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1. Introduction

Matsumoto and Yor (2001) have recently discovered that the map ψ, defined by
ψ(x, y) = ((x + y)−1, x−1 − (x + y)−1), acting on (0,∞)2, preserves a bivariate
probability measure which is a product of the generalized inverse Gaussian and
the gamma distributions. Recall, that the generalized inverse Gaussian (GIG)
distribution µ−p,a,b, where p ∈ R, a, b ∈ (0,∞), are the parameters, is defined by

µ−p,a,b(dx) = K1x
−p−1 exp(−(ax + b/x)/2)I(0,∞)(x) dx,

and the gamma distribution γq,c/2 is defined by

γq,c/2(dy) = K2y
q−1 exp(−cy/2)I(0,∞)(y) dy,

where q, c ∈ (0,∞) are parameters; K1 and K2 are norming constants. Matsumoto
and Yor (2001) observed that if random variables X and Y are independent, X has
the GIG distribution µ−p,a,a and Y has the gamma distribution γp,a/2 (p > 0), then
the random vector (U, V ) = ψ(X,Y ) = ((X+Y )−1, X−1−(X+Y )−1) has the same
distribution as (X,Y ), hence, in particular, U and V are independent. As observed
in Letac and WesoÃlowski (2000), the following extension of the Matsumoto–Yor
property holds: if (X,Y ) has the distribution µ−p,a,b ⊗ γp,a/2 (⊗ denotes the
product measure) then (U, V ) is distributed according to µ−p,b,a ⊗ γp,b/2. This
follows by an elementary computation involving the Jacobian of the map ψ−1,
which is equal to u−2(u + v)−2. Consequently, denoting by fZ the density of a
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random variable Z, we get

f(U,V )(u, v) = u−2(u + v)−2fX((u + v)−1)fY (u−1 − (u + v)−1), ∀ u, v ∈ (0,∞).

Applying, to the right-hand side above, the formulas for the densities of the GIG
and gamma distributions, we find out easily that the left-hand side of this identity
can be factored into a function of u and a function of v, both functions being
densities of the respective distributions. Hence we conclude also that U and V are
independent.

Matsumoto and Yor (2001) asked a question about the converse to their obser-
vation. As a matter of fact, to some extent such a problem was investigated earlier
in Letac and Seshadri (1983), where it was proved that if U and X have the same
distribution and Y is gamma, then X has the GIG law. But, especially remark-
able in the present setting is restricting the attention only to the independence
property. Assume that X and Y are independent, and that the random vector
(U, V ) = ψ(X,Y ) has independent components. Is it true then that (X,Y ) has
the distribution µ−p,a,b ⊗ γp,a/2 (and consequently (U, V ) is distributed according
to µ−p,b,a⊗γp,b/2)? This question has been answered in the affirmative in a recent
paper by Letac and WesoÃlowski (2000) (a related problem involving constancy of
regression of V or V −1 on U has been considered also recently in Seshadri and
WesoÃlowski (2001)), by using techniques related to Laplace transforms. Also in
that paper the authors dealt with an important general case of distributions on
the cone of positive definite symmetric matrices. The characterization obtained
in this case however was restricted to distributions having strictly positive den-
sities of the class C2. Recently the smoothness assumptions were reduced only
to differentiability in WesoÃlowski (2001). Since the proof in the univariate case,
relying, as mentioned above, on Laplace transforms techniques, is hard to adopt
in the matrix case, a possible way of dealing with the subject could be solving the
real case by using densities, but with less strict smoothness conditions, and then
trying to translate the argument to the matrix variables.

While attacking the question along these lines (see below) we are faced up with
an intriguing functional equation:

g(x(x + y)− g(y(x + y)) = α(x)− α(y), ∀ x, y ∈ (0,∞) (1)

with unknown functions g and α. A search through the literature on functional
equations including the classical positions as Aczél (1966), Kuczma (1968) or more
recent, as Ramachandran and Lau (1992), Sahoo and Riedel (1998), revealed that
equations of this type have not been considered yet. The present paper is devoted
to study solutions of this equation under a mild regularity assumption. It remains
still an open problem how to translate the argument developed here into the matrix
variate case. But first we will explain how to arrive at the equation (1) starting
from the independence property described above.

Since the random vectors (X,Y ) and (U, V ) have independent components, the
following identity holds true for the densities:
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fU (u)fV (v) = u−2(u+v)−2fX((u+v)−1)fY (u−1−(u+v)−1), ∀u, v ∈ (0,∞). (2)

Changing now the role of u and v in (2) one gets

fU (v)fV (u) = v−2(u+v)−2fX((u+v)−1)fY (v−1−(u+v)−1), ∀u, v ∈ (0,∞). (3)

Now combining (2) and (3), under the assumption that the densities are always
strictly positive, it follows that

h(u)
h(v)

=
fY (u−1 − (u + v)−1)
fY (v−1 − (u + v)−1)

, ∀ u, v ∈ (0,∞),

where the function h is defined by h(x) = x2fU (x)/fV (x), x > 0. Substituting
x2 = u−1 − (u + v)−1 and y2 = v−1 − (u + v)−1 one gets

h(x−1(x + y)−1)
h(y−1(x + y)−1)

=
fY (x2)
fY (y2)

, ∀ x, y ∈ (0,∞).

Finally introduce new functions g and α by the formulas: g(x) = log(h(x−1)),
α(x) = log(fY (x2)), x > 0.

2. Solution of the functional equation

Now we are ready to formulate the main result of the paper, which gives the
solution to a more general version of the equation (1).

Theorem 1. Let g1, g2, α1 and α2 be locally integrable real functions defined on
(0,∞) satisfying the equation

g1(x(x + y)) + g2(y(x + y)) = α1(x) + α2(y), ∀ x, y ∈ (0,∞). (4)

Then there exist real numbers A, B, C and D such that ∀ x ∈ (0,∞)

g1(x) = Ax + B log(x) + C = −g2(x), α1(x) = Ax2 + B log(x) + D = −α2(x).

Proof. Since the functions are locally integrable we can take any x0, x1 ∈ (0,∞)
such that x0 < x1, and integrate both sides of the equation (4) with respect to x.
Then∫ x1

x0

g1(x(x + y)) dx +
∫ x1

x0

g2(y(x + y)) dx =
∫ x1

x0

α1(x) dx + (x1 − x0)α2(y),

∀ y ∈ (0,∞).

Then substituting in the first integral on the left-hand side s = x(x + y), i.e.
dx = ds/

√
y2 + s, and in the second t = y(x + y), i.e. dx = dt/y, one gets
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∫ x1(x1+y)

x0(x0+y)

g1(s)√
y2 + s

ds +
∫ y(x1+y)

y(x0+y)

g2(t)
y

dt =
∫ x1

x0

α1(x) dx + (x1 − x0)α2(y),

∀ y ∈ (0,∞).
(5)

Dually, integrating (4) with respect to y from y0 to y1, 0 < y0 < y1, we get
∫ x(x+y1)

x(x+y0)

g1(s)
x

ds +
∫ y1(x+y1)

y0(x+y0)

g2(t)√
x2 + t

dt = (y1 − y0)α1(x) +
∫ y1

y0

α2(y) dy,

∀ x ∈ (0,∞).

(6)

Observe that the left-hand side of (5) is a continuous function in y. Conse-
quently α2 is a continuous function. Similarly, by (6) it follows that α1 is contin-
uous.

Now insert in (4) u = x(x + y) and v = y(x + y). Consequently x = u/
√

u + v,
y = v/

√
u + v and (4) assumes the form

g1(u) + g2(v) = α1(u/
√

u + v) + α2(v/
√

u + v), ∀ u, v ∈ (0,∞). (7)

Since α1 and α2 are continuous it follows by (7) that g1 and g2 are also continuous.
But for continuous gi’s the left-hand side of (5) is a C1 function in y. Hence α2 is
also C1. Also (6) implies, analogously, that α1 is a C1 function. Using again (7)
we conclude that g1 and g2 are also C1 functions.

Let us now differentiate (4) with respect to x. Then

(2x + y)g′1(x(x + y)) + yg′2(y(x + y)) = α′1(x), ∀ x, y ∈ (0,∞).

Inserting in the above equation x = y we get immediately that

α′1(x) = 3xg′1(2x
2) + xg′2(2x

2), x > 0.

Then the equation takes the shape

(2x + y)g′1(x(x + y)) + yg′2(y(x + y)) = x(3g′1(2x
2) + g′2(2x

2)), ∀ x, y ∈ (0,∞).

Plugging here u and v defined earlier we arrive at

(2u+v)g′1(u)+vg′2(v) = u(3g′1(2u
2/(u+v))+g′2(2u

2/(u+v))), ∀u, v ∈ (0,∞). (8)

Observe that lim
v→0

(2u+v)g′1(u) = 2ug′1(u) and by C1 property lim
v→0

g′i(2u
2/(u+v)) =

g′i(2u), i = 1, 2. Hence (8) implies that B2
def= limv→0 vg2(v) exists. Then

2ug′1(u) + B2 = u(3g′1(2u) + g′2(2u)), u > 0. (9)

Dually, differentiating (4) with respect to y we arrive at

α′2(y) = yg′1(2y
2) + 3yg′2(2y

2), y > 0
and
ug′1(u)+(u+2v)g′2(u)=v(g′1(2v

2/(u+v))+3g′2(2v
2/(u+v))), ∀u, v∈(0,∞). (10)
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Consequently, as above, it follows that B1
def= limu→0 ug′1(u) exists.

Then passing to the limit as u→ 0 in (9) we get 2B1 +B2 = (3B1 +B2)/2 and
consequently B1 = −B2 = B, say.

On the other hand let us divide both sides of (8) by v. Then it takes the form

2u + v

v
g′1(u) + g′2(v) =

u

v

[
3g′1

(
2u2

u + v

)
+ g′2

(
2u2

u + v

)]
, ∀ u, v ∈ (0,∞). (11)

Now observe that, as v →∞ then
2u + v

v
g′1(u)→ g′1(u)

and by the C1 property

u

v
g′i

(
2u2

u + v

)
=

2u2

u + v
g′i

(
2u2

u + v

)
u + v

2uv
→ Bi

2u
, i = 1, 2.

Consequently A2
def= limv→∞ g′2(v) exists. Dually, starting from (10), we conclude

that A1
def= limu→∞ g′1(u) exists also. Now we divide both sides of (9) by u,

and then take the limit as u → ∞. Then it follows that 2A1 = 3A1 + A2, and
consequently, A1 = −A2 = A, say.

Finally we get, by passing to the limit in (11) as v→∞, that g′1(u)=A+B/u,
∀ u ∈ (0,∞). By taking the limit as u→∞ in the dual to (11):

g′1(u) +
u + 2v

u
g′2(v) =

v

u

[
g′1

(
2v2

u + v

)
+ 3g′2

(
2v2

u + v

)]
, ∀ u, v ∈ (0,∞)

one gets g′2(v) = −A− B/v ∀ v > 0. Hence using the expressions for α′i, i = 1, 2,
(in terms of g′i, i = 1, 2) derived earlier we obtain that α′1(u) = 2Au+B/u, u > 0,
and α′2(v) = −2Av − B/v, v > 0. Integrate now g′i and α′i, i = 1, 2, to arrive at
the desired results. ¤

Remark 1. Observe that without any conditions on the behaviour of gi’s and
αi’s a possible solution could be of the form: g1(x) = f(x) + h(x) + C = −g2,
where f is any additive function, i.e. a function satisfying the classical Cauchy
equation: f(x + y) = f(x) + f(y), x, y > 0, which in general is not necessarily
linear, see for instance Sahoo and Riedel (1998), and h is any logarithmic function,
i.e. a function satisfying the equation h(xy) = h(x) + h(y), x, y > 0.
Remark 2. Observe that in our original problem of characterizing the GIG and
gamma distributions by the independence property, as described in Section 1, we
arrived at the equation (1) which is a version of (4) with g1 = −g2 = g and
α1 = −α2 = α. In such a setting the results of Theorem 1 hold true even under
the assumption that at least one of the functions g or α is locally integrable.
Hence if we assume that log(fY ) is locally integrable on (0,∞), then it follows
from Theorem 1 that the density function fY has the form

fY (x) = exp(α(
√

x)) = eDxA/2eBx, x > 0.
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Consequently fY has to be the density of a gamma distribution, say γp1,a1/2.
Observe now that since ψ = ψ−1 then we can write down the equation dual to
(2) by simply changing (U, V ) into (X,Y ). Again using the result of Theorem 1,
this time with fV (x) = exp(α(

√
x)), x > 0, we conclude that V is also a gamma

random variable, say γp2,b2/2. On the other hand in the original setting, again by
Theorem 1, we have

x2fU (x)/fV (x) = exp(g(1/x)) = eCeA/xx−B , x > 0.

Since V has the gamma distribution one gets

fU (x) = Kx−p3−1e−(b3x+a3/x)/2, x > 0,

which is the density of the GIG distribution µ−p3,b3,a3 . Dually X is also a GIG
random variable with a distribution µ−p,a,b, say. Inserting now respective densities
into (2) we conclude that p1 =p2 =p3 =p > 0, a1 =a2 =a3 =a, b1 =b2 =b3 =b.
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