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INCOMPLETE U-STATISTICS OF
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A class of incomplete U -statistics based on what we call a ‘‘permanent design’’ is investigated. It is shown that the
design is balanced and has minimal variance in a certain class of designs as well as is asymptotically efficient, i.e., its
asymptotic variance equals that of a complete U-statistic. Several examples of applications of our results to obtaining
limiting distributions of certain statistics as well as to sub-sampling theory are discussed.
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1 INTRODUCTION

In his seminal paper Hoeffding (1948) has extended the notion of forming an average of l

i.i.d. random variables by averaging a symmetric measurable function (kernel) of k > 1 argu-

ments over
l

k

� �
possible subsets. Since then these generalized averages or ‘‘U-statistics’’

have become one of the most intensely studied objects in non-parametric statistics, (see,

for instance, Lee, 1990 and references therein) with some aspects of the theory, like e.g.,

the asymptotic behavior, being a very active area of research even until now (see, for

instance, Giné and Zinn, 1994; Rempala, 1998; Latala and Zinn, 2000 or Giné et al.,

2001, for some of the most recent results). Even though U-statistics are relatively simple

and thus theoretically appealing probabilistic objects their practical use is somewhat limited

due to the fact that for large values of k and l the number of needed averagings
l

k

� �
may be

very large and the actual calculation of a U-statistic can be quite onerous. This drawback is

especially apparent when considering so-called U-statistics of infinite order (USIO) where

the dimension k of a kernel function is allowed to grow with the sample size l (cf. e.g.,

Székely, 1982; Frees, 1989; Politis and Romano, 1994; Rempala, 1998). In order to address

the problem of the computational difficulties Blom (1976) has suggested considering

‘‘incomplete’’ U-statistics, where the kernel function is averaged over only some
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appropriately chosen small subset (a design) of all
l

k

� �
averagings. The idea of Blom

has turned out to be closely related to the general statistical theory of experimental designs

and has lead over the next decade to a rapid development of the theory of incomplete

U -statistics based on a variety of designs (cf. e.g., Brown and Kildea, 1978; Lee, 1982;

Enqvist, 1985; Herrndorf, 1986; Nowicki and Wierman, 1988), including random (with or

without replacement) selection of subsets (Janson, 1984).

The main drawback of the theory of incomplete U -statistics seemed to be so far in a lack

of a general and simple technique of generating incomplete designs (except perhaps for the

random selection) that would work well for a very wide class of U -statistics, including the

case when k!1.

In this paper we consider such a design for a rectangle of mn i.i.d. random variables based

on a definition of a permanent function for m� n matrix (cf. Minc, 1978). This ‘‘permanent’’

design seems to be quite natural (for instance, it is ‘‘equireplicate’’ in the experimental design

sense) and, in particular, under some regularity conditions imposed on the kernel functions of

the corresponding U -statistics is always asymptotically efficient, in the usual sense of ARE,

when compared with a full design of all
l

k

� �
averagings, even in the case when both

l, k!1. In some cases our permanent design can also be shown to be more effective

then any other design of the same size, including a random one. The main weakness of

our method is in the fact that our permanent designs obtained here are typically still fairly

large in terms of the number of subsets, but on the other hand, unlike most of the designs

considered so far in the literature can be easily implemented on a computer with a help of

a permanent version of the Laplace expansion formula (cf. Mine, 1978).

The paper is organized as follows. The reminder of this section explains our notation used

throughout the paper and presents a brief overview of the basic formulae for complete and

incomplete U -statistics. In Section 2 we introduce the concept of a ‘‘permanent design’’

and discuss some properties of incomplete U -statistics of permanent design (USPD) as

well as provide the variance formula for USPD. Section 3 contains further results on

USPD, based on asymptotic considerations. Some examples of applications of the USPD the-

ory, including a theorem on the limiting law for random permanents and a problem of non-

parametric interval estimation based on sub-sampling are presented in Section 4.

Throughout the paper, we shall assume that X1, . . . , Xl are independent, identically distrib-

uted (i.i.d.) random variables taking values in a measurable space (I , J ) with the common

probability measure generating the observations denoted by P. We further assume that

h
(l)
k (x1, . . . , xk) is a measurable and symmetric kernel function h

(l)
k : I k !R. In the sequel

we shall write h, instead of h
(l)
k . For c ¼ 1, . . . , k � 1 we shall also define

hc ¼ E(hjs(X1, . . . , Xc)):

Here and elsewhere, E(�js(X1, . . . , Xc)) denotes the conditional expectation with respect to

the s-field generated by X1, . . . , Xc.

For given integers 1 � k � l let Sl,k denote a set of all k-subsets of {1, . . . , l} and let U
(k)
l

denote the U -statistic associated with h, i.e.,

U
(k)
l ¼

l

k

� ��1 X
S2Sl,k

h(xi1 , . . . , xik )
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where the sum is taken over all possible k-subsets S ¼ {1 � i1 < � � � < ik � 1} of {1, . . . , l}.

In the sequel we will often use more convenient notation h(S) instead of h(xi1 , . . . , xik ). If

Ejhj < 1, then U
(k)
l is an unbiased estimator of the functional

yl ¼
ð

R

� � �

ð
R

h(x1, . . . , xk)P(dx1) � � �P(dxk):

The traditional martingale representation of U
(k)
l is given by

U
(k)
l � EU

(k)
l ¼

Xk
c¼r

k

c

� �
Ulc (1)

where

Ulc ¼
l

c

� ��1 X
1�i1<���<ic�n

gc(Xi1 , . . . , Xic ),

gc(x1, . . . , xc) ¼

ð
R

� � �

ð
R

hc(y1, . . . , ym)
Yc
s¼r

(dxs (dys) � P(dys))

and 1 � r � k.

The above formula is known as the H-decomposition. For given l, k the integer r � 1 is

called the degree of degeneration of U
(k)
l , whereas the integer k � r þ 1 is called the

order of U
(k)
l . We say that U

(k)
l is of infinite order, if k � r þ 1!1 as l!1.

It is well known that for any fixed c the Ulc’s are martingales with respect to the appropriate

sequences of s-fields (see, for instance, Lee, 1990) and if we additionally assume Eh2
k < 1

for l � 1 that

Cov(Ul,c1
, Ul,c2

) ¼ 0 for c1 6¼ c2: (2)

The H-decomposition plays thus a fundamental role in U -statistics theory since it allows us

to represent U
(k)
l as a linear combination of uncorrelated U -statistics of fixed order (Ulc)

based on the kernel functions gc (often called ‘‘canonical kernels’’) for c ¼ 1, . . . , m.

Elementary but somewhat tedious calculation shows that the variance of U -statistic of

degree r � 1 is given by (cf. e.g., Lee, 1990)

Var(U
(k)
l ) ¼

l

k

� ��1Xk
c¼r

k

c

� �
l � k

k � c

� �
Var hc: (3)

On the other hand, the application of the H-decomposition and the relation (2) gives the

equivalent formula

Var(U
(k)
l ) ¼

Xk
c¼r

l

c

� ��1
k

c

� �
Var gc: (4)

Using (3) and (4) one may find the relation between Var hc and Var gc for 1 � c � k

Var gc ¼
Xc
i¼r

(�1)c�i c

i

� �
Var hi: (5)
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For any class of k-subsets D s.t. D � Sl,k an incomplete U -statistic is defined as

U
(k)
D ¼

1

jDj

X
S2D

h(S) (6)

where jDj denotes the cardinality of D. The class D is often referred to as a design of an

incomplete U -statistic. The design is called balanced (equireplicate) if it has the property

that every sample point xi, or equivalently every index i (1 � i � l), occurs in the same num-

ber of k-subsets belonging to D.

The variance formulae (3) and (4) have their analogues for U
(k)
D . If fc is the number of pairs

S1, S2 in the design D having exactly c elements in common then

Var U
(k)
D ¼

1

jDj2

Xk
c¼r

fcVar hc: (7)

Additionally, if S is a set in Sl,n for 1 � n � k and n(S) stands for the number of k-subsets in

the design D which contain S, i.e., n(S) ¼ j{S0 2 D: S � S0}j then

Var U
(k)
D ¼

1

jDj2

Xk
n¼r

BnVar gn: (8)

where

Bn ¼
Xk
c¼n

fc
c

n

� �
¼
X
S2Sl,n

n2(S)

From (3)–(4) and (7)–(8) it is not difficult to see that for D � Sl,k we must always have

Var U
(k)
l � Var U

(k)
D with equality only if D ¼ Sl,k . Therefore, the incomplete statistic is

always less efficient than the complete one. However, for appropriately chosen design D

the increase in the variance of U may be not too large and the loss of the estimation precision

may be offset by the considerable simplification of the statistic. The problem of the optimal

choice of D is, therefore, central to the theory of incomplete U -statistics (cf. e.g., Lee, 1982).

2 PERMANENT DESIGN

In order to introduce a permanent design it will be convenient to consider a U -statistic of

degree m based on a double-indexed sequence (matrix) of i.i.d. real random variables

{Xij} with i ¼ 1, . . . , m; j ¼ 1, . . . , n and 1 � m � n

U (m)
mn ¼

mn

m

� ��1 X
S2Smn,m

h(s) (9)

where Smn,m is a set of all m-subsets of the ordered pairs of indices {(i, j)j1 � i � m;

1 � j � n}. The above definition is equivalent to (1) with k ¼ m, l ¼ mn and the sequence

X11, . . . , X1n, X21, . . . , X2n, . . . , Xm1, . . . , Xmn obtained by vectorization of the matrix [Xij].

The following definitions will be useful in the sequel.
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DEFINITION 1 We will say that a design D � Smn,m is meager if for 1 � n � m the number

of elements in Smn,n being subsets of sets belonging to D equals
n

n

� �
m

n

� �
n!

In particular, for any meager design D we have jDj ¼ n[m] ¼
n

m

� �
m!. Let us also note

that the notion of a meager design in our setting is somewhat related to that of a

strongly regular graph design known in the experimental design theory.

DEFINITION 2 A design D � Smn,m is permanent if it consists of m-subsets of the form

{(1, i1), (2, i2), (3, i3), . . . , (m, im)} (10)

where 1 � i1 6¼ � � � 6¼ im � n.

In the sequel we shall denote a permanent design by Dper. The design derives its name

from the fact that an incomplete version of (9) based on Dper with the primitive kernel

h(x1, x2, . . . , xm) ¼ x1 � � � xm gives a permanent of matrix [Xij]. This connection between per-

manent designs and permanents will be explored in more detail latter in the paper.

The following theorem describes some of the basic properties of a permanent design.

THEOREM 1 The design Dper is balanced (equreplicate) and meager. It is also a minimum

variance design in the class of meager designs, that is, for fixed integers 1 � m � n it

minimizes the variance of an incomplete analogue of (9) among all meager designs.

Proof For given n (1 � n � m) consider S 2 Smn,n. First, we show that Dper is meager, that

is, the number of different sets S contained in sets belonging to Dper is
m

n

� �
n

n

� �
n!. To see

this, consider a set of ordered pairs of indices (coordinates) {(i, j)j1 � i � m; 1 � j � n}.

Taking any n-subset is equivalent to fixing the values of n first coordinates and n second

coordinates, which can be done in
m

n

� �
n

n

� �
different ways; for the selected n pairs of

indices there is n! ways to be included into one of the sets of the form (10). Second, we show

that Dper is of minimum variance among meager designs. For given S let us consider n(S)

(see Sec. 1 for definition). If S is a subset of one of the m-sets of the form (10) then, from the

definition of the permanent design it follows that for such S.

n(S) ¼
n� n
m� n

� �
(m� n)!: (11)

On the other hand, if S is not a subset of one of the m-sets of the form (10) then n(S) ¼ 0.

From the general theory (cf. e.g., Lee, 1990) it is known that for any design D � Smn,m such

that jDj ¼
n

m

� �
m! we have

P
S2Smn,n

n(S) ¼
m

n

� �
n

m

� �
m!. Since the quadratic

P
x2
i .

subject to
P

xi ¼ c > 0 and x � 0 is minimized by taking all the xi’s equal, it follows that

for the meager designs Dper minimizes the quantities Bn in the formula (8) and hence the

variance. The fact that Dper is balanced follows directly from (11) with n ¼ 1 and the fact

that the design is meager. j
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It is not difficult to show that there exist designs which are meager, balanced, and have strictly

larger variance than the permanent design. Therefore, the above theorem is meaningful.

In the sequel we shall refer to any incomplete version of (9) based on Dper as a U -statistic

of permanent design (USPD) and denote it by U
(m)
Dper

.

An obvious connection between a USPD and the U -statistic (9) is given by the following

THEOREM 2 For given fixed integers 1 � m � n let P be the set of all possible permuta-

tions of the elements of m� n matrix [Xij] and for given s 2 P let U
(m)
Dper

(s) denote a cor-

responding statistic. Then

U (m)
mn ¼

1

(mn)!

X
s2P

U
(m)
Dper

(s):

Proof Direct calculation. j

The above formula shows that the complete U -statistic (9) is simply a symmetrized version

of a USPD. Our next two results show that asymptotically the variances of USPD and its

symmetrization coincide for a large class of kernel functions.

THEOREM 3 The variance of a USPD is given by

Var U
(m)
Dper

¼
Xm
n¼r

m

n

� �
n

n

� � 1

n!
Var gn1

(12)

or, equivalently,

Var U
(m)
Dper

¼
1

n

m

� �
m!

Xm
n¼r

m

n

� �
C(m� n, n� n)Var hn (13)

where

C(i, j) ¼
Xi
c¼0

(�1)c
i

c

� �
j � c

i� c

� �
(i� c)! for 0 � i � m� 1; n� m � j � n� 1:

Proof In the proof of Theorem 1 we have shown that Dper is meager and that for any n
(1 � n � m) and any S 2 Smn,n being a subset of one of the m-sets belonging to Dper, n(S) is

given by (11). This, along with the formula (8) entails (12), since now

Bn ¼
m

n

� �
n

n

� �
n!

n� n
m� n

� �2

(m� n)!2

for 1 � n � m. The formula (13) may be now obtained from (12) with the help of the relation

(5) by substituting for the Var gc’s the appropriate expressions involving only the quantities

Var hc and changing the order of summation. Equivalently, as in Rempala and Wesolowski

(1999), it may also be inferred directly from (7) by verifying that for USPD we have

fc ¼
n

m

� �
m!

m

c

� �
C(m� c, n� c). The drawback of this last approach is in the fact that

it requires quite laborious combinatorial calculations. j
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3 ASYMPTOTIC PROPERTIES OF USPD

Let us first show that USPD’s are asymptotically efficient. For any incomplete U -statistic (6)

let ARE be its asymptotic relative efficiency as compared with the complete statistic U
(k)
l ;

that is,

ARE ¼ lim
l!1

Var U
(k)
l

Var U
(k)
D

:

THEOREM 4 Suppose that for the U-statistic (9) of a fixed (i.e., independent of n, m) degree

of degeneration r � 1 we have Eh2 <1, 0< lim inf Var gr, and Var gn � cn for n � r and

some constants cn (independent of m, n) which satisfy

X1
n¼r

cn

n!
< 1: (14)

If n � m!1 and m=n! l � 0, then ARE of USPD vis a vis the complete U-statistic (9)

equals one. Furthermore, for r ¼ 1 the result remains valid if m ¼ m1 � 1 is a fixed integer

and n!1.

Remark 1 The above result appears to be quite useful, since, as we have already

noted, the size of any meager design D is jDj ¼
n

m

� �
m! which even for fixed integers

1 � m � n is usually a much smaller number than
mn

m

� �
– the size of a complete design in

(9). Asymptotically, this is even more apparent, since by virtue of the Stirling formula we

have, for some universal constant C > 0,

n

m

� �
m!

mn

m

� � � C
ffiffiffiffi
m

p
exp(�m)! 0 as m!1

Remark 2 The condition (14) may be thought of as the requirement of at most exponential-

type growth (in n) of the array of the Var gn’s.

Proof Let us note that by (12) and (4) we have

Var U
(m)
Dper

Var U
(m)
mn

� 1 ¼

Pm
v¼r

" 
m

v

� ��
n

v

� �!
ð1=v!Þ �

 
m

v

� �2�
mn

v

� �!#
Var gv

Pm
v¼r

 
m

v

� �2�
mn

v

� �!
Var gv

� 0 (15)

as each term in the sum in the numerator is positive, in view of the inequality

mn

n

� �
�

m

n

� �
n

n

� �
(n!)�1
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which is valid for all integers 1 � n � m � n. On the other hand, for the expression on the

right-hand side of the equality sign in (15), we clearly have for sufficiently large n

Pm
n¼r

m

n

 !�
n

n

 ! !
(1=n!) �

m

n

 !2�
mn

n

 ! !" #
Var gn

Pm
n¼r

m

n

 !2�
mn

n

 ! !
Var gn

�

Pm
n¼r

m

n

 !�
n

n

 ! !
(1=n!) �

m

n

 !2�
mn

n

 ! !" #
Var gn

m

r

 !2�
mn

r

 ! !
Var gr

� C

Pm
n¼r

m

n

 !�
n

n

 ! !
(1=n!) �

m

n

 !2�
mn

n

 ! !" #
Var gn

m

r

 !2�
mn

r

 ! ! (16)

where C > 0 is a universal constant. Let us show that under the assumptions of the theorem

the latest expression tends to zero. We will prove this separately for each of the following

cases.

Case 1 l > 0.

Let e > 0 be arbitrarily small and let m0 be an integer such that
P1

n¼m0
(n!)�1cn < e (the

existence of m0 is guaranteed by (14)). Since for any fixed integer n with r � n � m0 we

have that
m

n

� �2�
mn

n

� �
! ln=n! and

m

n

� ��
n

n

� �� �
! ln as n � m!1 with

m=n! l, then, for sufficiently large m, n

Pm
n¼r

m

n

 !�
n

n

 ! !
(1=n!) �

m

n

 !2�
mn

n

 ! !" #
Var gn

m

r

 !2�
mn

r

 ! !

�
2r!

lr
Xm0

n¼r

m

n

 !

n

n

 ! 1

n!
�

m

n

 !2

mn

n

 !
2
666664

3
777775cn þ e

2r!

lr

� e
2r!

lr
þ e

2r!

lr
¼ e

4r!

lr

and the assertion follows in view of the relation (14) and the arbitrary choice of e.
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Case 2 l ¼ 0, m!1.

In this case,

Pm
n¼r

m

n

� ��
n

n

� �� �
(1=n!) �

m

n

� �2

=
mn

n

� � !" #
Var gn

m

r

� �2�
mn

r

� � !

¼

m

r

� �
n

r

� �
mn

r

� �
m

r

� �2

1

r!
� 1

2
6664

3
7775Var gr þ

Xm
n¼rþ1

m

n

� �
n

n

� � 1

n!

mn

r

� �
m

r

� �2
�

m

n

� �2

mn

n

� �
mn

r

� �
m

r

� �2

2
6664

3
7775Var gn:

(17a, b)

Note that

m

r

� �
n

r

� �
mn

r

� �
m

r

� �2

1

r!
¼

mn

r

� �

r!
n

r

� �
m

r

� �

¼
mn(mn� 1) � � � (mn� r þ 1)

m(m� 1) � � � (m� r þ 1)n(n� 1) � � � (n� r þ 1)

¼
(1 � 1=mn) � � � (1 � (r � 1)=mn)

(1 � 1=m) � � � (1 � (r � 1)=m)(1 � 1=n) � � � (1 � (r � 1)=n)
! 1 (18)

as m, n!1. Thus, (17a)! 0 as m, n!1 and we only need to argue that so does (17b).

To this end, let us note that by (18), for sufficiently large m, n,

Xm
n¼rþ1

m

n

� �
n

n

� � 1

n!

mn

r

� �
m

r

� �2
�

m

n

� �2

mn

n

� �
mn

r

� �
m

r

� �2

2
6664

3
7775Var gn

�
Xm
n¼rþ1

m

n

� �
n

n

� � 1

n!

mn

r

� �
m

r

� �2
cn � 2

Xm
n¼rþ1

m

n

� �
n

n

� � r!

n!

n

r

� �
m

r

� � cn

¼ 2
Xm
n¼rþ1

m� r

n� r

� �
n� r

n� r

� � r!

n!
cn � 2r!

m� r

n� r

Xm
n¼rþ1

1

n!
cn ! 0,

in view of (14) and m=n! 0. The latter inequality follows since for 1 � n � m � n the expres-

sion
m

n

� ��
n

n

� �
is a non-increasing function of n. The assertion follows now via (15).
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Case 3 r ¼ 1 and m ¼ m1 � 1 is a constant.

If m1 ¼ 1 the result is obvious. If m1 > 1 then proceeding similarly as above we see that

for r ¼ 1 the expression (17a) equals zero and we only need to show that (17b) tends to zero

as n increases. This is obvious upon noticing that for n ¼ 2, . . . , m1 the expressions in the

square brackets are of order O(n�nþ1). The theorem is proved. j

Remark 3 Since for any two sequences {ak} and {bk} of nonnegative real numbers

satisfying ak ¼
Pk

c¼1

k

c

� �
bc for k � 1, the condition

P1

k¼1 bk=k! < 1 is equivalent toP1

k¼1 ak=k! < 1, in view of relation (5) it is easily seen that a small modification of the

above proof allows us for an alternative formulation of Theorem 4 where the Var gn’s are

replaced with the Var hn’s. In this alternative form the assumptions of the theorem are perhaps

easier to verify and, in particular, it is readily seen that they are satisfied whenever

lim inf n Var hr > 0 and supn Eh
2 < 1.

As an immediate consequence of Theorem 4 we obtain the following

THEOREM 5 Suppose that the non-degenerate (r ¼ 1) U-statistic (9) satisfies the assump-

tions of Theorem 4.

(i) If n� m!1 with m=n! 0, then

U
(m)
Dper

(Var U
(m)
Dper

)1=2
�

U (m)
mn

(VarU
(m)
mn )1=2

�!
Pr

0:

(ii) If n, m!1 with m=n! l > 0, then

U
(m)
Dper

� U (m)
mn �!

Pr
0:

Proof Let us note that for any U-statistic U
(k)
l and its incomplete version U

(k)
D given by (6),

due to the fact that the random variables h(S), S 2 D are equidistributed, we have

Cov(U
(k)
l , U

(k)
D ) ¼ Cov U

(k)
l ,

1

jDj

X
S2D

h(S)

 !
¼

1

jDj

X
S2D

Cov(U
(k)
l , h(S))

¼ Cov(U
(k)
l , h(S1)) for any S1 2 D:

Repeating the above argument with D ¼ Sl,k entails

Cov(U
(k)
l , U

(k)
D ) ¼ Var U

(k)
l :

Applying the last identity to U (m)
mn and U

(m)
Dper

under the assumptions of (i) we obtain

Var
U

(m)
Dper

(Var U
(m)
Dper

)1=2
�

U (m)
mn

(VarU
(m)
mn )1=2

 !
¼ 2 � 2

Var U (m)
mn

Var U
(m)
Dper

 !1=2

! 0
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in view of Theorem 4, and the result holds via Chebychev’s Inequality. The second part of the

theorem follows similarly, since under the assumptions of Theorem 4 and (ii) we have that

0 < lim inf Var U (m)
mn and lim sup Var U

(m)
Dper

< 1. j

4 APPLICATIONS

In this section we would like to provide some examples of possible applications of our

results. First, we consider and obvious efficiency comparison in the case of a finite order

U-statistic. For the sake of simplicity we take m ¼ 2.

4.1 Relative Efficiency of the Incomplete Sample Variance

Consider m ¼ 2, {Xij} i.i.d. real valued random variables with variance 0 < s2 and central

fourth moment m4 < 1. If we take h(x, y) ¼ (x� y)2=2 then obviously U
(2)
2n ¼ S2

(2n) is the

usual sample variance estimator

S2
(2n) ¼

X
1�i�2,1�j�n

(Xij � �XX )2

2n� 1

¼
1

2n(2n� 1)

X
{(i, j) 6¼(k, l):

1

2
(Xij � Xkl)

2 (19)

1�i, k�2;1�j, l�n}

where

�XX ¼
X

1�i�2,1� j�n

Xij

2n

� �
:

Since r ¼ 1 in this case, our Theorem 4 applies for USPD

S2
Dper

¼
1

n(n� 1)

X
1� j 6¼1�n

1

2
(X1j � X2l)

2

which for any given n contains less than a half of the terms present in (19).

Let us note that in this case a permanent design is also a minimum variance design since

for a U-statistic of degree m ¼ 2 (with square integrable kernel) any balanced design

D � S2n,2 satisfying jDj ¼ 2
2n

2

� �
is meager. In particular, it follows that in this case a

permanent design is more efficient than a random design of the same size.

A direct comparison of the variances can be also performed, since

Var S2
(2n) ¼

m4 � s4

2n
þ

s4

2n

2

� �
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by applying (4) with l ¼ 2n and k ¼ 2, and

Var S2
Dper

¼
m4 � s4

2n
þ

s4

2
n

2

� �

by (12) with m ¼ 2. As we can see the difference in the above expressions is only in the term

of order O(n�2). For the sake of example, taking s2 ¼ 1 and m4 ¼ 3, we have tabulated below

the ratio of Var S2
(2n)=Var S2

Dper
for several different values of n.

n
Var S2

ð2nÞ=Var S
2
Dper

2n

2

� �
% used by PD

5 0.89 45 44%
10 0.95 190 47%
20 0.97 780 49%
50 0.99 4950 49.5%

As we can see from the above table, the efficiency of the permanent design appears rea-

sonable, even with a relatively small sample size. However, the permanent design is still

fairly large and up to half of the size of the complete design. In our next example we

will thus consider the case when the size of our incomplete design, relative to the complete

one, tends to 0.

4.2 Relative Efficiency of USPD’s for the Kernels of Increasing Order

Let {Xij} (1 � i � m, 1 � j � n) be i.i.d. Bernoulli random variables with mean 1=2. Let us

consider the U-statistic based on the kernel h(x1, . . . , xm) ¼ x1 � � � xm and suppose that

m!1 as n!1.

Then U (m)
mn ¼ T (m)

mn where

T (m)
mn ¼

P
ij Xij

m

� �
mn

m

� �

and the summation above is taken over all the indices i, j. In this case

Var T (m)
mn ¼

1

2m

Xm
n¼1

m

n

� �2

mn

n

� �

and

Var T
(m)
Dper

¼
1

2m

Xm
n¼1

m

n

� �
n

n

� �
n!
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Below we have tabulated several values of the ratio Var T (m)
mn =Var T

(m)
Dper

for three different

sequences m ¼ m(n) and different total sample sizes mn. All non-integer values have been

rounded to the nearest integer.

m(n) Approx. sample size (mn� ) Var T ðmÞ
mn =Var T

ðmÞ
Dper

% used by PD

ln(n) 10 0.938 44.4%
100 0.989 21%

1000 0.998 3.69%ffiffiffi
n

p
10 0.938 44.4%

100 0.976 2.5%
1000 0.995 0.2%

n=2 10 0.938 44.4%
100 0.950 0.13%

1000 0.981 <10�10%

From the above table we can clearly see that whereas the efficiency of the incomplete sta-

tistic is higher for slowly growing m, the biggest gains in design reduction are achieved for m

growing at a faster rate. This is consistent with the observation made earlier in Remark 1.

4.3 Limiting Laws for Generalized Permanents

Expanding somewhat on the setting of the last example, let us derive with the help of

Theorem 5, the limiting laws of USPD’s with product kernels.

Let [Xij] be an m� n (m � n) matrix of i.i.d. random variables and let f be a function

f: I !R such that mf ¼ Ef(X11) 6¼ 0 and 0 < s2
f ¼ Var f(X11) < 1. Let us also consider

the product kernel function h(x1, . . . , xm) ¼ f(x1) � � �f(xm) where without loss of generality

we may assume that mf ¼ 1. For this particular kernel choice the U-statistic (9) is known as a

(normalized) elementary symmetric polynomial of degree m. In the sequel we shall denote it

by S(m)
mn (f) and its USPD counterpart by S

(m)
Dper

(f). If we define a generalized permanent of the

matrix [Xij] by

Perf[Xij] ¼
X

1�i1 6¼i2 6¼���6¼im�n

f(X1,i1) � � �f(Xm,im )

then obviously

Perf[Xij] ¼ n[m]S
(m)
Dper

(f)

where n[m] ¼
n

m

� �
m!.

THEOREM 6 Let N denote a standard normal random variable.

(i) If n� m!1 with m=n! 0 then

ffiffiffiffi
n

m

r
Perf[Xij] � n[m]

sfn[m]
!
D

N :

U-STATISTICS OF PERMANENT DESIGN 233

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
d
a
d
 
d
e
 
S
e
v
i
l
l
a
]
 
A
t
:
 
1
3
:
5
7
 
2
3
 
M
a
r
c
h
 
2
0
0
9



(ii) If n, m!1 with m=n! l > 0 then

Perf[Xij]

n[m]
!
D

exp
ffiffiffi
l

p
sfN �

ls2
f

2

 !
:

Proof It is readily seen that for S(m)
mn (f) we have r ¼ 1, ES(m)

mn (f) ¼ 1, Var gn ¼ s2n
f ,n ¼

1, . . . , m. It is also well known (cf. e.g., van Es and Helmers, 1988) that as k, l!1 with

k2=l! 0 the asymptotic distribution of (S
(k)
l (f) � ES

(k)
l (f))=(Var S

(k)
l (f))1=2 is standard

normal. Since S(m)
mn is a subsequence of S

(k)
l (f) satisfying the assumptions of Theorem 4 as

well as that on the rate of growth of m and n of part (i) of Theorem 5, the limiting distri-

butions of (S(m)
mn (f) � ES(m)

mn (f))=(Var S(m)
mn (f))1=2 and (S

(m)
Dperf

� E(S
(m)
Dper

(f)))= (Var (S
(m)
Dper

(f)))1=2

must coincide, and the assertion of part (i) follows in view of the fact that as n� m!1

and m=n! 0

Var S(m)
mn (f)

ms2
f=n

! 1:

The second part of the theorem follows similarly, except that here we use the assertion of part

(ii) of Theorem 5 and the result of Koroljuk and Borovskikh (1992) which states that if

l, k!1 and k=l! l > 0 then S
(k)
l (f) converges in distribution to a lognormal random

variable at the right hand side of (ii). j

Some important special cases of the above theorem for {Xij} real i.i.d. random variables

are, for instance, the following.

Example 1 Limiting law for random permanents (Rempala and Wesolowski, 1999) Taking

f ¼ Id we obtain from Theorem 6 as its special case the limit theorem for random per-

manents of Rempala and Wesolowski (1999). In particular, for m ¼ 1 the result reduces to

the usual CLT for i.i.d. random variables. On the other hand, for n ¼ m and the Xij’s are i.i.d.

Bernoulli it is well known that Per[Xij] equals the number of perfect matchings in a bipartite

graph given by the reduced adjacency matrix Xij and hence in this case we obtain from

Theorem 6 an alternative form of the limit theorem on the asymptotic law for the number of

perfect matchings of Janson (1994).

Example 2 Limiting law for the estimated probability of containment Let F be the law of the

Xij’s and let x be any real number for which F(x) > 0. Taking f(X ) ¼ fx(X ) ¼ I [X � x]

(where I [�] is an indicator function) we obtain the limiting laws for the USPD

M
(m)
Dper

(x) ¼
X

1�i1 6¼i2 6¼���6¼im�n

I [ max (X1,i1 , . . . ,Xm,im ) � x]

n[m]

which again may be viewed as a generalization of the CLT for the discrete empirical process

M (1)(x) when m ¼ 1. Under some regularity conditions the extension of this result to the sta-

tionary random variables is also possible (cf. Györfi et al., 1989).
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4.4 Non-parametric Subsampling Scheme

As a natural application of Theorem 5 in the case of USIO let us consider the ‘‘permanent-

design’’ version of the subsampling method of Politis and Romano (1994). The original

method of Politis and Romano (which in case of an i.i.d. sample is closely related to

d-jackknife) can be described as follows. For {Xij} i.i.d. random sample of size l ¼ mn

let Tl be a real valued functional on I l and suppose that for some sequence tl and some

parameter y(P)

Jl(P) � tl(Tl � y(P))!
D
J (P) as l!1

In order to obtain an asymptotic confidence interval for y(P) when the law J (P) is not known

Politis and Romano considered the empirical quantiles of the statistic

L(m)
mn (x) ¼

mn

m

� ��1 X
S2Smn,m

I [tm(Tm(S) � Tmn) � x] (20)

where Tm(S) is a functional Tm evaluated at the subset of data S. (Actually, the above is a

special case of the method of Politis and Romano who, more generally, considered Lk(x)

based on the sample of size k and of order b where b=k! 0 as k, b!1.) As it was

shown by Politis and Romano the method yields asymptotically correct confidence level

as long as

tm
tmn

! 0 (21)

as m, n!1. The key observation leading to that conclusion is that for the U-statistic

UL(m)
mn (x) given by (20) with Tmn replaced by y(P) we have

UL(m)
mn (x)!

Pr
J (x, P) (22)

at every continuity point x of J (�, P) and that in view of (21) the limiting laws of L(m)
mn (�) and

UL(m)
mn (�) must coincide.

Since for large values of m,n the computation of L(m)
mn (�) becomes quite difficult, it seems to

be of interest to consider some incomplete version of (20) which would nevertheless share its

asymptotic properties.

Under an additional assumption that m=n! l > 0 we could employ our method here and

consider a permanent-design based version of (20). The validity of this approach follows

from the fact that since the U-statistic UL(m)
mn (x) has a bounded kernel, it obviously satisfies

the condition (15) and thus by (ii) of Theorem 5 the limiting laws of UL(m)
mn (x) and its

permanent-design counterpart must coincide. The fact that interchanging Tmn and y(P) is

permissible follows, similarly as in Politis and Romano (1994), in view of condition (21).

References

Blom, G. (1976). Some properties of incomplete U-statistics. Biometrika, 63(3), 573–580.
Brown, B. M. and Kildea, D. G. (1978). Reduced U-statistics and the Hodges–Lehmann estimator. Ann. Statist., 6(4),

828–835.
Enqvist, E. (1985). A note on incomplete U-statistics for stationary absolutely regular processes. Contributions to

Probability and Statistics in Honour of Gunnar Blom. University of Lund, Lund, Germany, pp. 97–103.
Frees, E. W. (1989). Infinite order U-statistics. Scand. J. Statist., 16(1), 29–45.
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