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Abstract 

The mean and the variance of the time S(t) spent by a system below a random threshold 
until t are obtained when the system level is modelled by the current value of a sequence 
of independent and identically distributed random variables appearing at the epochs of a 
nonhomogeneous Poisson process. In the case of the homogeneous Poisson process, the 
asymptotic distribution of S(t)/t as t -* oo is derived. 
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1. Introduction 

If shocks occurring in time affect the level of an economic, financial, environmental, biolog- 
ical or engineering system, then the proportion of time spent by the system below a threshold 
is frequently of interest. If Yi denotes the system level during the period between the (i - 1)th 
and ith shocks and if N(t) counts the number of shocks during [0, t] for t > 0, then the process 
Zt = El Yn 1(N(t) = n - 1), t > 0, keeps track of the level of the system. Given any 
t > 0, we are interested in the proportion of time during [0, t] when the process Z = (Zt)t>o is 
below the system's threshold. However, there are situations in which there is no practical way 
to identify the system's threshold with certainty. Therefore, the threshold will be considered 
a random variable X and interest will center on S(t)/t, where S(t) denotes the total time 
during [0, t] that the process Z falls below X. Assuming that the process N = (N(t))t>o is 
a nonhomogeneous Poisson process with N, Y = (Yi)i>l, and X independent, we obtain the 
mean and variance of S(t)/t in Section 2. The choice of the nonhomogeneous Poisson process 
to model the time epochs of shocks was first proposed by Esary et al. [4]. We also prove, 
in Section 3, that if the shock process N is homogeneous Poisson, then S(t)/t converges in 
distribution to G(X), where G denotes the common distribution function of the Yi. 

A related but easier scheme of exceedance was proposed by Wesolowski and Ahsanullah 
[8]. They investigated the exact and asymptotic distributions of three statistics connected 
with exceeding an independent random threshold in a sequence of independent and identically 
distributed (i.i.d.) observations. In particular, they considered a discrete analogue of our S(t). 
Some additional distributional properties related to the exceedance scheme of [8] have been 
recently studied by Bairamov and Eryilmaz [I], Bairamov and Kotz [2] and Eryilmaz [3]. 
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2. Mean and variance 

Assuming that Y = (Yi)i=l,2,... is a sequence of i.i.d. observations with common distribution 
function G, one of the statistics considered in [8] was the number S*(n) of observations in a 
sample of size n falling below the random level X, where X is independent of Y. It was proved 
there that the conditional distribution of S* (n) given X is binomial with parameters n and G (X). 
Consequently, 

E(S*(n)) = n E(G(X)) 

and 

var(S*(n)) = n E(G(X)G(X)) + n2 var(G(X)), 

where G = 1- G. 
Here, we study similar characteristics in the case when observations arrive at the epochs of 

a nonhomogeneous Poisson process N = (N(t))t,o which is independent of (Y, X). 
The main object of our interest is the process Z = (Z(t))t>o which keeps track of the current 

Yj as follows: 
00 

Z(t) = Yn l(N(t) = n - 1), t > 0. 
n=1 

Denote by S(t) the time spent by the process Z below the level X up to the time t, and by 
Wi, i = 0, 1,..., the interarrival times of the process N, that is, Wi = Vi+l - Vi, where 
Vi = inf{t > 0 : N(t) = i} is the ith epoch of N, i = 0, 1, 2.... Then S(t) has the form 

N(t)-I N(t)-I 

S(t) = Wi l(Yi+ <X) + (t 
- 

E Wi) l(YN(t)+, <X) l(N(t) > 1) 
- i= i= 

+ t 1(YN(t)+l < X) 1(N(t) = 0) 
N(t)-I 

= ( E Wi[1(Yi+ < X) - I(YN(t)+I < 
X)]) (N(t) > 1) 

i=O 
+ t l(YN(t)+l < X). (1) 

Though we are unable to derive the exact distribution of S(t), the first two moments are 
computable and similar in form to the corresponding results in [8]. 

Proposition 1. In the model defined above, for any t > 0, 

E(S(t)) = tE(G(X)), (2) 

var(S(t)) = (t) E(G(X)G(X)) + t2 var(G(X)), (3) 

where 

X(t) = 2 P((y Ny) N(x))dxdy < t2. 
<x<y<t 

Before proving the above proposition, we present a result on order statistics which will be 
used later on in the proof. 
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Time spent below a random threshold 

Lemma 1. Let X:n, ..., Xn:n be orderstatisticsfrom an i.i.d. sample with distributionfunction 
F having support [0, a]. Then 

E X1:n + (Xi:n - Xi-i:n)2 + (a - Xn:n)2 = 2 // (F(x) + F(y))n dx dy. (4) 
- i=2 - <x<y<a 

Proof Observe first that, for any square integrable random variable X with distribution 
function F having support [0, a], 

E(X2) = 2 yF(y) dy = 2 f F(y) dx dy. 
J~O JJO~<x<y<a 

Consequently, 

E((a - X)2) = 2<x<ya 

=2 O<x<y<a 
=2r 

JJo<x<y<a 

F(a - y) dx dy 

F(x)dxdy. 

We proceed by induction with respect to n. For n = 1, the result has just been proved. Denote 
the left-hand side of (4) by Ln. Then 

- ( 
n 

Ln = E E( X2 + >(Xi:n - Xil:n)2 Xn:n) + (a - Xn:n)2 
i=2 

It is known (see, for instance, [6, Chapter 4]) that the conditional distribution of (Xl:n,.... 
Xn-l:n) given Xn:n = x is the same as the joint distribution of order statistics from an i.i.d. 

sample of size n - 1 based on the distribution function 

GF(u) = 
u) foru <x, 

GX (u)= F(x) 
1 foru > x. 

Then, by the induction assumption, it follows that 

Ln = E(2 + [GXn:n (x) + Gxn,:(y)]-1 dxdy + (a - Xn:n)2) 
<x<y<Xn:n 

= 2 y ( [Gu(x) + G(y)]n-l dFn:n(u) + Fn:n(x)) dx dy 
O<x<y<a y 

If1 
= 2 1 (n [t + F(x) - F(y)]"-1 dt + Fn(x)) dx dy, 

<x<y<a F(y) 

which immediately implies the result. 
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Proof of Proposition 1. By the independence properties, we have 

oc n 1 

E(S(t)) =L E(Wi [1(Y,I? < X) - 1(Y,,+ < X)] IN(t) = n) P(N(t) =n) 

n=I i=O 
00 

+ tLEE(1(Yn+i < X) I N(t) = n) P(N(t) =n) 
n=O 

oo n I 

=L E(Wj I N(t) = n)[E(1(Y1?l < X)) - E(1(Yn+l < X))] P(N(t) =n) 

n=1 i=0 

+ tE (G (X)). 

The formula (2) follows since E(1 (Y?i +I< X)) -E (1(Yn + < X)) = E (G (X)) -E (G (X)) = 0. 
In order to find the variance of S(t), we first compute its second conditional moment given 

N(t) = n > 0: 

nlI 

E(S2 (t) I N (t) = n) = : EW2I N(t) =n) E((Ii+ I In+) 1)2 
i-O 

n-I 

+ >jE(Wi Wj N(t) =n) E((Ii+1 - In?1)(Ij-+l - I+) 
i#i 

n-I 

+ 2t 2... E(W1 N(t) =n) E(In?1 (Ij?I _ In?+,)) ? t2 E(In+1), 
i-O 

where Ij = 1 (Yj < X) for j =1, 2. Observe that 

E -(I 1 I 1) 2) - 2 E(G (X)Gij(X)), 0 <i < n, 

EIil- In,(jl- In+j)) = E(G(X)G(X)), 0 <i, j < n,i :Aj 

E(I+I(I+I- In+,)) = - E(G(X)G(X)), 0 <i < n. 

Consequently, 

E(S2(t) I N(t) =n) 

E E(G (X) G(X)) E((t - V I N(t) =n) + E :w7 N (t) =n 

? t2 E (G 2(X)) 

for n > 0. Setting E- =O0and recalling that Vo =0 almost surely, we find that the above 
formula also holds for n = Osince, by direct computation, E(S2 (t) N N(t) E ) tE(G (X)). 
Hence, for any t > 0, 

N(t)-1 

var (S (t)) = E (G (X) G(X)) E ((t - VN (t)) ? E( ~ , var(G(X)) 

- N (t) 

=E (G(X) G(X)) E VI?LV - _1 )2+(t-_VN(t))2 +t2var(G(X)). 
i -2 
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Now to get (3) it suffices to compute X (t). In order to do that, we recall (see, for instance, 
[7, Theorem 12.2.1]) that the conditional distribution of the random vector (V1,..., VN(t)) 
given N(t) = n is equal to the joint distribution of the order statistics of a random sample of 
size n from the distribution 

0, x<0, 

^(x) H(x)= OA <x <t, 
A(t)' 

- 

1, t <x, 

where A is the mean value function of the Poisson process. Now applying Lemma 1 and 
changing the order of integration, we obtain that 

N(t) 
(-E v2+ V,_1)2 + (t)2 E(E V2+E(Vi-Vi_ +(t-V n)2 N(t) ) k - i=2 

= 2 y| E([H(x) + H(y)]N()) dx dy 
<x<y<t 

= 2 | yt exp(A(t)[H(x) + H(y) - 1]) dx dy 
<x<y<t 

= 2 exp(-[A(y) - A(x)]) dx dy. 
<x<y<t 

Remark 1. Observe that E(S(t)) does not depend on the parameters of the driving process N. 
On the other hand, var(S(t)) depends on the intensity A of the Poisson process and increases 
in t at most as a quadratic function. 

Remark 2. If N is a homogeneous Poisson process with mean value function A(t) = Xt, 
where X is a positive constant, then 

(t t-Y 2 
X(t) = 2f J e-xw dw dy = (e-t - 1 + Xt). 

In case N is a nonhomogeneous Poisson process with A(t) = log(l + t), 

rt rt-Y 14 y 2 
(t)= 1 +y dwdy = t + - log(l + t). 

+y+w 2 

Note that X(t)/t2 -> 0 as t -- oo when N is homogeneous, but not when A(t) = log(l + t). 

3. Asymptotic distribution 

It was shown in [8] that S*(n)/n converges in distribution to G(X), S*(n)/n -n G(X) as 
n -> oo. Here the formulae for E(S(t)) and var(S(t)) suggest that a similar result cannot be 
true unless X (t)/t2 converges to 0 as t -> oo. At the same time it is reasonable to conjecture 
that S(t)/t - G(X) if X (t)/t2 - 0. We are not able to answer this question in full generality; 
however, in the case of the homogeneous Poisson process, the answer is affirmative. 

Proposition 2. If N is a homogeneous Poisson process, then 

S(t) o -S G(X) as t -- o<. 
t 
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Proof Let Ij = 1(Yj < X) for j = 1, 2,.. .and rewrite (1) as S(t) = S1 (t+ S2(t)+ S3(t, 
where 

N(t)- 

Sl(t) = 1(N(t) 1) E Wjlj+l, 
j=o 

S2(t) = (t - VN(t))IN(t)+I (N(t) > 1) 

and 

S3(t) = tlN(t)+l 1(N(t) = 0). 

Clearly, S2(t) < t - VN(t). But the distribution of t - VN(t) is known; see, for instance, [5]. 
Thus, for any e > 0 and t sufficiently large, 

Pt 
- 

VN(t) >) =e-xt 

Consequently, S2(t)/t - 0 as t - oo. 

Further, for any E > 0, 

S3 (t) = P(IN(t)+l 1(N(t) = 0) > ) 

< P(N(t) = 0) 
-Xt = e 

-0 as t -- oo; 

hence S3(t)/t 0. 

Observe now that l(N(t) > 1) -> 1 as t -> oo. Consequently, to prove that S (t)/t - 

G(X), it suffices to prove that 

N(t)-I 

- E Wjj+il 
G(X). 

j=0 

This will be done in two steps. 
Denoting by X the intensity of the Poisson process, we will first prove that 

LtJ-I 
- 

w 
W 

1j+l G(X) 
j=o 

where L-J is the integer-part function. Note that the sequence (Wj Ij+l)j=o, ... is conditionally 
i.i.d. given X and E(WjIj+l I X) = G(X)/X. Then, by the law of large numbers, for any 
real z, 

LJ- L-1 

E exp( E WjIj+ 
j=o 

-EE(exP 
(L - tJ l iz Lw +,) ) / E ) -ast -* oc. 

Lxt j- 
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Time spent below a random threshold 813 

Secondly, we will show that, as t -+ oo, 

N(t)-l [AXt - 

( W,I - E Wjij+i) p o0. 
j=0 j=0 

To this end, observe that 

N(t) N(t) At p 
___= -- 1 as t --oo. 

L[tJ A t [LtJ 

Let 
AE = {(1 -e)LtJ < N(t) < (l + )LXAtJ for any E > 

and 

a2 = var(Woi) = E(G(X))2-E(G(X)) 
X2 

Then, for sufficiently large t, P(A)) > 1 - e. Thus, 

N(t)-l lAtJ-1 

p(_ E WjIj+l- E WjIj+l > E1 
j=0 j=0 

N(t)-l LtJ-1 

<P( E WjIj+l 
- 

E WjIj+I > tel n A) +E. 

j =0 j =0 

But 
N(t)-1 LAtJ-1 

P( E WjjI+1- E wj+l >L t n A, 
j =0 j =0 

max{N(t), LtJ)-1 

=P( E WIj+l > t?l n A.) 
j=min(N(t), LXtJ) 

KL(1+) L-AJJ - 1 

<P( E wjIj+i> t? }n Ae) 
j=L( 1-e)L),tJJ 

(5[ E P 7J j> ) 
j=O 

2eXta2 
< - -2 0 as t -+oo. 

E t2 

This completes the proof of the theorem. 

Remark 3. Observe that, in the case of nonrandom threshold, the convergence in Proposition 2 
holds in probability. 
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