k=1,..., m and j=1,..., n we denote m=EXij, s2=Var Xij, and r=
Corr(Xkj, Xij). In the sequel we always assume that m ] 0 and 0 < s2 <..



In this setting we are interested in finding the conditions under which the
limiting law of

1
(nm) m!

Per(X) (1)

as n−mQ. is asymptotically normal.
Problems of this kind for permanents of one dimensional projection

matrices (r=1, i.e., matrices with all rows identical) and some related
themes have been studied by many authors; see, for instance, Székely, (11)

van Es and Helmers, (13) Borovskikh and Korolyuk, (1) Korolyuk and
Borovskikh, (6, 7) Kaneva, (4) and Kaneva and Korolyuk, (5) or Székely and
Szeldi. (12) In general, it has been shown that when r=1 then the
(appropriately normalized) statistic (1) is asymptotically normal or log-
normal, depending on the rate of growth of m with respect to n. On the
other hand, the case of r=0 with an additional assumption of indepen-
dence of row vectors has been considered in the early papers of Girko
(see, e.g., Girko (2) Chapters 2 and 7 and references therein), Rempała, (9)

Janson, (3) and Rempała and Wesołowski. (10) In the latest paper it has been
shown among others that for an appropriately normalized permanent of a
matrix with square integrable, iid random entries of non-zero mean, CLT
holds iff m/nQ 0, as n−mQ.. This finding has been in contrast with
that in the case r=1 since then, as it had been shown by van Es and
Helmers, (13) asymptotic normal law holds iff m/`n Q 0. This apparent
difference in asymptotic behavior of random permanents has led some to
conjecture that in the ‘‘intermediate’’ case of 0 < r < 1 the dependence
structure of the rows of the matrix X may force yet another, different from
the above two, set of conditions on the rate of growth m relative to n, in
order to ensure the asymptotic normality of (1).

In this paper we show that it is not so and that, in fact, under our
assumptions on the structure of the matrix X, the above two cases are the
only possible ones. More precisely, we show herein that under appropriate
moment conditions (i) when the columns entries of X are uncorrelated
(r=0 ) then CLT holds if m1+e/nQ 0 and (ii) when the columns entries of
X are correlated (r > 0) then CLT holds if m/`nQ 0 (note that the case
r < 0 is not possible under our assumptions).

The idea of our proofs relies on the representation of a random per-
manent (1) as a sum of uncorrelated components and is closely related to
the famous Hoeffding decomposition of a symmetric statistic, and, in some
sense, may be viewed as its natural extension. In particular, using our
orthogonal expansion method we show that in the both cases (i) and (ii)
a random permanent (1) has the same asymptotic distribution as the
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normalized sum of all entries of X, since only the first term of the expan-
sion contributes to the limiting behavior. It seems that the same or at least
similar method shall also reveal the limiting distribution of (1) in the
remaining cases, i.e., when r=0 and m/nQ l > 0, as well as when r > 0
and m/`n Q l > 0. However, due to some technical complications and the
fact that the limiting distributions will be non-normal (since now all terms
of the expansion will contribute to the limit) they appear to warrant a
separate treatment and are not considered here.

The paper is organized as follows. In the next section we derive the
orthogonal expansion formula for a random permanent and then use it to
find a general expression for the variance of (1). In the subsequent section
we present the main results of the paper.

2. THE ORTHOGONAL DECOMPOSITION AND THE
VARIANCE OF A RANDOM PERMANENT

In this section we introduce our main tools of investigating asymptotic
behavior of a random permanent, namely its orthogonal expansion and the
variance formula. First, let us consider the following

Proposition 1. Let A=[aij] be an m×n matrix with real entries for
m [ n. Denote ãij=aij−1 for any i=1,..., m, j=1,..., n. Then

Per A
(nm) m!

=1+C
m

c=1

1m
c
2 U (m, n)c (A)

where

U (m, n)c (A)=1n
c
2−1 1m

c
2−1 c!−1 C

1 [ i1 < · · · < ic [ m
C

1 [ j1 < · · · < jc [ n
Per[ãiujv]u=1,..., c

v=1,..., c

Proof. Observe that

Per A−1 n
m
2 m!= C

(j1 ,..., jm): {j1 ,..., jm} … {1,..., n}

1D
m

l=1
aljl−12

Apply now, for each of the summands above, the identity

D
m

l=1
bl−1=C

m

c=1
C

1 [ i1 < · · · < ic [ m
D
c

l=1
(bil−1)
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which holds for any natural m and any real numbers b1,..., bm. Then

Per A−1 n
m
2 m!

= C
(j1 ,..., jm): {j1 ,..., jm} … {1,..., n}

C
m

c=1
C

1 [ i1 < · · · < ic [ m
D
c

l=1
ãil jil

=C
m

c=1
C

1 [ i1 < · · · < ic [ m
C

(j1 ,..., jm): {j1,..., jm} … {1,..., n}
D
c

l=1
ãil jil

=C
m

c=1

1 n−c
m−c
2 (m−c)! C

1 [ i1 < · · · < ic [ m
C

(j1,..., jc): {j1 ,..., jc} … {1,..., n}
D
c

l=1
ãil jil

=C
m

c=1

1 n−c
m−c
2 (m−c)! C

1 [ i1 < · · · < ic [ m
Per[ãiuj]u=1,..., c

j=1,..., n

where the one before last equality follows from the fact that only c column
indices are present in the product, and the remaining m−c indices may be
chosen (in any order) from n−c columns. Note that by the Laplace expan-
sion formula for permanents (see, e.g., Minc (8)) we may rewrite the above
expression as

Per A−1 n
m
2 m!

=C
m

c=1

1 n−c
m−c
2 (m−c)! C

1 [ i1 < · · · < ic [ m
C

1 [ j1 < · · · < jc [ n
Per[ãiujv]u=1,..., c

v=1,..., c

The final result follows by making a simple observation that

1 n−c
m−c
2 (m−c)!=1 n

m
2 m! 1n

c
2−1 (c!)−1 i

The above formula applied to a permanent of a random matrix X
provides us with a convenient way of investigating asymptotics of random
permanents and can be viewed as a generalization of the Hoeffding
decomposition for a permanent of one dimensional projection matrix (i.e.,
the case when r=1).

Proposition 2. Assume m=1, then

Per X
(nm) m!

=1+C
m

c=1

1m
c
2 U (m, n)c
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where U (m, n)c =U(m, n)c (X) for c=1,..., m and moreover,

Cov(U(m, n)c1 , U (m, n)c2 )=0 for c1 ] c2 (2)

Proof. The expansion formula follows immediately by Proposition 1.
On the other hand, by the definition of U (m, n)c , in every product present in
Cov(U(m, n)c1 , U (m, n)c2 ) there is a single element (of the form Xij−1) from at
least one column. Thus, (2) follows from the independence of columns
of X. i

We are now in position to derive the general expression for the
variance of a random permanent in our setting.

Theorem 1.

Var
Per X

(nm) m! mm
=C

m

c=1

(mc) s
2c

(nc) m
2c C

c

r=0

1
r!
1m−r
c−r
2 (1−r) r rc−r

Remark 1. Let us note that for r=1 the above expression reduces to
the well known formula for the variance of a permanent of a one dimen-
sional projection matrix. On the other hand, if r=0 we obtain in particu-
lar a formula for the variance of a permanent of iid random entries which
was derived by a different method in Rempała and Wesołowski. (10)

Proof. First, let us note that without loss of generality we may
assume m=1. Then by Proposition 2 it follows that

Var
Per X
(nm) m!

=C
m

c=1

1m
c
22 Var U (m, n)c + C

1 [ c1 ] c2 [ m

1m
c1
21m

c2
2 Cov(U(m, n)c1 , U (m, n)c2 )

=C
m

c=1

1m
c
22 Var U (m, n)c

Now, for c=1,..., m

1n
c
22 1m

c
22 c!2 Var U (m, n)c

=Var 1 C
1 [ i1 < · · · < ic [ m

C
1 [ j1 < · · · < jc [ n

Per[X̃iujv]u=1,..., c
v=1,..., c

2

= C
1 [ j1 < · · · < jc [ n

Var 1 C
1 [ i1 < · · · < ic [ m

Per[X̃iujv]u=1,..., c
v=1,..., c

2
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since, by independence of columns of X, we have

Cov 1 C
1 [ i1 < · · · < ic [ m

Per[X̃iujv]u=1,..., c
v=1,..., c

, C
1 [ i1 < · · · < ic [ m

Per[X̃iukv]u=1,..., c
v=1,..., c

2=0

if only {j1,..., jc} ] {k1,..., kc}.
Since the columns of X are identically distributed, the variance

formula above simplifies to

1n
c
21m

c
22 c!2 Var U (m, n)c =Var 1 C

1 [ i1 < · · · < ic [ m
Per[X̃iuj]u=1,..., c

j=1,..., c

2

Let us note that the number of pairs of c×c submatrices of X having
exactly k rows in common equals (mc)(

c
k)(
m−c
c−k), for max(0, 2c−m) [ k [ c,

and each such pair has equal covariance (since the row vectors of X are
identically distributed). Hence, for given c, the above right-hand side can
be written as

1m
c
2 C

c

k=max(0, 2c−m)

1 c
k
21m−c

c−k
2

×Cov(Per[X̃ij]i=1,..., k, ik+1,..., ic
j=1,..., c

, Per[X̃ij]i=1,..., k, lk+1,..., lc
j=1,..., c

)

where {ik+1,..., ic} 5 {lk+1,..., lc}=”.
Observe that each term of the above sum is itself a sum of products of

2c factors (2 factors for each of given c columns). By the assumptions
about the entries of the matrix X it follows that expectations of such pro-
ducts having exactly l (0 [ l [ k) elements in common are the same and
equal to

E(X̃2
11 · · · X̃

2
llX̃il+1, l+1X̃jl+1, l+1 · · · X̃ic , cX̃jc , c)=r

c−ls2c

where {il+1,..., ic} and {jl+1,..., jc} are fixed non-overlapping subsets of
{l+1,..., m}.

Now, to compute the covariance of such k×c permanents it suffices to
find the number of pairs of products with exactly l elements in common,
(0 [ l [ k [ c). Observe that it equals to the number of pairs of products
having exactly l common elements in a permanent of the matrix k×c,
multiplied by (c−k)!2—the number of all possible permutations of
ik+1,..., ic and lk+1,..., lc.

To compute the number of pairs of products with exactly l elements in
common let us start with finding the number of products in Per Y[k, c],
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where Y[k, c] is a k×c matrix, having exactly l factors in common with
the diagonal entries y11 · · · ykk. First, we fix l factors in (kl) ways. If we
assume that y11,..., yll are fixed, then the remaining factors, in the products
we are looking for, have to be of the form yl+1, jl+1,..., yk, jk, where jr ] r,
r=l+1,..., k. Finding the number of such products (say, pl(k, c)) is
equivalent to computing the number of summands in a permanent of the
matrix of dimensions (k−l)×(c−l) which do not contain any diagonal
entry. To this end, we subtract the number of all summands having at least
one factor being the diagonal entry, from the total number of all sum-
mands in that permanent. Using the exclusion-inclusion formula we get
that

pl(k, c)=1
c−l
k−l
2 (k−l)!− C

k−l

j=1
(−1) j+1 1k−l

j
21 c−l−j

k−l−j
2 (k−l−j)!

where the absolute value of the j-th member of the above sum denotes the
number of products having exactly j factors being the diagonal entries
(equal to the number of choices of j positions on the diagonal) multiplied
by the number of products of k−l−j factors from the outside of the
diagonal (equal to the number of products in the permanent of the matrix
of dimensions (k−l−j)×(c−l−j)). Thus, in a slightly more compact
form,

pl(k, c)=C
k−l

j=0
(−1) j 1k−l

j
21 c−l−j

k−l−j
2 (k−l−j)! (3)

Consequently, the number of pairs of products in Per Y[k, c] with
exactly l factors in common equals to

1 c
k
2 k! 1k

l
2 pl(k, c)

Hence, combining the above formula with an earlier one for the
number of pairs of products with l identical factors we arrive at

Cov(Per[X̃ij]i=1,..., k, ik+1,..., ic
j=1,..., c

, Per[X̃ij]i=1,..., k, lk+1,..., lc
j=1,..., c

)

=(c−k)!2 s2c C
k

l=0

1 c
k
2 k! 1k

l
2 rc−lpl(k, c)
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Now, returning to the formula for the variance of U (m, n)c we obtain

1n
c
21m

c
2 Var U (m, n)c

=
s2c

c!2
C
c

k=max(0, 2c−m)

1 c
k
22 1m−c

c−k
2 k!(c−k)!2 C

k

l=0

1k
l
2 rc−lpl(k, c)

=s2c C
c

k=max(0, 2c−m)

1m−c
c−k
2 C

k

r=0

1 c−r
k−r
2 1
r!
rc−r(1−r) r (4)

since

C
k

l=0

1k
l
2 rc−lpl(k, c)=C

k

l=0

1k
l
2 rc−l C

k

r=l
(−1) r− l 1k−l

r−l
21 c−r

k−r
2 (k−r)!

=C
k

r=0

1 c−r
k−r
2 (k−r)! rc−r C

r

l=0

1k
l
21k−l

r−l
2 (−r) r− l

=C
k

r=0

1 c−r
k−r
2 (k−r)! rc−r 1k

r
2 (1−r) r

=C
k

r=0

1 c−r
k−r
2 k!
r!
rc−r(1−r) r

Observe that

C
c

k=max(0, 2c−m)

1m−c
c−k
2 C

k

r=0

1 c−r
k−r
2 rc−r(1−r) r

r!

=C
c

r=0

rc−r(1−r) r

r!
C
c

k=max(r, 2c−m)

1m−c
c−k
21 c−r

k−r
2

=C
c

r=0

1m−r
c−r
2 rc−r(1−r) r

r!

where the last equality follows by applying the hypergeometric summation
rule for the inner sum. Applying the above to (4), we finally obtain

Var U (m, n)c =1n
c
2−1 1m

c
2−1 s2c C

c

r=0

1m−r
c−r
2 rc−r(1−r) r

r!
(5)

which completes the proof. i
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3. CENTRAL LIMIT THEOREMS

In this section we present the main results of the paper, namely two
versions of permanent CLT dealing with the case when r > 0 and r=0,
respectively. First, in Theorem 1 below, we consider the case r > 0 which in
a special case r=1 reduces to the result of van Es and Helmers (13) obtained
solely under the assumption of square integrability. Indeed, a brief inspec-
tion of our proof reveals that in the case if r=1 or if m is a fixed constant
independent of n the result holds as long as 0 < s2 <.. Let us also note
that the theorem remains valid if we assume only that E |X11|2+d <. for
some 0 < d [ 1 but strengthen the assumptions on the rates of m and n to
m/nd/2Q 0. It seems, however, that in general the assumption of the exis-
tence of a higher moment cannot be removed.

Theorem 2. Assume that E |X11|3 <., m ] 0 and r ¥ (0, 1]. If
m2/nQ 0 then

`n

m
1 Per X
(nm) m! mm

−12|QD N(0, y2)

where y2=rs2/m2 if mQ. and y2=(r+(1−r)/m) s2/m2 for constant m.

Proof. Assuming (without loss of generality) that m=1, by Proposi-
tion 2 we may write

`n

m
1 Per X
(nm) m!

−12=`n

m
C
m

c=1

1m
c
2 U (m, n)c

First, we will show that

Rm, n=
`n

m
C
m

c=2

1m
c
2 U (m, n)c Q 0

in probability. To this end note that by (2) and (5) we have

Var Rm, n=
n
m2

C
m

c=2

(mc) s
2c

(nc)
C
c

r=0

1
r!
1m−r
c−r
2 (1−r) r rc−r

In view of the obvious inequality (m−rc−r) [ (mc) for 0 [ r [ c [ m, the inner
sum above is majorized by

1m
c
2 C

c

r=0

1
r!

(1−r) r rc−r [ 1m
c
2 exp(1)
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since 0 < r [ 1. Thus,

Var Rm, n [ exp(1)
n
m2

C
m

c=2

(mc)
2 s2c

(nc)
[ exp(1)

n
m2

C
m

c=2

1m2
n
2c s2c

c!

in view of

c!
(mc)

2

(nc)
[ 1m

2

n
2c

which follows from the inequality

(m−r)2

n−r
[

m2

n

valid for 0 [ r [ m [ n. Consequently,

Var Rm, n [ exp(1)
m2

n
C
m

c=2

1m2
n
2c−2 s2c

c!

Take n0 large enough to have m2/n [ 1 for n > n0 (recall that m=m(n)).
For such n’s we have

Var Rm, n [ exp(1)
m2

n
C
m

c=2

s2c

c!
[

m2

n
exp(1+s2)

Hence Var Rm, nQ 0, as m2/nQ 0 by the assumption, and the result follows
via the Tchebychev inequality. In order to finish the proof we need only to
show that

`n

m
1m
1
2 U (m, n)1 =

1

m`n
C
m

i=1
C
n

j=1
X̃ij=

1

`n
C
n

j=1
Y (m)j |Q

D
N(0, y2)

where Y (m)j =;m
i=1 X̃ij/m, j=1,..., n. Let us consider an arbitrary sequence

(mn) such that m2n/nQ 0, as nQ., and denote Ynj=Y(mn)j /`n, j=1,..., n.
Due to the structure of the matrix X the triangular array (Ynj) is rowwise
independent and identically distributed. Furthermore, the entries of the
array have zero means. Hence, by CLT for the rowwise independent trian-
gular arrays, it suffices to show that

(i) ;n
j=1 Var YnjQ const > 0,

(ii) ;n
j=1 EY2njI(|Ynj| > e)Q 0 -e > 0.
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Note that ;n
j=1 Var Ynj=(r+(1−r)/mn) s2Q y2 and hence (i) follows

immediately. In order to check the Lindeberg condition (ii) we use Lemma 1
(see below) obtaining for any e > 0

C
n

j=1
EY2njI(|Ynj| > e)

=m−2
n E(X̃11+·· ·+X̃mn1)

2 I(|X̃11+·· ·+X̃m1| > mn`n e)

[
1+4(mn−1)2

mn
EX̃2

11I(|X̃11| >`n e)

[
1+4(mn−1)2

mn`n e
E |X̃11|3Q 0 i

Our next result establishes CLT for random permanents in the case
when the column entries are uncorrelated. Similarly as in Theorem 2
here also one can somewhat relax the moment assumptions and require
only that E |X11|2+d <. for some d > 0, as long as it is true that
m (m/n)d/2Q 0. It is perhaps somewhat surprising that apparently without
assuming further structure of the joint distribution law of the row vectors
of X one cannot eliminate these additional assumptions.

Theorem 3. Assume that EX4
11 <., m ] 0 and r=0. If m3/nQ 0

then

= n
m
1 Per X
(nm) m! mm

−12|QD N(0, s2/m2)

Proof. As in the proof of Theorem 1 we assume, without loss of
generality that m=1. Now by Proposition 2 we have

= n
m
1 Per X
(nm) m!

−12== n
m
1m
1
2 U (m, n)1 +Rm, n

where

Rm, n==
n
m

C
m

c=2

1m
c
2 U (m, n)c
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Following the scheme of the proof of Theorem 1 we show first that Rm, n
tends to zero in probability. To this end observe that by (2), (5) and the
fact that (mc)/(

n
c) [ (m/n)c, (1 [ c [ m [ n), it follows that

Var Rm, n=
n
m

C
m

c=2

(mc) s
2c

(nc) c!
[

m
n

exp(s2)Q 0

and hence Rm, nQ 0 in probability, in view of the Tchebychev inequality.
Secondly, we show that

= n
m
1m
1
2 U (m, n)1 =

1

`mn
C
m

i=1
C
n

j=1
X̃ij=

1

`n
C
n

j=1
Y (m)j |Q

D
N(0, s2)

where Y (m)j =;m
i=1 X̃ij/`m, j=1,..., n. As in the proof of Theorem 1 let us

again consider an arbitrary sequence (mn) such that m3n/nQ 0, as nQ.,
and denote Ynj=Y(mn)j /`n, j=1,..., n. Again, due to the structure of the
matrix X the triangular array (Ynj) is rowwise independent and identically
distributed. Furthermore, the entries of the array have zero means. Hence
to complete the proof we may again use the CLT for rowwise independent
triangular arrays. Since now ;n

j=1 Var Ynj=s
2 we need only to verify the

Lindeberg condition. By Lemma 1 if follows that for any e > 0

C
n

j=1
EY2njI(|Ynj| > e)

=m−1
n E(X̃11+·· ·+X̃mn1)

2 I(|X̃11+·· ·+X̃mn1| >`mnn e)

[ (1+4(mn−1)2) EX̃2
11I(|X̃11| >`n/mn e)

[
(1+4(mn−1)2) mn

n
E |X̃11|4Q 0

since m3/nQ 0. i

Lemma 1. Let (X1,..., Xn) be a random vector with square inte-
grable, identically distributed components. Then for any a > 0

E(X1+·· ·+Xn)2 I(|X1+·· ·+Xn| > a)

[ n(1+4(n−1)2) EX2
1I(|X1| > a/n)
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Proof. Observe that

E(X1+·· ·+Xn)2 I(|X1+·· ·+Xn| > a)

[ C
n

i=1
E(X1+·· ·+Xn)2 I(|X1| > a/n)

=C
n

i=1

1EX2
i I(|Xi| > a/n)

+C
n

j ] i
EX2

j I(|Xi| > a/n)+C
n

j ] i
EXiXjI(|Xi| > a/n)

+ C
1 [ j < k [ n
j ] i ] k

EXjXkI(|Xi| > a/n)2 (6)

But for any X, Y, Z identically distributed, square integrable random
variables and any positive b we have

EX2I(|Z| > b)=EX2I(|X| > b) I(|Z| > b)+EX2I(|X| [ b) I(|Z| > b)

[ EX2I(|X| > b)+EZ2I(|Z| > b)

=2EX2I(|X| > b)

Similarly, but additionally using the Cauchy Schwartz, inequality we get

E |XZ| I(|Z| > b)

=E |XZ| I(|X| > b) I(|Z| > b)+E |XZ| I(|X| [ b) I(|Z| > b)

[`EX2I(|X| > b) E Z2I(|Z| > b)+EZ2I(|Z| > b)

=2EX2I(|X| > b).

Now, by the above inequality, it follows also that

E |XY| I(|Z| > b)

=E |XY| I(|X| > b) I(|Z| > b)+E |XY| I(|X| [ b) I(|Z| > b)

[ E |XY| I(|X| > b)+E |ZY| I(|Z| > b)

[ 4EX2I(|X| > b)
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Finally, applying the above three inequalities to the right hand side of (6)
we get

E(X1+·· ·+Xn)2 I(|X1+·· ·+Xn| > a)

[ n[EX2
1I(|X1| > a/n)+2(n−1) EX2

1I(|X1| > a/n)

+2(n−1) EX2
1I(|X1| > a/n)

+4(n−1)(n−2) EX2
1I(|X1| > a/n)]

=n(1+4(n−1)2) EX2
1I(|X1| > a/n)

which completes the proof. i
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