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1. Introduction

Denote the beta probability distribution on (0, 1) by βp,q, where p and q are
positive numbers. Recall that it is defined by the density of the form

βp,q(dx) = B(p, q)−1xp−1(1− x)q−1I(0,1)(x) dx,

where the normalizing constant B(p, q) is the Euler beta function. Define also a
transformation ψ : (0, 1)2 → (0, 1)2 by

ψ(x, y) =
(

1− y

1− xy
, 1− xy

)

and observe that it is bijective and ψ = ψ−1.
It is a simple exercise to check that a random vector (X,Y ) has independent

components with distributions βp,q and βp+q,r (we write it as (X,Y ) ∼ βp,q ⊗
βp+q,r) iff the random vector (U, V ) = ψ(X,Y ) ∼ βr,q ⊗ βr+q,p, p, q, r > 0. For
instance, it suffices to plug the respective densities into the identity, which is
equivalent to the independence condition

fU (u)fV (v) =
v

1− uv
fX

(
1− v

1− uv

)
fY (1− uv), u, v ∈ (0, 1), (1)

where fU , fV , fX and fY are the probability density functions of the random
variables U , V , X and Y , respectively – notice that v/(1 − uv) is the Jacobian
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of the transformation ψ. Another possibility is to use representations of beta
variables in terms of quotients of suitable sums of independent gamma random
variables with a common scale parameter.

Similar independence properties are known for other important probability dis-
tributions involving, obviously, different functions ψ. For instance, for the stan-
dard normal distribution one can take ψ(x, y) = (x + y, x− y), x, y ∈ (−∞,+∞);
in the case of the gamma distribution ψ(x, y) = (x/y, x + y), x, y ∈ (0,+∞).
Rather recently a new example of a transformation preserving independence for
so called generalized inverse Gaussian and gamma distributions was discovered in
Matsumoto and Yor [12]: ψ(x, y) = (1/(x + y), 1/x − 1/(x + y)), x, y ∈ (0,∞).
Consider the converse question: Assume that the distributions of (X,Y ) and
(U, V ) = ψ(X,Y ) are product measures. Does this property characterize respec-
tive distributions? Such a problem for the normal law was solved in Bernstein
[2], and for the gamma law in Lukacs [11]. The Matsumoto–Yor property was
treated through Laplace transform techniques in Letac and WesoÃlowski [10] and
WesoÃlowski [17] and via the density approach in WesoÃlowski [18]. We would like to
stress that, though assuming (smooth) densities is somewhat restrictive, however
such an approach while bringing to the attention interesting new functional equa-
tions, at the same time may give an insight into more general settings and/or even
lead to stronger conclusions than other methods – see for instance the version of
the Lukacs theorem in the cone of positive definite symmetric matrices obtained in
Bobecka and WesoÃlowski [3], where the traditional assumption of invariance of the
“quotient” was relaxed due to the approach through densities, while necessarily
it is kept in theorems proved via the standard Laplace transform methods – see
Olkin and Rubin [13] or, much more recently, Casalis and Letac [4] or Letac and
Massam [9].

Here we would like to answer the same type of a converse question for the inde-
pendence property of the beta distributions, observed above. Again, as in the case
of the Matsumoto–Yor property the problem can be treated without the assump-
tion that densities exist – in such a setting the moment method was successfully
applied in Seshadri and WesoÃlowski [16] for a related problem of constancy of re-
gression. However again, such an approach seems to be hard to adopt for instance
in the matrix variate case. Following the path used earlier for the Matsumoto–Yor
property, in this paper we study the univariate situation under the assumption
that the densities exist. Then the problem reduces to describing all probabilistic
solutions of the equation (1) with unknown fU , fV , fX and fY – observe that we
can assume that (1) holds for all u, v ∈ (0, 1) if only some smoothness conditions
are imposed on densities.

While attacking the question along these lines (see below) we are faced up with
an interesting functional equation:

g

(
1− x

1− xy

)
− g

(
1− y

1− xy

)
= α(x)− α(y), x, y ∈ (0, 1), (2)

with unknown functions g and α. A search through literature including Aczél [1],
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Kuczma, Choczewski and Ger [8], Ramachandran and Lau [14], Sahoo and Riedel
[15] suggests that such an equation has not been yet studied. Somewhat related,
but different equations, related to properties of the Dirichlet distributions, have
been recently investigated by Geiger and Heckerman [5] and Járai [7]. The present
paper is devoted to a solution of a generalized version of the equation (2). It is
done under the assumption that unknown functions are locally integrable.

But first we will explain how to arrive at the equation (2) starting from the
independence property described above.

Since the random vectors (X,Y ) and (U, V ) have independent components, the
identity (1) holds true. Changing now the role of u and v in (1) one gets

fU (v)fV (u) =
u

1− uv
fX

(
1− u

1− uv

)
fY (1− uv), u, v ∈ (0, 1), (3)

Now combining (1) and (3), under the assumption that the densities are always
strictly positive, it follows that

h(u)
h(v)

=
fX

(
1−v
1−uv

)
fX

(
1−u
1−uv

) , ∀ u, v ∈ (0, 1),

where the function h is defined by h(x) = xfU (x)/fV (x), x ∈ (0, 1). Then (2)
follows with g(x) = log(fX(x)), α(x) = log(h(x)), x ∈ (0, 1), just by taking
logarithms in the above equation.

2. Solution of the functional equation

Now we are ready to formulate the main result of the paper which gives the solution
to a more general version of equation (2). It has to be emphasized that in our result
we assume that the unknown functions are locally integrable. This assumption
leads then to smoothness properties of the functions involved and is crucial for the
proof we offer here. The question of solutions without any smoothness properties
assumed, or even with a, natural in the probabilistic context, Borel measurability
assumption remains open – similarly as in the case of the functional equation
related to the Matsumoto–Yor property, which was studied in WesoÃlowski [17],
again for locally integrable unknown functions.

Theorem 1. Let g1, g2, α1 and α2 be locally integrable real functions defined on
(0, 1) satisfying the equation

g1

(
1− x

1− xy

)
+ g2

(
1− y

1− xy

)
= α1(x) + α2(y), ∀ x, y ∈ (0, 1). (4)
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Then there exist real numbers A, B, C, D, E, F , G and H, A + B + C + D = 0,
E + F=G + H, such that for all x ∈ (0, 1)

g1(x) = A log(x) + B log(1− x) + E,

g2(x) = C log(x) + D log(1− x) + F,

α1(x) = B log(x) + (A + D) log(1− x) + G,

α2(x) = D log(x) + (B + C) log(1− x) + H.

Proof. Since the functions are locally integrable we can take any x0, x1 ∈ (0, 1)
such that x0 < x1, and integrate both sides of equation (4) with respect to x:
x1∫

x0

g1

(
1− x

1− xy

)
dx+

x1∫
x0

g2

(
1− y

1− xy

)
dx =

x1∫
x0

α1(x)dx+(x1−x0)α2(y), ∀y ∈ (0, 1).

Then substituting in the first integral on the left-hand side (lhs) s = 1−x
1−xy and in

the second t = 1−y
1−xy one gets

(1− y)

1−x0
1−x0y∫

1−x1
1−x1y

g1(s)
(1− sy)2

ds +
1− y

y

1−y
1−x1y∫
1−y

1−x0y

g2(t)
t2

dt

=

x1∫
x0

α1(x) dx + (x1 − x0)α2(y), ∀ y ∈ (0, 1).

(5)

Dually, integrating (4) with respect to y from y0 to y1, 0 < y0 < y1, we get

1− x

x

1−x
1−y1x∫
1−x

1−y0x

g1(s)
s2

ds + (1− x)

1−y0
1−y0x∫

1−y1
1−y1x

g2(t)
(1− tx)2

dt

= (y1 − y0)α1(x) +

y1∫
y0

α2(y) dy, ∀ x ∈ (0, 1).

(6)

Observe that the lhs of (5) is a continuous function in y. Consequently α2 is a
continuous function. Similarly, by (6) it follows that α1 is continuous.

Now insert in (4) u = 1−x
1−xy and v = 1−y

1−xy . Consequently x = (1 − u)/v,
y = (1− v)/u, u, v ∈ (0, 1), u + v > 1 and (4) takes the form

g1(u) + g2(v) = α1((1− u)/v) + α2((1− v)/u), ∀ u, v ∈ (0, 1), u + v > 1. (7)

Since α1 and α2 are continuous it follows by (7) that g1 and g2 are also continuous
in (0, 1). But for continuous gi’s the lhs of (5) is a C1-function in y. Hence α2 is
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also C1. Also (6) implies, analogously, that α1 is a C1-function. Using again (7)
we conclude that g1 and g2 are also C1-functions.

Let us now differentiate (4) with respect to x. Then

− 1− y

(1− xy)2
g′1

(
1− x

1− xy

)
+

(1− y)y
(1− xy)2

g′2

(
1− y

1− xy

)
= α′1(x), ∀ x, y ∈ (0, 1). (8)

Inserting in the above equation x = y we get immediately that

α′1(x) =
1

(1− x)(1 + x)2

[
xg′2

(
1

1 + x

)
− g′1

(
1

1 + x

)]
, x ∈ (0, 1).

Plugging it back into (8) and then returning to the variables u and v, we get after
simplification

−ug′1(u)+(1−v)g′2(v) =
v

(v+1−u)2

[
1−u

v
g′2

(
v

v+1−u

)
−g′1

(
v

v+1−u

)]
, (9)

∀ u, v ∈ (0, 1), u + v > 1. Observe that limu→0 ug′1(u) = A exists since the rhs of
(9) has a limit as u → 0. Similarly to (9), but this time differentiating (4) with
respect to y we get

(1−u)g′1(u)−vg′2(v) =
u

(u + 1− v)2

[
1− v

u
g′1

(
u

u + 1− v

)
− g′2

(
u

u + 1− v

)]
,

∀ u, v ∈ (0, 1), u + v > 1. Consequently the limit limu→1(1− u)g′1(u) = −B exists
since the rhs of the above identity has a limit as u → 1.

Changing in (9) the variable u = 1− cv, c ∈ (0, 1), yields

−(1− cv)g′1(1− cv) + (1− v)g′2(v) =
1

v(1 + c)2

[
g′2

(
1

1 + c

)
− g′1

(
1

1 + c

)]

for any c, v ∈ (0, 1). Denoting for any t ∈ (0, 1): m(t) = −(1 − t)g′1(1 − t),
n(t) = (1− t)g′2(t),

K(t) =
1

(1 + t)2

[
g′2

(
1

1 + t

)
− g′1

(
1

1 + t

)]
,

we can rewrite the above equation as

m(cv) + n(v) =
1
v
K(c), c, v ∈ (0, 1). (10)

Observe that limc→1 m(cv) exists and equals m(v). Consequently, passing to the
limit as c → 1 in (10) we obtain

v[m(v) + n(v)] = K1 = lim
c→1

K(c) =
g′2

(
1
2

)− g′1
(

1
2

)
4

. (11)

Hence it follows that for any c, v ∈ (0, 1)

v[m(cv)−m(v)] = K(c)−K1 = L(c).
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Observe that limv→1 m(v) = −A. Then L(c) = m(c) + A and thus

cvm(cv)− cm(v) = cm(c) + cA, c, v ∈ (0, 1).

Hence for the function z defined on (0, 1) by z(x) = xm(x) + A it follows that

z(xy) = yz(x) + z(y), x, y ∈ (0, 1).

Taking now x = 1/2 we get z(y) = z(y/2)− yz(1/2) which by iteration leads to

z(y) = z(y/2n)− yz(1/2)(1 + 1/2 + . . . + 1/2n−1).

Observe that limx→0 z(x) = limx→0[−x(1−x)g′1(1−x)+A] = A+B. Consequently,
the above relation yields, by taking n → ∞ that z(y) = A + B − ay, where
a = 2z(1/2). Since z(1) = limx→1 z(x) exists then necessarily z(1) = 0 and
thus z(y) = (A + B)(1 − y), y ∈ (0, 1). Returning to g′1 we see that g′1(x) =
A/x + B/(1 − x) which immediately yields the desired form of g1. Due to the
symmetry of the problem g2 is identified in the same way and the relation between
constants A, B, C, and D follows now directly from (4). Knowing g1 and g2,
both α1 and α2 can be immediately derived from (4), together with the relation
involving the constants E, F , G and H. ¤

Remark 1. Observe that without any conditions on the behaviour of gi’s and
αi’s a possible solution could be of the form: ∀ x ∈ (0, 1)

g1(x) = A(x) + B(1− x) + E, g2(x) = C(x) + D(1− x) + F,

α1(x) = B(x)+A(1−x)+D(1−x)+G, α2(x) = D(x)+B(1−x)+C(1−x)+H,

where A, B, C and D are generalized logarithmic functions, i.e. they satisfy the
logarithmic equation: f(xy) = f(x)+f(y), x, y ∈ (0, 1), and as such may not have
any smoothness properties. It is an open question if these are all possible solutions
to (4) if no restrictions on the unknown functions are imposed.

Remark 2. Observe that in the problem of characterizing the beta distributions
by the independence property, as described in Section 1, we arrived at equation
(2) which is a version of (4) with g1 = −g2 = g and α1 = −α2 = α. In such
a setting the results of Theorem 1 hold true even under the assumption that at
least one of the functions g or α is locally integrable. Hence if we assume that
log(fX) is locally integrable on (0, 1), then it follows from Theorem 1 that the
density function fX has the form

fX(x) = exp(g(x)) = eExA(1− x)B , x ∈ (0, 1).

Consequently fX is the density of a beta distribution, say βp1,q1 . Observe now that
since ψ = ψ−1 we can write down the equation dual to (1) by simply changing
(U, V ) into (X,Y ). Again using the result of Theorem 1, this time with fU (x) =
exp(g(x)), x ∈ (0, 1), we conclude that U is also a beta random variable, say βp3,q3 .
On the other hand in the original setting, again by Theorem 1, we have

xfU (x)/fV (x) = exp(α(x)) = eGxB(1− x)A−B, x ∈ (0, 1).
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Since U has the beta distribution it follows that

fV (x) = Kxp4−1(1− x)q4−1, x ∈ (0, 1),

which again is the density of a beta distribution. Dually Y is also a beta random
variable βp2,q2 . Inserting now all these densities into (1) we conclude that p2 =
p + q, p3 = r, q3 = p, p4 = q + r, q4 = p where p = p1, q = q1, r = q2.

Thus the independence property characterizes the beta distributions if it is as-
sumed that the densities exist, are strictly positive on (0, 1) and their logarithms
are locally integrable, which is far more restrictive than the nonnegativeness, Borel
measurability and integrability over (0, 1) to 1, which are natural properties of
density functions. Possibly a way to get rid of these, seemingly, technical assump-
tions lies in adopting regularization methods developed in Járai [6] and then, as
mentioned above, successfully applied in Járai [7] for the functional equation con-
sidered in Geiger and Heckerman [5]. However, at the present moment we are
not aware how to implement these techniques for the equation considered in the
present paper.

Summing up the observations given in Remark 2 we have the following partial
answer to the characterization problem posed in the beginning of the paper.

Theorem 2. Let X and Y be independent random variables having strictly posi-
tive densities on (0, 1) and such that logarithms of these densities are locally inte-
grable. If the random vector (U, V ) = ψ(X,Y ) has independent components, then
(X,Y ) ∼ βp,q ⊗ βp+q,r, and consequently (U, V ) ∼ βr,q ⊗ βr+q,p, for some positive
constants p, q, r.
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