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SWITCHING ORDER STATISTICS
THROUGH RANDOM POWER CONTRACTIONS

Jacek Wesołowski1∗ and Mohammad Ahsanullah2

Politechnika Warszawska and Rider University

Summary

This paper investigates a new random contraction scheme which complements the length-
biasing and convolution contraction schemes considered in the literature. A random power
contraction is used with order statistics, leading to new and elegant characterizations of the
power distribution. In view of Rossberg’s counter-example of a non-exponential law with
exponentially distributed spacings of order statistics, possibly the most appealing conse-
quence of the result is a characterization of the exponential distribution via an independent
exponential shift of order statistics.

Key words: exponential distribution; order statistics; power distribution; random contraction; ran-
dom shifting.

1. Introduction

Let U1, . . . , Un be independent identically distributed (iid) random variables (rvs) with
a common distribution uniform on [0, 1]. Let (V1, . . . , Vn) and (U1, . . . , Un) be iid random
vectors. Then, as observed by Nevzorov (2001 Chapter 3),

Uk: n
d= Uk: mVm+1: n , (1)

where Xk: n denotes the kth order statistic from the sample (X1, . . . , Xn).

This observation falls in the general random contraction setting, which can be described
in the following way: let U be an rv with a distribution concentrated on [0, 1], and let X be
a positive rv which is independent of U. Then the distribution of XU is a random contraction
of the distribution of X. Assume that Y is an rv such that the distributions of X and Y are
somehow related, and consider the equation

Y
d= XU . (2)

Such schemes have been studied in the literature mainly in the context of identifiability and
identification of the distribution of X at least in two cases:

(1) length-biasing, i.e. the distribution functions (cdfs) FX of X and FY of Y are related
by E(Yr)FX(x) = ∫ x

0 yr dFY (y), for any x > 0, while it is assumed that X and Y

are positive and E(Yr) < ∞ for some real r. Recent contributions in this area include
Pakes (1996, 1997) and Pakes, Sapatinas & Fosam (1996).
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(2) convolutions, i.e. X
d= Y1 + · · · + Ym , where Y1, . . . , Ym are iid rvs with the same

distribution as Y. Within such a scheme, given the distribution of U the law of the Yj

has been characterized for instance by Kotz & Steutel (1988), Milne &Yeo (1989), Yeo
& Milne (1991) and Pakes (1994, 1995).

Often in these schemes the contraction distribution of U has been chosen to be the
α-power distribution pow(1, α), where in general the pow(a, α) distribution, with positive
parameters a and α is defined by the probability density function (pdf)

f(x) = α

a

(x

a

)α−1
I(0,a)(x) .

In the order statistics scheme defined by (1) with m + 1 = n and U = Vn: n we have
that U

d= pow(1, n). Observe also that if X1, . . . , Xn are iid rvs with pow(1, α) distribution,
and (Z1, . . . , Zn) and (X1, . . . , Xn) are iid, then (1) can be extended to

Xk: n
d= Xk: mZm+1: n ,

which follows from (1) by the representation Xk: n
d= U

1/α
k: n . If m+1 = n then the contracting

variable Zn: n
d= pow(1, nα).

In this paper we are interested in the following version of (2)

Xk: n
d= Xk: n−1Z , (3)

where Z
d= pow(1, α) is independent of the Xj . If X1

d= pow(a, α/n) for an arbitrary fixed
a > 0 then (3) holds. We also consider

Xk: n
d= Xk+1: nZ . (4)

If X1
d= pow(a, α/k) then (4) holds. Converses of both results are treated in Section 2.
Section 3 is devoted to a related problem connected with the equation

Xk: n−1Z1
d= Xk+1: nZ2 , (5)

where Zi

d= pow(1, αi), i = 1, 2, are independent of the Xj . Again it follows that if α1/n =
α2/k = α, say, and X1

d= pow(a, α), for an arbitrary a > 0 then (5) holds true.
It is well known that if X1, . . . , Xn are iid exponential rvs, then Xk+1: n − Xk: n

d= W,

where W has an exponential distribution, for any k = 1, . . . , n−1. However Rossberg (1972)
gives an example showing this property alone for a single value k does not characterize the
parent distribution as exponential. The characterization holds true under some additional
technical and rather unfriendly conditions; see e.g. Riedel & Rossberg (1994) or Rossberg,
Riedel & Ramachandran (1997). It appears that our results on power distributions lead to
characterizing the exponential law by equidistribution of Xk+1: n and Xk: n + W, where W

is an independent exponential rv — which looks rather unexpected in view of Rossberg’s
counter-example. For a recent discussion of related characterizations via equidistribution
conditions for order statistics consult Gather, Kamps & Schweitzer (1998).

The approach we develop in this paper is applicable to characterizations of the logistic
distribution based on exponential or Laplace random shifts of order statistics; see e.g. George
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& Mudholkar (1981) or George & Rousseau (1987). It appears that most of rather technical
conditions used in these papers can be avoided; details are given by Markiewicz (2002).

If Z
d= pow(1, α) then W = − log(Z)

d= exp(α). Since − log is a decreasing func-
tion the following analogues of (3), (4) and (5) can be immediately formulated. Assume
that W

d= exp(α) is independent of the rvs Y1, . . . , Yn which are iid. If Y1
d= exp(α/n) then

Yk+1: n
d= Yk: n−1 +W. If Y1

d= exp(α/(n−k)) then Yk+1: n
d= Yk: n +W. Let W1

d= exp(nα)
and W2

d= exp((n − k)α) and W1,W2 be independent of Y1, . . . , Yn . If Y1
d= exp(α) then

Yk: n−1 + W1
d= Yk: n + W2 . The converse statements follow directly from our discussion of

the power contraction scheme in Section 2.
We denote by {Xk: n, k = 1, . . . , n} order statistics from the iid rvs X1, . . . , Xn with

cdf F (f denotes the pdf if it exists). Similarly, Fk: n (fk: n) denotes the cdf (pdf if it exists)
of respective order statistics, k = 1, . . . , n.

The recurrence relations connecting cdfs and pdfs of order statistics gathered below,
which are known (see e.g. David & Shu, 1978; David, 1981 p .25), are used in the proofs of
main results in Sections 2 and 3.

For any k = 1, . . . , n − 1 and any n = 2, 3, . . .

(i) Fk: n − Fk: n−1 =
(

n − 1
k − 1

)
Fk(1 − F)n−k , (6)

and if the pdf exists it has the form

n(Fk: n − Fk: n−1)f = Ffk: n . (7)

(ii) Also, Fk: n − Fk+1: n =
(

n

k

)
Fk(1 − F)n−k , (8)

and if the pdf exists it has the form

k(Fk: n − Fk+1: n)f = Ffk: n . (9)

(iii) If the pdf exists then
n(1 − F)fk: n−1 = (n − k)fk: n , (10)

k(1 − F)fk+1: n = (n − k)Ffk: n . (11)

2. One-sided contractions

This section gives two characterizations of the power distribution. Both are based on
properties of switching order statistics by one-sided contraction, while the contracting rv has
a power distribution in the interval [0, 1]. Such results, while giving a new insight into the
structure of the order statistics distribution, also complement characterizations within other
random contraction schemes considered in the literature, where random contraction is applied
to length-biased distributions and convolutions.

Theorem 1. Let U
d= pow(1, α) for some α > 0 be independent of X1, . . . , Xn , which are

positive iid rvs. If
Xk: n

d= Xk: n−1U (12)

for an arbitrary but fixed k ∈ {1, . . . , n − 1} then a > 0 exists such that X1
d= pow(a, α/n).
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Proof. By (12), for any x > 0,

Fk: n(x) =
∫ 1

0
Fk: n−1(x/u)αu

α−1 du .

Denote a = sup{x > 0: F(x) < 1} ≤ ∞. Then (12) implies inf{x > 0: F(x) > 0} = 0.
Substituting t = x/u in the above integral we obtain

Fk: n(x) = α

∫ x/a

0
uα−1 du + α

∫ 1

x/a

Fk: n−1(x/u)u
α−1 du

= (x/a)α + αxα

∫ a

x

Fk: n−1(t)t
−α−1 dt ,

where it is understood that (x/a)α = 0 in the case a = ∞. Observe that the last expression is
differentiable in x. Hence it follows that Fk: n is also differentiable. Consequently the density
f of X1 and the densities of all order statistics exist. Upon differentiation we get

fk: n(x) = αxα−1

aα
+ α2xα−1

∫ a

x

Fk: n−1(t)t
−α−1 dt − αx−1Fk: n−1(x) .

Substituting for the integral from the previous equation we arrive at

xfk: n(x) = α
(
Fk: n(x) − Fk: n−1(x)

)
, (13)

holding for any x ∈ (0, a). By (6) for any x ∈ (0, a), the difference Fk: n(x) − Fk: n−1(x) is
non-zero, since inf{x > 0: F(x) > 0} = 0. Consequently the density f is always positive in
(0, a) and (13) via (7) leads to

F ′(x)
F(x)

= α

nx
,

whence F(x) = Kxα/n for any x ∈ (0, a), which yields a < ∞ and K = a−α/n.

Remark 1. For U in the above result we can take Un: n, where U1, . . . , Un is a random
sample from the uniform (or, more generally, pow(1, α) ) distribution. Then (12) implies that
X1 is uniform on (0, a) (or, more generally, pow(a, α)).

By the duality between the power and exponential distribution mentioned in Section 1
we have the following consequence of Theorem 1.

Corollary 1. Let W
d= exp(α) for some α > 0 be independent of Y1, . . . , Yn , which are iid

rvs. If Yk+1: n
d= Yk: n−1 + W for an arbitrary and fixed k ∈ {1, . . . , n − 1} then there exists

γ ∈ R such that Y1 + γ
d= exp(α/n).

Now we are ready to consider the condition dual to (12).

Theorem 2. Let U
d= pow(1, α) for some α > 0 be independent of X1, . . . , Xn , which are

positive, iid rvs. If
Xk: n

d= Xk+1: nU (14)

for an arbitrary but fixed k ∈ {1, . . . , n − 1} then a > 0 exists such that X1
d= pow(a, α/k).
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Proof. As in the proof of Theorem 1 denote a = sup{x > 0: F(x) < 1} ≤ ∞ and observe
that inf{x > 0: F(x) > 0} = 0. By (14) we arrive at

Fk: n(x) =
∫ 1

0
Fk+1: n

(x

u

)
αuα−1 du =

(x

a

)α + αxα

∫ a

x

Fk+1: n(t)t
−α−1 dt

for any x ∈ (0, a). Again the form of the above equation implies existence of densities. Then

xfk: n(x) = α
(
Fk: n(x) − Fk+1: n(x)

) (
x ∈ (0, a)

)
. (15)

By (8), Fk: n(x) − Fk+1: n and, consequently, fk: n(x) are non-zero, and thus f(x) is also
non-zero on (0, a). Thus by (9) we get from (15) for any x ∈ (0, a)

F ′(x)
F(x)

= α

kx
,

leading to F(x) = Kxα/k in (0, a), implying a < ∞ and K = a−α/k and the hypothesis.

Remark 2. In Theorem 2, taking Uk: k for U as a special case where U1, . . . , Uk is a random
sample from the U(0, 1) (or pow(1, α)) distribution, results in the U(0, a) (or pow(a, α))

distribution for X1 .

As for Theorem 1, an exponential analogue of Theorem 2 follows directly by the stan-
dard transformation leading from exponential to power distributions.

Corollary 2. Let W
d= exp(α) for some α > 0 be independent of Y1, . . . , Yn which are iid

rvs. If Yk+1: n
d= Yk: n + W for an arbitrary but fixed k ∈ {1, . . . , n − 1} then there exists

γ ∈ R such that Y1 + γ
d= exp(α/(n − k)).

We say again that the above result looks somewhat unexpected in light of Rossberg’s
(1972) counter-example — it is known that a closely related condition, Yk+1: n − Yk: n

d= W

does not characterize the exponential law.

3. Two-sided contractions

In this section we consider equality in distribution of random power contractions of two
order statistics, i.e. we equate in distribution right-hand sides of (12) and (14) with different
contraction variables. However, here we have to restrict our considerations to absolutely con-
tinuous distributions. An exponential analogue follows along the same lines as the respective
results in the previous section.

Theorem 3. Let Ui be an rv with the power distribution pow(1, αi), i = 1, 2, and let U1 ,
U2 be independent of X1, . . . , Xn , which are positive absolutely continuous iid rvs such that
inf{x > 0: F(x) > 0} = 0. Assume that

Xk: n−1U1
d= Xk+1: nU2 (16)

for an arbitrary but fixed k ∈ {1, . . . , n − 1}. Then α1/n = α2/k = α, say, and there exists
a > 0 such that X1

d= pow(a, α).
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Proof. Denote, as earlier, a = sup{x > 0: F(x) < 1} ≤ ∞. Then (16) is equivalent to

∫ 1

0
Fk: n−1

(x

u

)
α1u

α1−1 du =
∫ 1

0
Fk+1: n

(x

u

)
α2u

α2−1 du
(
x ∈ (0, a)

)
,

and with similarity to the previous section, it follows that for any x ∈ (0, a)

(x

a

)α1 + α1x
α1

∫ a

x

Fk: n−1(t)t
−α1−1 dt =

(x

a

)α2 + α2x
α2

∫ a

x

Fk+1: n(t)t
−α2−1 dt .

Consider first the case α1 = α2 . Then the above equation implies Fk: n−1(x) = Fk+1: n(x),

for all x ∈ (0, a). But this is impossible in view of (6) and (8). So, α1 
= α2 .

Taking the derivative with respect to x we get

x−α2
(
α2Fk+1: n(x) − α1Fk: n−1(x)

) = (α2 − α1)

(
a−α2 + α2

∫ a

x

Fk+1: n(t)t
−α2−1 dt

)
.

Differentiating again we obtain, after some simple algebra,

x
(
α2fk+1: n(x) − α1fk: n−1(x)

) = α1α2

(
Fk+1: n(x) − Fk: n−1(x)

) (
x ∈ (0, a)

)
,

and by (6) and (8) the expressions on both sides of this equation are non-zero. But, by (10)
and (11), the expression on the left-hand side equals

x
n − k

1 − F(x)

(α2F(x)

k
− α1

n

)
fk: n(x) ,

so fk: n is non-zero, and hence f also is non-zero. Then using (7) and (9) we arrive at

f(x)

F(x)(1 − F(x))

(
c1 − c2F(x)

) = c1c2

x

(
x ∈ (0, a)

)
,

where c1 = α1/n and c2 = α2/k. The above equation implies c1 ≥ c2 . Also it can be
rewritten as a simple differential equation in (0, a),

c1
F ′(x)
F(x)

+ (c1 − c2)
F ′(x)

1 − F(x)
= c1c2

x
.

Hence it follows that
F(x)c1

(
1 − F(x)

)c1−c2 = Kxc1c2 (17)

for any x ∈ (0, a), where K is a non-zero real constant. This implies a < ∞. Observe now
that for x → a the left-hand side of (17) tends to zero if c1 > c2 while the right-hand side
tends to Kac1c2 > 0. Hence c1 = c2 = α, say, and (17) then has the form F(x) = K1x

α ,
x ∈ (0, a), with K1 = a−α.

Remark 3. Similarly to the results of Section 2, there is an interesting case in Theorem 3 if
we take Un: n and Uk: k for U1 and U2 , respectively, where U1, . . . , Un is a sample from
the U(0, 1) (or pow(1, α)) distribution. Then it follows that X1

d= U(0, a) (or pow(a, α)).

Finally we have the exponential version of Theorem 3.
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Corollary 3. Let Wi

d= exp(αi), i = 1, 2, and let W1 , W2 be independent of Y1, . . . , Yn ,
which are absolutely continuous iid rvs with sup{x: F(x) < 1} = ∞. Assume that

Yk: n−1 + W1
d= Yk: n + W2

for an arbitrary but fixed k ∈ {1, . . . , n − 1}. Then α1/n = α2/(n − k) = α, say, and there
exists γ ∈ R such that Y1 + γ

d= exp(α).
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