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CONSTANCY OF REGRESSIONS FOR BETA DISTRIBUTIONS 

By VANAMAMALAI SESHADRI 
McGill University, Montreal, Canada 

and 

JACEK WESOLOWSKI 
Politechnika Warszawska, Warsaw, Poland 

SUMMARY. Properties of preserving independence under some transformations are 

known to characterize such important families of distributions as normal, exponential, 

gamma, Cauchy, uniform, (generalized) inverse Gaussian. Recently, a similar type of result 

of such a shape for the beta distribution has been proved in Wesolowski (2002a). In the 

present paper related characterizations of beta laws are obtained under weaker conditions 

of constancy of regressions. 

1. Introduction 

Matsumoto and Yor (2001) have recently discovered that the map {x, y) -> 

{{x + y)_1, x~l 
? 

{x + y)"1), acting on (0, oo)2, preserves a bivariate proba 

bility measure which is a product of the generalized inverse Gaussian (GIG) 
and the gamma distributions. This result was extended to matrix var?ate 

distributions in Letac and Wesolowski (2000), where also a complete converse 

in the univariate case and a partial converse, with an assumption of smooth 

densities, in the matrix variate case, were given. Related questions have 

been recently studied in Seshadri and Wesolowski (2001) and Wesolowski 

(2002b). In particular in Wesolowski (2002b) a complete characterization 

was obtained under the assumption of constancy of regressions, while in 

an earlier paper: Seshadri and Wesolowski (2001), single constancy of re 

gression condition led only to mutual characterizations of gamma and GIG 

distributions. 
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A phenomenon, similar to the Matsumoto-Yor property, holds for beta 

distributions. Recall that the beta distribution (of the first kind) ?VA is 
defined by 

xp~1(1 
- 

x)q~l 
?PAdx) =-B( \-Ao,!)^) dxi 

where the parameters p and q are positive numbers, and _B(p, q) is the beta 

Euler function. 

Consider a map ip : (0, l)2 -> (0, l)2 defined by 

#&,?)= (^?-, i-xy), (*,y)e(0,l)2. 
\l-xy J 

Observe that i?) o ip 
__ 

?d, where id denotes the identity map. Exactly the 

same property holds for the map introduced in Matsumoto and Yor (2001). 
For a random vector (X, Y) with the distribution ?VA ? ?p+q,r define a 

new random vector ([/, V) 
= r?>(X, Y), i.e. V = 1 - XY and [/ = 

(1 
- 

Y)/V\ 
Then it follows from the classical algebra of beta, gamma and Dirichlet 

distributions that ([/, V) has the distribution ?ryQ ? ?r+q,p- In Wesolowski 

(2002a) it was proved that the independence of components for both (X, Y) 
and (?7, V) implies that the parent distributions are beta, provided the ran 

dom variables (rv's) X and Y have strictly positive densities on (0,1) with 

locally integrable logarithms. It is worth mentioning that the version of the 

independence property discussed above for the matrix variate beta distribu 

tion has been derived recently in Letac and Wesolowski (2001) however no 

converse in the matrix variate case is known at present. 

In the next section we gather several rather elementary, but nice, prop 

erties of n-variate version of the transformation ij) applied to random vectors 

with independent beta components of specially related parameters. In Sec 

tion 3 it is shown that constancy of regressions, instead of the independence 

property, leads to characterizations of beta distributions. Two results of 

such a form are obtained and one of them is a straightforward generalization 
of the characterization given in Wesolowski (2002a). 

2. Decomposition and Martingale Properties 

First we define a map, an n-dimensional version of i?) given above, which 

preserves the independence property for a collection of n independent beta 

rv's. 

Proposition 1 Let (X_,... ,Xn) be a random vector with independent 
beta components Xk~?^n v. v , fc=l,..., n. Define a map ip : (0, l)n?>(0, l)n 
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by 

( \-X\ \~X\ ...Xn-i 

^(xi,...,rcn) =-,-..,-;-,1 -xi...x7 
\l 

? 
X\X2 1 

? 
X\ . . .Xn 

for any {x\,... ,xn) E (0, l)n. Then the random vector {U\,..., Un) 
= 

%?){X\,... ,Xn) has independent beta components, Uk 
~ 

?^k-i , k = 

2^i=o Pi,Pk 

l,...,n. 

The above result is an easy consequence of the representation of the beta 

distribution in terms of ratios of subsequent sums of independent gamma 

random variables with the same scale parameter. Immediate consequences 

of the above proposition are listed below: 

REMARK 1. Let X\ be a beta ?p#0 rv. Then for any n > 1 and any 

collection of positive numbers pk, k = 
1,..., n, such that Y?k=i Pk 

= P there 

exist independent beta rv's X2,... ,Xn, independent also of Xi, such that 

*i = 
n-1 
TT I- X\...Xk 

?li-x1...xfc+1 
(l-Xl...Xn)=f[Ukl 

k=l 

where ?7i,...,?7n are independent beta rv's such that Uk 
~ 

?^k-i , 
2^i=o Pi,Pk 

k = 
1,... ,n. 

Remark 2. Let (i>fc)fc>o be a summable sequence of positive num 

bers, and let {Xk) b? a sequence of independent beta rv's, such that Xk 
~ 

?YZkp^-^ 
k = 

1>2'"-v 
Define Zn 

= 
1-Xi---Xn, n = 

1,2,.... Then 

for any r > 0 the sequence {Zln/E{Zn\))nyi is a backward martingale with 

respect to the natural filtration. 

Remark 3. The random vector (Zi,..., Zn), as defined in Remark 2, 
has an ordered Dirichlet distribution with the following density function 

llz=o L w?y i=o 

where qi 
= 

pu i = 
0,..., n - 

1, and <?n = 
YljLnPj 
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3. Regression Characterizations 

As mentioned in the introduction, Wesolowski (2002a), under some smooth 

ness conditions imposed on densities, proved that if X and Y are independent 
rv's with values in (0,1) and also U = 

(1 
- 

Y)/(l 
- 

XY) and V = 1 - XY 
are independent then X and Y, and consequently, U and V, are beta rv's 

with suitably related parameters. The proof was based on solving of the 

functional equation 

fu{u)fv{v) 
= 

T^fx(^-^)fY(l-uv), U,V6(0,1) 1 ? uv \ 1 ? uv J 

In this section we present two characterizations of beta distributions 

based on constancy of regressions conditions. Since X and Y are bounded 

then the first result is a straight forward generalization of the characteri 

zation obtained in Wesolowski (2002a) since no assumption about densities 

is used. In both cases the proof is based on the application of the method 

of moments. A similar approach has been proved recently to be useful for 

characterizing the gamma distribution through dual regression versions of 

the Lukacs independence property 
- see Bobecka and Wesolowski (2002). 

Theorem 1. Let X and Y be independent non-degenerate rv's valued in 

(0,1). Denote U = 
(1 

- 
Y)/(l 

- 
XY) andV = 1- XY. Assume that 

E(U\V) = c (1) 

and 

E(U2\V) = d (2) 

for some real constants c, d. 

Then q = 
(1"c^l?"c) 

> 0, r = 
^^- 

> 0 and there exists p>0 such that 

(X, Y) 
~ 

?P9q ? ?p+q,r and, consequently, (17, V) 
~ 

?TA ? ?r+q,P> 

Proof. Observe that (1) and (2) can be rewritten, respectively, as 

E(l-Y\XY)=c(l-XY), (3) 

E((l 
- 

Y)2|_YY) 
= 

d(l 
- 

XY)2. (4) 

Moreover since the rv's are bounded all the moments of X and Y are finite 

and uniquely determine both the distributions. Consequently (3) implies 
that for any k ? 

0,1,... 

E 
[(1 

- 
Y)(XY)k] 

= cE 
[(1 

- 
XY)(XY)k] , 
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which can be written in the following form 

h(k)[l-cg(k)} 
= l-c, fc = 0,l,..., (5) 

where 

E(Xk^) E(Yk^) 

On the other hand (4) leads to 

E 
[(1 

- 
Y)2(XY)k] 

= dE 
[(1 

- 
XY)2{XY)k] 

, 

which takes the form 

l-2h(k)+h{k)h(k+l)=d-2dg(k)h(k)+dg{k)g(k+l)h{k)h(k+l), fc=0,1,... 
(6) 

Now find g(k)h(k) and g(k + l)h(k + 1) from (5) and substitute into the rhs 

of (6) to arrive, after some elementary algebra, at 

h(k + l)[(c2 
- 

d)h(k) + d(l 
- 

c)] 
= 

[d(l 
- 

c) + 2(c2 
- 

d))h(k) 
- 

(c2 
- 

d). 

Note that since c = 
E(U), d ? 

E(U2) and the rv's are non-degenerate then 

1 > c > d > c2 . Denote 
c(d 

- 
c) 

c2-d 

Then the above equation takes the form 

>0. 

h(k + l)[r + 1 - h(k)] 
= 1 + (r 

- 
l)h(k). 

Consequently h(k) ^ r + 1 for any k = 
0,1,... and thus 

h(k \i)-1 
+ {r~1)h{k) k-01 

Define now a by h(0) 
= 

E(Y) 
= 

a/(a + r). Observe that a + r > 0. Since 
otherwise a < 0 and then 1 > a/(a + r) implies 0 > a > a + r, yielding r < 0 
which is contradictory. 

Then the above equation leads to 

for any fc--0,1,..., where a and r are positve real constants. Hence Y~?a,r. 
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Using now (5) we get 

?-^-^^ 
*-*' 

Consequently, 

p 
= a-r > 0 

c 

and X ~ 
?VA with g 

= a ? 
p = 

r(l 
- 

c)/c > 0. 

The next regression characterization needs an additional assumption of 

the existence of a reciprocal moment of 1 ? Y. 

THEOREM 2. Let X and Y be independent non-degenerate rv's with val 

ues in (0,1). Assume that E{{1 
? 

Y)"1) < oo. If (1) holds and also 

E(U~l\V) = b, (7) 

then q ? ' 
fo-i > 0; r ? 

bc-i ^ ^ an^ ^ere ex^s p > 0 such that 

{X, Y) 
~ 

?PiQ <g> ?P+q,r and, consequently, (?7, V) 
~ 

?r,g ? A-+9,p 

Proof. We first note that (7) can be rewritten as 

E{{1 
- 

Y)~l\XY) 
= 

6(1 
- 

XY)~l . 

Since, by the integrability assumption, E{(1 
? 

Y)~~lYk) < oo for any k = 

0,1,..., then the above identity yields 

Note that (l-F)-1 > Yk + Yk+l + ... a.s. and also {l-Y)~l > {l-XY)~l 
a.s. Hence it follows that 

oo oo 

E(Xk) ? E(Yl) = b ]T E(Xl)E(Yl) . 
l=k l=k 

Then taking in the above equality succesive differences for k and k + 1 we 

obtain 

H(k) 
- 

g(k)H(k + 1) = b[H(k) 
- 

H(k + 1)] , (8) 
where H(k) 

= 
??fc E(Yl) and g(k) 

= 
E(Xk+1)/E(Xk), Jb = 0,1,.... 
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On the other hand (5) can be written as 

(l-c)[H(k)-H(k+l)] 
= 

(l-cg(k))[H(k+l)-H(k+2)}, k = 0,1,... (9) 

Now denoting P(k) = 
H(k+1)/H(k) we have for (8) and (9), respectively 

l-b=\g(k)-b]P(k) (10) 

and 

(1 
- 

c)(l 
- 

P(k)) = (1 
- 

cg(k))P(k)(l 
- 

P(k + 1)) . (11) 

Substituting now P(k) and P(k + 1) from (10) into (11) it follows that 

a[k ll)-1 
+ {q- 1)9{k) k-01 ff(& + lj~ 
g + l-g(k) 

' /=-U'1'---' 

where q 
= ' 

"??ii 
Observe that g > 0 since 6 > 1, c < 1 and be = 

E(U)E(U~l) > 1 (X and Y are non-degenerate). Then as in the proof of 
Theorem 1 we obtain 

E{xk+i)= 
P + k 

E{xk), * = _,_,..., 
p + q + k 

where p is defined by g(0) 
= 

E(X) 
= 

-^-. And thus X ~ 
/3p?9. 

Now (5) implies that 

E(Y^) 
= 

^??-E(Yk), 
fc = 0,l,... 

Hence Y ~ 
?P+q,n where r = 

^7-. 
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