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Abstract

Matsumoto and Yor have recently discovered an interesting invariance property
of a product of the generalized inverse Gaussian and gamma distributions. In this
paper we obtain: (1) a complete regression version of its converse; (2) a converse
to the matrix variate Matsumoto–Yor property which extends an earlier result. Of
independent interest is a functional equation for matrix valued functions, which has
been solved in the course of investigation of the second problem.

1. Introduction

Matsumoto and Yor [11] have recently described an interesting invariance prop-
erty of the product of the generalized inverse Gaussian and gamma distributions.
This paper is devoted to study converses of this property, and thus investigates con-
ditions under which it uniquely determines both the distributions.

To state the property let us first recall that the generalized inverse Gaussian (GIG)
distribution µp,a,b, where p ∈ R and a, b ∈ (0,∞) is defined by

µp,a,b(dx) =
(a/b)p/2

2Kp(2
√
ab)

xp−1 exp(−ax− b/x)I(0,∞)(x) dx,

where Kp is the modified Bessel function of the third kind, and the gamma distribu-
tion γq,c, where q, c ∈ (0,∞) is defined by

γq,c(dy) =
cq

Γ(q)
yq−1 exp(−cy)I(0,∞)(y) dy.

Consider a one-to-one map ψ: (0,∞)2 → (0,∞)2 defined by ψ(x, y) = (u(x, y),
v(x, y)) = (1/(x + y), 1/x − 1/(x + y)), x, y > 0. Matsumoto and Yor [11] proved
that the measure µ−p,a,a ⊗ γp,a on (0,∞)2, p > 0, is invariant under ψ and asked
about converses to the property they discovered. A kind of a partial converse was
known earlier and is due to [7], who proved for independent random variables X
and Y , by continuous fraction technique, that if X has the same distribution as
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U = 1/(X + Y ) then it follows that X is GIG if Y is assumed to be gamma. This
result was generalized to the matrix variate GIG and Wishart-gamma distribution
in [1].

The property derived in [11] can be extended in the following way: assume that
X and Y are independent random variables with respective distributions µ−p,a,b and
γp,a, (p > 0) and define a random vector (U, V ) = ψ(X,Y ). Then it follows that U
and V are also independent and their distributions are µ−p,b,a and γp,b, respectively.

Here we will concentrate on converse statements based on the independence of
U and V . Assume then that X,Y are non-negative independent random variables
and assume also that U = 1/(X + Y ), V = 1/X − 1/(X + Y ) are independent. Is it
true that (X,Y ) ∼ µ−p,a,b ⊗ γp,a (and consequently (U, V ) ∼ µ−p.b,a ⊗ γp,b) for some
positive numbers a, b and p?

A complete solution to this problem (in the univariate case) was obtained in [9],
with the proof based on application of the Laplace transform technique – see also
[17] for an approach based on densities.

A regression version of the problem was partially solved in [14], where the con-
stancy of regression of V or V −1 on U , separately, was considered. However relaxing
the independence assumption was possible only under the cost of assuming one law
to obtain the other, i.e. the characterization was not simultaneous. In Section 2 we
consider jointly the constancy of regression conditions which leads to a character-
ization of both distributions – extending in a way the result of [9] with a natural
restriction of existence of the inverse moment for X.

Another question posed in [11] was related to the matrix variate version of the
property they discovered. This problem was settled in [9] for the GIG and Wishart-
gamma distributions on the cone of symmetric postive definite matrices. Also in that
paper a partial converse was obtained under the assumption that densities of random
matrices X and Y exist and are strictly positive C2 real functions. Here in Section
3 we give a straightforward extension of this result by weakening the smoothness
assumption, imposed on densities, to differentiability. A core of the proof is a solution
of some functional equation for matrix functions in matrix variables, which seems
to be of independent interest.

2. Constancy of regression

It has been recently proved in [14] that, under suitable conditions on existence of
moments, the constancy of regression

E(V |U ) = c, (1)

characterizes the distribution of X as GIG if the distribution of Y is assumed to
be gamma, and in the opposite direction, it determines the distribution of Y to be
gamma if X is assumed to have a GIG distribution. Here and in the sequel the
equations between random variables are understood to hold almost surely.

Similar results follow if the constancy of the regression of the reciprocal of V , i.e.

E(V −1|U ) = d, (2)

is considered.
In both cases the proofs were based on identification of probabilistic solutions of

second-order differential equations for Laplace transforms of measures related to
distributions of X and Y .
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As pointed out in [14], since

V =
Y

X(X + Y )
,

then (1) is equivalent to

E(Y/X|X + Y ) = c(X + Y )

and (2) is equivalent to

E(X/Y |X + Y ) = d/(X + Y ).

Here we develop further the approach by considering both the regression con-
ditions (1) and (2) simultaneously. Then the complete characterization of the distri-
bution of X and Y is obtained. Consequently the result is a regression version of
the characterization through independence obtained in [9].

It is worthy to recall at this moment that, in past studies, characterizations
based on independence were often accompanied by their regression counterparts. The
celebrated Darmois–Skitovitch theorem on characterization of the normal law by
independence of linear forms in independent random variables was converted to a
regression version in [5]. The regression analogues of the famous Lukacs theorem
on characterization of the gamma distribution by independence of the sum and the
quotient of two independent non-negative random variables were obtained in [15],
[16] or [10], with a recent contribution by [6] for positive definite random matrices
(even Jordan algebras, as a matter of fact). For the inverse Gaussian distribution
the constancy of regression counterpart of the converse to the Tweedie theorem,
obtained in [4], was proved by [8]. So the result we formulate now can be seen as a
new contribution within such a scheme.

Theorem 1. Let X and Y be positive independent random variables and E(1/X) <
∞. For U = 1/(X + Y ) and V = 1/X − 1/(X + Y ) assume that the conditions (1) and
(2) hold. Then cd > 1 and there exist a > 0 such that X ∼ µ−p,a,b and Y ∼ γp,a, where
p = cd/(cd− 1) > 1, and b = d/(cd− 1) > 0.

Proof. All the expressions beneath are considered for any s < 0.
Observe that (1) is equivalent to

EX−1es(X+Y ) − E(X + Y )−1es(X+Y ) = cEes(X+Y ) (3)

and, by the observation above, (2) is equivalent to

EXY −1es(X+Y ) = dE(X + Y )−1es(X+Y ). (4)

Combining (3) and (4) we get

EX−1es(X+Y ) − d−1EXY −1es(X+Y ) = cEes(X+Y ). (5)

Now we introduce two Laplace transforms:

hX(s) = EX−1 exp(sX) , hY (s) = EY −1 exp(sY ).

Then (5) can be rewritten in the form

dh′Y (hX − ch′X) = h′′XhY . (6)
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On the other hand after taking derivatives in (3), which for s < 0 is always allowed,

we get

h′′Y (hX − ch′X) = ch′′Xh
′
Y . (7)

Observe that h′X and h′Y are, respectively, the Laplace transforms of X and Y .
Hence it follows that neither h′′X nor h′′Y can be identically zero in any open interval
contained in (−∞, 0), since then the Laplace transforms would be affine functions,
which is contradictory to their boundedness property. Consequently from (6) and (7)
it follows that

cd(h′Y )2 = h′′Y hY .

Exactly such an equation was solved in [16] – see equation (3) in that paper. Follow-
ing that solution we get

E(exp(sY )) = (1− s/a)−cd/(cd−1),

which implies that cd > 1 and that Y ∼ γp,a, where p = cd/(cd− 1) > 1 and a > 0 is
a free parameter.

Consequently, substituting h′Y and h′′Y in (7) we arrive at the second-order differ-
ential equation for hX

(a− s)h′′X(s) + ph′X(s)− bhX(s) = 0

at least for s < 0. Then following the proof of Theorem 1 of [14], where the same
equation was encountered, we conclude that its only probabilistic solution is the
modified Bessel function of the third kind K(p+1), and consequently X ∼ µ−p,a,b with
b = d/(cd− 1). Note that the assumption EX <∞, imposed there, is not necessary
since for s < 0 the random variable X exp(sX) is always bounded. So we can solve
the equation for s < 0 and then use the analytical extension principle to define the
respective Laplace transform for any s < a.

3. A refinement of the converse for random matrices

Denote by V the Euclidean space of symmetric real r× r matrices with the inner
product (a, b) = trace(ab), a, b ∈ V . The Lebesgue measure dx on V assigns unit
mass to the unit cube of V. By V+ ⊂ V we denote the cone of positive definite
symmetric matrices.

The GIG µp,a,b, where p ∈ R and a, b ∈V+, is defined by the density

µp,a,b(dx) =
1

Kp(a, b)
(det x)p−

r+1
2 exp(−(a, x)− (b, x−1))IV+(x) dx ,

where Kp is a version of the matrix Bessel function (see [3] or [9]), and the Wishart-
gamma γq,c distribution on V+ for q > (r − 1)/2 and c ∈V+ is defined by

γq,c(dy) =
(det (c))q

Γr(q)
(det y)q−

r+1
2 exp(−(c, y))IV+(y) dy ,

where Γr is the multivariate Gamma function (see, for instance [12, p. 61]).
Some basic relations between Wishart-gamma and GIG distributions were studied

in [1] and [2]. In [9] it was proved that if the random matrices X and Y are indepen-
dent and have, respectively, the distributions µ−p,a,b and γp,a, where p > (r − 1)/2,
a, b ∈V+, then U = (X + Y )−1 and V = X−1 − (X + Y )−1 are also independent with
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respective distributions µ−p,b,a and γp,b. The result holds also true for the singular
Wishart-gamma distribution. The proof in this direction was based on the Laplace
transforms technique.

A partial converse obtained in [9] relied on a restrictive smoothness C2 con-
dition imposed on the densities. The aim of this section is to weaken the smooth-
ness assumption. A result in this direction, but in the univariate case, has been
recently obtained in [17], where a functional equation for densities was solved under
the assumption of local integrability of logarithms of the densities. However it is
unknown how to adapt the argument developed in that paper to the matrix variate
case. The proof of the converse to the Matsumoto–Yor property we offer, relies on
differentiability of densities, and though has the same starting point as the proof in
[9], is rather different, and essentially is based on a solution of a functional equation
for functions of matrix variate arguments, which seems to be also of independent in-
terest. The solution is rather easy in the univariate case, but for matrices, due to the
non-commutativity of multiplication, the argument becomes much more involved.

For any u ∈V+ we will consider two linear operators P and L defined on V by

P(u)h = uhu , L(u)h = uh + hu , ∀ h ∈V.

Observe that they are related by

P(u−1)L(u) = L(u)P(u−1) = L(u−1).

Also P−1 and L−1 exist; for P−1 we simply have P−1(u) = P(u−1) and for L−1 it
follows for instance from [13, theorem 5·1]. Observe that the two inverse operators
are related by

L−1(u)P(u) = P(u)L−1(u) = L−1(u−1). (8)

Now we are ready to present the result on the solution of a matrix variate func-
tional equation.

Theorem 2. Let A, B: V+ → V and C: V2
+ → V be some functions and C is

symmetric, i.e. C(u, v) = C(v, u) for any u, v ∈V+. Assume that

A(u) + [P(u + v)− P(u)]B(v) = C(u, v) (9)

holds for any u, v ∈ V+. Then there exist a, b ∈ V and λ ∈ R such that for any
u, v ∈V+

A(u) = b− λu + P(u)a,

B(u) = a + λu−1,

C(u, v) = b + λ(u + v) + P(u + v)a.

Proof. Denote by idV the identity matrix in V and by Id the identity operator
on V. Observe that for any u ∈V+ and any real number β

P(u + β idV)− P(u) = βL(u) + β2Id, (10)

P(u + β idV)− P(β idV) = P(u) + βL(u). (11)

By symmetry of C it follows from (9) that

A(u) + [P(u + v)− P(u)]B(v) = A(v) + [P(u + v)− P(v)]B(u). (12)
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Now, using (10) and (11) for β = 1 and β = 2, we obtain two versions of (12) by
substituting v = idV and v = 2idV:

A(u) + L(u)B(idV) +B(idV) = A(idV) + P(u)B(u) + L(u)B(u), (13)

A(u) + 2L(u)B(2idV) + 4B(2idV) = A(2idV) + P(u)B(u) + 2L(u)B(u).

Subtracting the first from the second we get

L(u)a + c = L(u)B(u),

where

a = 2B(2idV)−B(idV) ∈V,

c = 4B(2idV)−B(idV)−A(2idV) +A(idV) ∈V.

Hence

B(u) = a + L−1(u)c , ∀ u ∈V+. (14)

Since L−1(idV)c = 1
2c, then B(idV) = a + 1

2c, and plugging (14) into (13) we arrive
at

A(u) + L(u)a + 1
2L(u)c + a + 1

2c = A(idV) + P(u)a + P(u)L−1(u) + L(u)a + c.

Finally it follows by (8) that

A(u) = b + P(u)a− 1
2L(u)c + L−1(u−1)c , u ∈V+, (15)

where b = A(idV)− a + 1
2c ∈V.

Now our aim is to show that c is a multiple of idV. To this end let us insert (14)
and (15) into (12), which gives

− 1
2L(u)c + L−1(u−1)c + [P(u + v)− P(u)]L−1(v)c

= − 1
2L(v)c + L−1(v−1)c + [P(u + v)− P(v)]L−1(u)c.

Since for any h ∈V

[P(u + v)− P(u)− P(v)]h = uhv + vhu,

then the above equation can be rewritten as

− 1
2L(u)c + L−1(u−1)c + uL−1(v)cv + vL−1(v)cu + P(v)L−1(v)c

= − 1
2L(v)c + L−1(v−1)c + vL−1(u)cu + uL−1(u)cv + P(u)L−1(u)c.

Again using (8) the above identity simplifies to

− 1
2L(u)c + uL−1(v)cv + vL−1(v)cu = − 1

2L(v)c + vL−1(u)cu + uL−1(u)cv.

For any positive α and β, change in the above equation u into αu and v into βv.
Observing that L(αu) = αL(u) and αL−1(αu) = L−1(u), we get for any α, β > 0 that

α(− 1
2L(u) + uL−1(v)cv + vL−1(v)cu) = β(− 1

2L(v) + vL−1(u)cu + uL−1(u)cv).

Consequently
1
2L(u)c = uL−1(v)cv + vL−1(v)cu (16)



Matsumoto–Yor independence property for GIG and Gamma laws 159
for any u, v ∈V+. Now insert u = v in (16). Then

1
2L(v)c = 2vL−1(v)cv = 2P(v)L−1(v)c.

Hence

L−1(v)c = 1
4P(v−1)L(v)c = 1

4L(v−1)c.

Substituting it back into (16) we obtain

2L(u)c = uL(v−1)cv + vL(v−1)cu.

For u = v2 the right-hand side of the above identity has the form:

P(v)[vL(v−1)c + L(v−1)cv] = P(v)(2c + vcv−1 + v−1cv) = 2P(v)c + L(v2)c.

Then we conclude that

L(v2)c = 2P(v)c

for any v ∈ V+. Consequently, using the basic properties of the inner product, we
have the following sequence of identities

0 = (L(v2)c− 2P(v)c, c) = (v2c, c)− (vcv, c) + (cv2, c)− (vcv, c)

= (cv, vc)− (vc, vc) + (cv, vc)− (cv, cv)

= (cv − vc, vc) + (cv, vc− cv) = (cv − vc, vc)− (cv − vc, cv)

= (cv − vc, vc− cv) = (cv − vc, (cv − vc)T) = ||cv − vc||2,
where T denotes transpose, and || · || denotes the norm defined by the inner product.

Then it follows that for any v ∈ V+ we have cv = vc. Now insert in this identity
v = vij = idV + εeij for any i, j ∈ {1, . . . , r}, where eij is an r × r matrix with zero
entries, except (i, j) and (j, i) entries which are equal 1 and ε is chosen sufficiently
small to have vij ∈ V+. Then it follows immediately that cik = cjk = 0 for any
k� i, j and cii = cjj for any i, j = 1, . . . , r. Thus c = 2λ id for some real number λ.

Since L−1(u)2λ id = 2λu−1 then from (14) and (15) we get the assertion of the
theorem forA andB. The formula forC follows just by inserting the final expressions
for A and B into (9).

The above result is the core of the proof of our main result in this section, which
is a converse to the Matsumoto-Yor property in the matrix variate case under mild
smoothness conditions for densities.

Theorem 3. LetX and Y be independent random variables valued in V+ with strictly
positive differentiable densities. Assume that U = (X +Y )−1 and V = X−1− (X +Y )−1

are independent. Then there exist p > (r − 1)/2 and a, b ∈ V+ such that X ∼ µ−p,a,b
and Y ∼ γp,a.

Proof. Define the map ψ: V2
+ → V2

+ by ψ(x, y) = ((x + y)−1, x−1 − (x + y)−1),
x, y ∈V+. It follows that ψ is a bijection and ψ = ψ−1. Obviously (U, V ) = ψ(X,Y ).
Now to find the joint density the essential computation is involved with finding the
Jacobian of ψ which equals (det (x) det (x + y))−(r+1) (for details see [9]). Then the
independence assumption leads to the equation

fU (u)fV (v) = (det (u) det (u + v))−(r+1)fX((u + v)−1)fY (y(u, v)), (17)
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for any u, v ∈V+, where y(u, v) = u−1 − (u + v)−1 and fZ denotes the density of the
random variable Z, Z ∈ {U, V,X, Y }. Now upon taking natural logarithms in (17)
we get

φ1(u) + φ2(v) = φ3(u + v) + φ4(y(u, v)), (18)

where

φ1(u) = (r + 1) log (det (u)) + log (fU (u)),

φ3(u) = −(r + 1) log (det (u)) + log (fX(u−1)),

φ2 = log (fV ) , φ4 = log (fY ).

All these functions are differentiable, since fX and fY are differentiable by assump-
tion.

Before we differentiate (18) let us observe that (x−1)′ = −P(x−1). Now we differ-
entiate (18), first with respect to u getting

φ′1(u) = φ′3(u + v) + [P((u + v)−1)− P(u−1]φ′4(y(u, v)).

Differentiation of (18) with respect to v gives

φ′2(v) = φ′3(u + v) + P((u + v)−1)φ′4(y(u, v)). (19)

Now in order to eliminate from the above two equations φ′4(y(u, v)) we compose
each side of (19) with P(u + v), and then we arrive at

φ′1(u) + P(u−1)P(u + v)φ′2(v)− φ′2(v) = P(u−1)P(u + v)φ′3(u + v).

Again composing each side of the above equation with P(u) from the left-hand side
we arrive at

P(u)φ′1(u)− [P(u)− P(u + v)]φ′2(v) = P(u + v)φ′3(u + v).

Now by Theorem 2 it follows that

φ′1(u) = P(u−1)a− λu−1 − b,
for some a, b ∈V and λ ∈ R. Consequently

φ1(u) = K1 − λ log (det (u))− (b, u)− (a, u−1),

where K1 is a constant; this is deduced from the following formulas for derivatives of
matrix variate functions with respect to the matrix argument: (log (det (u))′ = u−1,
(b, u)′ = b and (a, u−1)′ = −P(u−1)a. Now writing λ = p − (r + 1)/2 we get, by the
definition of φ1, that

log (fU (u)) = K1 − (p− (r + 1)/2) log (det (u))− (b, u)− (a, u−1)− (r + 1) log (det (u))

= K1 − (p + (r + 1)/2) log (det (u))− (b, u)− (a, u−1).

Since fU is a density then necessarily a, b ∈ V+ and p − (r − 1)/2 > 0, and thus
U ∼ µ−p,b,a.

Similarly

φ′3(u) = P(u−1)a + λu−1 − b,
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which results in

φ3(u) = K3 + λ log (det (u))− (b, u)− (a, u−1),

where K3 is a constant. Hence

log (fX(u)) = φ3(u−1)− (r + 1) log (det (u))

= K3 − (p + (r − 1)/2) log (det (u))− (a, u)− (b, u−1)

and thus X ∼ µp,a,b.
Also by Theorem 2 we get

φ′2(v) = −b + (p− (r + 1)/2)v−1.

Hence

log (fV (v)) = K2 − (b, v) + (p− (r + 1)/2) log (det (v)),

where K2 is a constant, and consequently V ∼ γp,b.
Finally the adequate formula for the density fY follows by inserting what we have

just obtained into (17).

Acknowledgement. Thanks to the referee’s remarks the exposition of the material
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