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Multiplicative Cauchy functional equation
in the cone of positive-definite symmetric matrices

by Konstancja Bobecka and Jacek Wesołowski (Warszawa)

Abstract. We solve the multiplicative Cauchy equation for real functions of sym-
metric positive definite matrices under the differentiability restriction. The specialty of
the problem lies in the symmetry of the multiplication.

1. Introduction. The multiplicative Cauchy equation in the space of
real square matrices of the form

f(xy) = f(x)f(y),

where x, y are matrices and f is a real-valued function, was studied inten-
sively in late fifties and the beginning of sixties, with the main contributions
by Gołąb (1959), Hosszú (1959), Kucharzewski and Zajtz (1966), Kuczma
(1959), Djoković (1970). It is known that the general solution is of the form

f(x) = g(det(x)),

where g is a multiplicative function, and if additionally some smoothness
assumptions are imposed on f the solution is f(x) = |det(x)|λ, where λ
is a real number. A related Cauchy–Binet equation (having the same so-
lution) has been studied for instance in Kurepa (1964), and more recently
in Heuvers, Cummings and Bhaskara-Rao (1988) and Heuvers and Moak
(1990, 1991).

Our interest in functional equations in the cone of positive-definite sym-
metric matrices was motivated by investigations of characterization prob-
lems for probabilistic measures concentrated on positive-definite symmet-
ric matrices—see Letac and Wesołowski (2000), Bobecka and Wesołowski
(2002) and Wesołowski (2002) and the equations treated there. To our sur-
prise nothing has been done for the Cauchy equation in this cone. This note,
at least to the best of our knowledge, is the first attempt in this direction.
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2. Preliminaries and the derivative of the determinant. Let V+
denote the cone of positive-definite symmetric real n × n matrices. It is a
subset of the Euclidean space V of symmetric real n× n matrices endowed
with the inner product (a, b) = tr(abT) = tr(ab) for any a, b ∈ V, where aT

denotes the transpose and tr(a) denotes the trace of the matrix a.
We are interested here in a version of the multiplicative Cauchy func-

tional equation for an unknown function f : V+ → (0,∞). The natural
version of the Cauchy equation in V+ has the form

f(x)f(y) = f(y1/2xy1/2)(1)

for any x, y ∈ V+, i.e. the multiplication in the argument of f on the right
hand side of (1) is symmetric. Obviously, the function f(x) = (det x)λ for
any real λ is a solution of (1). It will be shown that this is the only possible
solution in the class of differentiable functions f .

First we introduce some linear operators which will be used in the course
of the proof of our main result.

For any y ∈ V+ let us define two endomorphisms P(y) and L(y) on V:

P(y)h = yhy, L(y)h = yh+ hy, h ∈ V.
Observe that the inverse operator to P(y), denoted by P−1(y), exists and
P(y)−1 = P(y−1). Also the inverse L−1(y) of L(y) exists—see for instance
Olkin and Rubin (1964). In what follows we will use two simple relations
involving both these operators:

L(y2)P(y−1) = P(y−1)L(y2)(2)

and
L2(y) = L(y2) + 2P(y)(3)

for any y ∈ V+.
Before we present the solution of equation (1) we give an auxiliary result

which seems to be of independent interest:

Proposition 1. Assume that for any y ∈ V+,

L(y2)b = 2P(y)b(4)

for some b ∈ V. Then there exists λ ∈ R such that b = λe, where e denotes
the identity matrix in V.

Proof. By (4) we get

0 = (L(y2)b− 2P(y)b, b) = (y2b, b)− (yby, b) + (by2, b)− (yby, b)

= (by, yb)− (yb, yb) + (by, yb)− (by, by)

= (by − yb, yb) + (by, yb− by) = (by − yb, yb)− (by − yb, by)

= (by − yb, yb− by) = (by − yb, (by − yb)T) = ‖by − yb‖2,
where ‖ · ‖ denotes the norm generated by the inner product.
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Then for any y ∈ V+ it follows that by = yb. Insert in this identity
y = yij = e+ εeij for any i, j ∈ {1, . . . , n}, where eij is an n×n matrix with
zero entries, except the (i, j) and (j, i) entries which are 1, and ε is chosen
sufficiently small to have yij ∈ V+. Then, if b = [bij ], it follows that bik = 0
for any k 6= i and bii = bjj for any i, j = 1, . . . , n. Thus b = λe for some
real λ.

We end this section with the result on the derivative of the determinant
function, which is known in mathematical folklore, but we do not know of
any exact reference. Consequently, to make the paper self-contained, we offer
a fairly transparent proof.

Proposition 2. Consider a determinant function det on the cone V+.
Then

(detx)′ = (detx)x−1, x ∈ V+.(5)

Proof. For any x ∈ V+ and h ∈ V such that x+ h ∈ V+ we have

det(x+ h)− det(x) = det(x1/2(e+ x−1/2hx−1/2)x1/2)− det(x)

= det(x)[det(e+ x−1/2hx−1/2)− 1].

Observe now that for any a ∈ V+ one has

det(e+ a) = 1 +
n∑

k=1

∑

{i1,...,ik}⊂{1,...,n}
Ai1,....ik ,

where Ai1,...,ik denotes the principal minor based on rows and columns of
indices i1, . . . , ik. Note that the first element of the above sum is just tr(a).
Further, for any minor of order k ≥ 2 we have

|Ai1,...,ik | ≤ k!(max
i,j
|aij |)k.

But

(max
i,j
|aij |)k ≤

(√∑

i,j

a2
ij

)k
= ‖a‖k.

Consequently,
|Ai1,...,ik |
‖a‖ ≤ k!‖a‖k−1,

and since (for k ≥ 0) the right hand side tends to zero as ‖a‖ → 0 we have

lim
‖a‖→0

|det(e+ a)− 1− tr(a)|
‖a‖ = 0.(6)

Now take a = a(h) = x−1/2hx−1/2 and note that ‖a(h)‖ ≤ ‖x−1/2‖2‖h‖
→ 0 as ‖h‖ → 0. Since tr(x−1/2hx−1/2) = tr(x−1h), we have
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|det(x+ h)− det(x)− det(x) tr(x−1h)|
‖h‖

= det(x)
|det(e+ x−1/2hx−1/2)− 1− tr(x−1h)|

‖x−1/2hx−1/2‖
‖x−1/2hx−1/2‖

‖h‖

≤ det(x)
|det(e+ x−1/2hx−1/2)− 1− tr(x−1h)|

‖x−1/2hx−1/2‖ ‖x−1/2‖2

since ‖x−1/2hx−1/2‖ ≤ ‖x−1/2‖2‖h‖. Finally, (6) implies that

lim
‖h‖→0

|det(x+ h)− det(x)− det(x) tr(x−1h)|
‖h‖ = 0,

and thus (5) is proved.

3. Cauchy equation. Now we are ready to state and prove our main
result.

Theorem 1. Let the function f : V+ → (0,∞) be differentiable. If f
satisfies equation (1) then there exists λ ∈ R such that f(x) = (detx)λ for
any x ∈ V+.

Proof. Let g = log f . Then (1) can be rewritten as

g(y1/2xy1/2) = g(x) + g(y), x, y ∈ V+.

For y changed to y2 we get

g (P(y)x) = g(x) + g(y2), x, y ∈ V+.(7)

Differentiate (7) with respect to x to get

P(y)g′(P(y)x) = g′(x).(8)

Since P(y)e = y2, plugging x = e in (8), we obtain

g′(y2) = P(y−1)g′(e).

Set b = g′(e) ∈ V+ and substitute back y for y2. Then

g′(y) = P(y−1/2)b, y ∈ V+.(9)

Now we differentiate (7) with respect to y. Then it follows that

xyg′(P(y)x) + g′(P(y)x)yx = L(y)g′(y2).

In the above equation insert y = e. Since P(e)x = x, (9) implies

xg′(x) + g′(x)x = L(x)g′(x) = L(e)g′(e2) = 2b.
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Consequently, by (9) it follows that

L(x)P(x−1/2)b = 2b,

which, upon changing x to x2 and then applying (2), can be written as

P(x−1)L(x2)b = 2b.

Finally we get
L(x2)b = 2P(x)b, x ∈ V+.

Hence, by Proposition 1, it follows that b = λe for some λ ∈ R. And
thus (9) implies g′(x) = λx−1, x ∈ V+, which via Proposition 2 leads to
g(x) = λ log detx + c, where c is a real constant. Then f(x) = ec(detx)λ

and it follows by (1) that c = 0, which ends the proof.

The symmetric product of symmetric positive-definite matrices x and y
defined as y1/2xy1/2 may look somewhat arbitrary, since other candidates
for products preserving symmetry and positive definiteness are possible.
The one we consider seems to be quite natural, at least in the context of
characterizations of probability measures on the cone V+. Another natural
choice of the symmetric product of x and y is

xy + yx

2
=

1
2
L(x)y,

which is known as the Jordan product in the Jordan algebra of symmetric
matrices (see Faraut and Korányi (1994)). In this case the multiplicative
Cauchy equation reads

f(x)f(y) = f

(
xy + yx

2

)
, x, y ∈ V+.(10)

It turns out that this equation admits essentially only trivial solutions.

Theorem 2. Let the function f : V+ → (0,∞) be differentiable. If f
satisfies (10) then f = 1.

Proof. As above we introduce g = log f . Then (10) can be written as

g(x) + g(y) = g

(
1
2
L(x)y

)
.

Upon differentiation with respect to x we get

g′(x) =
1
2
L(y)g′

(
1
2
L(x)y

)
.(11)

Hence plugging x = e in (11) and writing b = g′(e) we obtain

2b = L(y)g′(y2).
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On the other hand inserting x = y in (11) we arrive at

2g′(x) = L(x)g′(x2).

Consequently,
2L−1(x)b = L(x)L−1(x2)b.

Applying the operator L(x) to both sides and then using (3) we find that

b = 2P(x)L−1(x2)b.

Finally we use (2) and then apply L(x2) to both sides, arriving at (4). Now
repeating the argument from the proof above (using Proposition 1) we find
that the solution of (10) has to be of the form f(x) = [det(x)]λ, where λ ∈ R.
Putting it back into (10) yields λ = 0.

Acknowledgements. The presentation of the material has been con-
siderably improved thanks to the referee’s suggestions. Particularly his/her
remark on symmetric products motivated us to incorporate Theorem 2 in
the paper.
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