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Viewing the Matsumoto–Yor property as a bivariate property with respect to the simple tree with two

vertices and one edge, we extend it to a p-variate property with respect to any tree with p vertices.

The converse of the Matsumoto–Yor property, which characterizes the product of a gamma and a

generalized inverse Gaussian distribution, is extended to characterize the product of a gamma and

p � 1 generalized inverse Gaussian distributions. A striking feature of this characterization is that we

need the independence of the components of random vectors corresponding only to the leaves of the

tree. We illustrate our results with two particular trees: the two-link chain and the three-branch ‘daisy’.
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1. Introduction

The gamma ª( p, a) and the generalized inverse Gaussian GIG(q, b, c) distributions are

respectively defined by the densities

f (x) / x p�1e�ax I (0,1)(x)

and

g(y) / yq�1e�by�c= y I (0,1)(y),

where p, a, b, c are positive numbers and q is a real. While studying properties of

exponential Brownian motion, Matsumoto and Yor (2001) showed that if two random

variables X and Y are independent and follow the GIG(�q, a, b) and ª(q, a) distributions

respectively, then the two variables U and V defined as

U ¼ 1

X þ Y
and V ¼ 1

X
� 1

X þ Y
(1:1)

are also independent and follow the GIG(�q, b, a) and ª(q, b) distributions, respectively.

They actually originally proved this for a ¼ b only, but it was noticed in Letac and

Wesołowski (2000) that the property holds also for a 6¼ b. Matsumoto and Yor (2003)

interpreted this extension through properties of functionals of exponential Brownian motion.

Letac and Wesołowski (2000) proved the converse, that is, if X and Y are independent

and U and V are also independent then (X , Y ) � GIG(�q, a, b) � ª(q, a). Regression
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versions of this characterization were given in Seshadri and Wesołowski (2001) and

Wesołowski (2002).

Both the direct Matsumoto–Yor (MY) property and its converse were proved for the

matrix variate case in Letac and Wesołowski (2000) and Wesołowski (2002) for matrix

variates X , Y , U and V having the same dimensions, and in Massam and Wesołowski

(2003) for matrix variates having different dimensions. In the latter paper the MY property

for matrix variates was obtained by identifying the joint distribution of (X , Y ) with the

conditional distribution of (K�1
1 , K2 � K21 K�1

1 K12) given K12 ¼ k12, where (K1, K12, K2)

is a block partitioning of a Wishart random matrix K. Since the inverse of a generalized

inverse Gaussian (GIG) random variable is also GIG there is no reason to work with

X ¼ K�1
1 rather than X ¼ K1. So, if we identify the joint distribution of (X , Y ) with the

conditional distribution of (K1, K2 � K21 K�1
1 K12) given K12 ¼ k12, the MY property can be

expressed as follows. Let the two independent random variables X and Y follow the

GIG(q, a, b) and ª(q, b) distributions respectively. Then the two variables U and V, defined

by

U ¼ X � 1

Y þ 1=X
and V ¼ Y þ 1

X
(1:2)

are also independent and follow the ª(q, a) and GIG(q, b, a) distributions, respectively. The

form of (1.2) might not be as appealing as that of (1.1). However, the variables X , Y , U , V

as given above are the ‘right’ variables and the natural object to work with is the Wishart

random matrix K, more precisely its conditional distribution given the off-diagonal elements.

Indeed, with this new identification of the distribution of (X , Y ) the connection between

K1, K2, X , Y , U and V can be represented by mappings defined graphically as follows. Let

G be the simple tree with two vertices f1, 2g and the edge (1, 2). Let k12 2 R be given. To

each vertex i we assign a variable ki, i ¼ 1, 2, with

(k1, k2) 2 ~MM(G) ¼ f(k1, k2) : k1 . 0, k1 k2 . k2
12g:

We now choose vertex 1 as the root of the tree G and attach to the tree thus directed the

mapping ł1 : ~MM(G) 7! (0, 1)2 defined by

ł1(k1, k2) ¼ k1, k2 �
k2

12

k1

 !
:

Similarly, when vertex 2 is the root of the tree we attach the mapping ł2 : ~MM(G) 7! (0, 1)2

defined by

ł2(k1, k2) ¼ k1 �
k2

12

k2

, k2

 !
,

so that the transformation of the pair (X , Y ) into (U , V ) is defined by means of the two

relations

(x, y) ¼ ł1(k1, k2) and (u, v) ¼ ł2(k1, k2):

We will now formulate the MY property in a new way which allows for a natural
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multivariate generalization. It is not clear what such a generalization would be, had we

started from the classical formulation (1.1) or even from (1.2).

We first define the W c
G(k12, a, b, q) distribution on ~MM(G) as the distribution with density

f (k1, k2) / (k1 k2 � k2
12)q�1e�ak1�bk2 ,

where a, b and q are positive. This distribution can be viewed as the conditional distribution

of (K1, K2) given K12 ¼ k12, when K is a Wishart matrix. (This is why we use the upper

index c in the symbol W c
G.) It has already been considered, for instance in Letac and Massam

(2001) while proving the characterization of the quasi-Wishart distribution using the classical

MY property. Having defined the W c
G distribution, we can state the MY property as

follows. Let (K1, K2) be a random vector following the W c
G(k12, a, b, q) distribution. Then

(X , Y ) ¼ ł1(K1, K2) � GIG(q, a, b) � ª(q, b) and (U , V ) ¼ ł2(K1, K2) � ª(q, a) �
GIG(q, b, a).

Similarly, the characterization obtained in Letac and Wesołowski (2000) can be restated

as follows. If both (X , Y ) ¼ ł1(K1, K2) and (U , V ) ¼ ł2(K1, K2) have positive non-

degenerate independent components then (K1, K2) � W c
G(k12, a, b, q) for some positive

a, b and q.

In this paper the process by which we created the dual pairs (x, y) and (u, v), as

described above, will be extended to any tree G with p > 2 vertices. We will build p

vectors in R p
þ by transforming (k1, . . . , k p) through mappings łr, r ¼ 1, . . . , p. These

mappings are in one-to-one correspondence with the p directed trees created from G by

moving the single root r through all possible vertices. We will also define a p-variate

version of the W c
G distribution. With these tools we will obtain a p-variate version of the

MY property and its converse. In the next section we establish some preliminary results that

we shall need to prove our main results. The main results are in Sections 3 and 4. In

Section 3 we define the general W c
G distribution, prove the p-variate MY property and

illustrate it with two examples corresponding to the two basic trees; that is, the tree with

three vertices in a line and the tree with four vertices and three leaves forming a ‘daisy’. In

Section 4 we give the converse of the MY property, that is, the characterization of the

product of p � 1 GIG distributions and one gamma distribution. We illustrate the converse

with the same two examples.

2. Preliminaries

Let G ¼ (V , E) be a tree, where V ¼ f1, . . . , pg is the set of vertices and the set of edges

E is a set of unordered pairs (i, j) such that the distinct vertices i and j are linked in G.

Let L � V denote the set of leaves of G. For a given leaf m 2 L we write m1 for its only

neighbour. From an undirected tree G we can create a directed tree by choosing a single

root. In this paper directed trees will have one root only, which we usually denote by r. For

a vertex i in a directed tree G, we say that j is a child of i if there is a directed edge from

i to j. Each vertex i has at most one child, which we denote c(i). If i is a root, then c(i) is

empty. For a vertex i in a directed tree G, we say that j is a parent of i if there is a
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directed edge from j to i. The vertex i may have several parents. The set of parents of i is

denoted p(i). If i is a leaf then p(i) ¼ ˘.

Let Vþ
p be the cone of p 3 p positive definite symmetric matrices. We define

M(G, KG) ¼ fk ¼ (k1, . . . , k p) 2 R p : k ¼ [kij] 2 Vþ
p , kii ¼ ki, kij 2 KG, i 6¼ jg, (2:1)

where KG ¼ fkij 6¼ 0, (i, j) 2 E, kij ¼ 0, (i, j) =2 Eg is a given set of off-diagonal entries for

the matrix k ¼ [kij].

For a given leaf m 2 L, let G�m be the graph induced from G by the subset Vnfmg, i.e.

G�m ¼ (V �m, E�m), where V�m ¼ Vnfmg and E�m ¼ Enf(m1, m)g. (Henceforth, as in

the previous sentence, the superindex �m is, of course, never to be read as a power.)

Finally, let KG�m be the set of off-diagonal elements obtained from KG by discarding

k m1 m 6¼ 0 and kim ¼ 0, i 2 Vnfm1, mg.

Lemma 2.1. For k ¼ (k1, . . . , k p) 2 M(G, KG) and m 2 L, define the ( p � 1)-dimensional

vector k�m with components

k�m
i ¼ ki, i 2 V �mnfm1g, k�m

m1
¼ k m1

�
k2

m1 m

k m

: (2:2)

This vector k�m is in M(G�m, KG�m ). Furthermore, for any k�m 2 M(G�m, KG�m ) and any

k m . 0, the vector

k�m
1 , . . . , k�m

m1�1, k�m
m1

þ
k2

m1 m

k m

, k m

 !
2 M(G, KG):

Proof. Without loss of generality we can assume that p ¼ m and p � 1 ¼ m1. We observe

that the determinant of the matrix k is such that

jkj ¼

k1 � . . . � � 0

� k2 . . . � � 0

. . . . . . . . . . . . . . . . . .
� � . . . k m1�1 � 0

� � . . . � k m1
k m1,m

0 0 . . . 0 k m,m1
k m

������������

������������
¼ k m

k1 � . . . � �
� k2 . . . � �
. . . . . . . . . . . . . . .

� � . . . k m1�1 �

� � . . . � k m1
�

k2
m1,m

k m

���������������

���������������
,

(2:3)

where the second matrix in the equation above, denoted k�m, is of dimension

( p � 1) 3 ( p � 1). Since jkj . 0 and k m . 0, the vector

k1, . . . , k m1�1, k m1
�

k2
m1,m

k m

 !
2 M(G�m, KG�m ): (2:4)

Conversely, given the vector k�m ¼ (k�m
1 , . . . , k�m

m1
) 2 M(G�m, KG�m ) and k m . 0, let us

show that
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(k1, . . . , k m) ¼ k�m
1 , . . . , k�m

m1
þ

k2
m1 m

k m

, k m

 !
2 M(G, KG):

To do so it is sufficient to show that all principal minors of the matrix k are positive. Clearly

this is so for the first m1 � 1. The m1th is the determinant of the matrix which has all its

entries equal to the respective entries of k�m except for the (m1, m1)th entry which is

(k�m)m1 m1
þ k2

m1 m=k m. Since k�m is positive definite and k2
m1 m=k m . 0, the m1th principal

minor is positive. From (2.3) it is clear that the mth principal minor is also positive. h

For any r 2 V, we direct the tree G by choosing r as the single root. For the tree thus

directed we define the mapping łr : M(G, KG) 7! R p
þ by

łr(k1, . . . , k p) ¼ (k1,(r), . . . , k p,(r)), (2:5)

where, starting with the leaves and moving towards the root along the directed paths,

ki,(r) ¼
ki if i is a leaf ,

ki �
X
j2 p(i)

k2
ij

k j,(r)

otherwise:

8><
>: (2:6)

We write ł(G) ¼ fłr, r 2 Vg.

Lemma 2.2. For any j 2 V �m,

k�m
j,(r) ¼ k j,(r) and k�m

j,(m1) ¼ k j,(m), r 2 Lnfmg: (2:7)

Proof. Observe that for any j on the path linking m and r 2 Lnfmg, j 6¼ m, the quantity

k j,(r) depends on k m only through k m1
� k2

m1 m=k m, and that for j not on this path k j,(r) does

not depend on k m. This proves the first equality. The second equality follows immediately

from the fact that, for j 6¼ m, we have k j,(m) ¼ k j,(m1). h

Lemma 2.3. For any r 2 V the mapping łr : M(G, KG) 7! R p
þ defined by (2.5) and (2.6) is

a bijection and its Jacobian is equal to one.

Proof. From (2.6) it is clear that łr is into. To prove that it is onto, we proceed by induction

on the size p of the graph. We use our induction assumption on the graph G�m, where m is a

leaf. Without loss of generality we can assume that p ¼ m and p � 1 ¼ m1. Then the only

thing to show is that if the m1 3 m1 submatrix of k as in (2.3), is positive definite, then k is

also positive definite. This follows from an argument parallel to that in the proof of Lemma

2.1. Given the triangular form of (2.6), the Jacobian is clearly equal to one. h

Lemma 2.4. Given any root r 2 V, we have

jkj ¼
Y
i2V

ki,(r): (2:8)
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Proof. We will proceed by induction on the size p of the tree G. The statement is obvious

for p ¼ 2 (this reduces to k1(k2 � k2
21=k1) ¼ (k1 � k2

12=k2)k2). Let us now assume that (2.8)

is true for any tree G p�1 of size of p � 1, for any set KG p�1
of off-diagonal elements and for

any k 2 M(G p�1, KG p�1
). Choose an arbitrary root r 2 V and a leaf m 6¼ r, which is always

possible since a tree has at least two leaves. As usual, we write m1 ¼ c(m). Without loss of

generality, we can assume that p ¼ m and p � 1 ¼ m1.

Let ł�m
r be an element of ł(G�m). Note that for i 2 Vnfmg, the ith component (ł�m

r )i of

ł�m
r k1, . . . , k m1�1, k m1

�
k2

m1,m

k m

 !

is equal to the ith component (łr)i of łr(k1, . . . , k m). Since by the induction assumption

jk�mj ¼
Y

i2Vnfmg
(ł�m

r )i

and since k m ¼ (łr)m, it follows from (2.3) that

jkj ¼ k mjk�mj ¼ (łr)m

Y
i2Vnfmg

(ł�m
r )i ¼

Y
i2V

(łr)i,

which shows (2.8). h

Lemma 2.5. For any root r 2 V and for any a ¼ (a1, . . . , a p) 2 R p, we have

(a, k) ¼
X
i2V

ai k i ¼ ar k r,(r) þ
X

i2V ,i 6¼r

ai k i,(r) þ
k2

ic(i)ac(i)

ki,(r)

 !
¼
X
i2V

ai k i,(r) þ
k2

ic(i)ac(i)

ki,(r)

 !
:

(2:9)

Proof. The first equality holds by definition of the inner product in R p. From the definition

of ki,(r) it is clear that

(a, k) ¼
X
i2V

ai k i ¼
X
i2V

ai k i,(r) þ
X
j2 p(i)

k2
ij

k j,(r)

0
@

1
A:

Since each i 2 Vnfrg has only one child, by changing the order of summation in the

equation above we see that the second equality in (2.9) holds. The third equality follows

immediately if we recall that the root does not have a child. h

3. The multivariate Matsumoto–Yor property

Let G ¼ (V , E) be a tree with p vertices. For KG as defined in the previous section, for

given positive q and a ¼ (a1, a p) 2 I
p
þ, we define the p-variate W c

G(q, KG, a) distribution

as the distribution with density
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f (k) / jkjq�1e�(a,k), k 2 M(G, KG), (3:1)

and zero otherwise. Since M(G, KG) is a subset of R p
þ it is clear that f is a density. As in

the two-dimensional case the upper index c in the symbol W c
G refers to the fact that the

distribution with density (3.1) is the conditional distribution of the diagonal elements of the

G-Wishart random matrix (see Atay-Kayis and Massam 2004) given its off-diagonal

elements.

With this distribution and the variables X r ¼ łr(K), r 2 V , we now give a multivariate

version of the MY property.

Theorem 3.1. Let G ¼ (V , E) be a tree of size p, where p is any integer greater than or

equal to 2. Let K ¼ (K1, . . . , K p) be a random vector following the W c
G(q, KG, a)

distribution with a ¼ (a1, . . . , a p) 2 R p
þ and positive q. Define X r ¼ łr(K), r 2 V. Then for

each r 2 V the components of X r ¼ (X1,(r), . . . , X p,(r)) are independent. Moreover,

X r,(r) � ª(q, ar), and X i,(r) � GIG(q, ai, k2
ic(i)ac(i)), i 2 Vnfrg: (3:2)

Proof. Using (2.8) and (2.9), we can split the density (3.1) of K in p different ways

corresponding to the p different possible choices of r 2 V :

f (k) / k
q�1
r,(r)e

�a r k r,( r)

Y
i2V ,i 6¼r

k
q�1
i,(r) exp � ai ki,(r) þ

k2
ic(i)ac(i)

ki,(r)

 !( )
:

This is clearly the product of the gamma and the p � 1 GIG densities as stated in the

theorem. Since by Lemma 2.3 the mappings łr are bijections with Jacobian equal to one, the

result follows. h

We illustrate this theorem with two examples.

Example 3.1. Let G be the tree with V ¼ f1, 2, 3g, E ¼ f(1, 2), (2, 3)g and KG ¼ fk12 ¼ 1,

k23 ¼ 1g. The mappings łr, r 2 V , are therefore

ł1(k1, k2, k3) ¼ k1 �
1

k2 � 1=k3

, k2 �
1

k3

, k3

� �
,

ł2(k1, k2, k3) ¼ k1, k2 �
1

k1

� 1

k3

, k3

� �
,

ł3(k1, k2, k3) ¼ k1, k2 �
1

k1

, k3 �
1

k2 � 1=k1

� �
:
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The decompositions in (2.8) and (2.9) are in this case

jkj ¼ k1 k2 k3 � k1 � k3 ¼ k1 �
1

k2 � 1=k3

� �
k2 �

1

k3

� �
k3

¼ k1 k2 �
1

k1

� 1

k3

� �
k3 ¼ k1 k2 �

1

k1

� �
k3 �

1

k2 � 1=k1

� �

and

a1 k1 þ a2 k2 þ a3 k3 ¼ a1 k1 �
1

k2 � 1=k3

� �
þ a2 k2 �

1

k3

� �
þ a1

1

k2 � 1=k3

þ a3 k3 þ a2

1

k3

¼ a1 k1 þ a2

1

k1

þ a2 k2 �
1

k1

� 1

k3

� �
þ a3 k3 þ a2

1

k3

¼ a1 k1 þ a2

1

k1

þ a2 k2 �
1

k1

� �
þ a3

1

k2 � 1=k1

þ a3 k3 �
1

k2 � 1=k1

� �
:

If K ¼ (K1, K2, K3) follows the W c
G(q, KG, a) distribution with a ¼ (a1, a2, a3) then

(X1, X 2, X 3) ¼ ł3(K) � GIG(q, a1, a2) � GIG(q, a2, a3) � ª(q, a3),

(Y1, Y2, Y3) ¼ ł1(K) � ª(q, a1) � GIG(q, a2, a1) � GIG(q, a3, a2),

(Z1, Z2, Z3) ¼ ł2(K) � GIG(q, a1, a2) � ª(q, a2) � GIG(q, a3, a2):

We wish to emphasize here the analogy between the classical bivariate MY property

given in (1.2) and our present three-dimensional result. We rewrite (1.2) with X ¼ X 1,

Y ¼ X2, U ¼ Y2 and V ¼ Y1. If (X1, X2) � GIG(q, a1, a2) � ª(q, a2) then

(Y1, Y2) ¼ X1 �
1

X 2 þ 1=X 1

, X 2 þ
1

X 1

� �
� ª(q, a1) � GIG(q, a2, a1):

The three-dimensional MY property given above can be rephrased as follows. If

(X1, X 2, X 3) � GIG(q, a1, a2) � GIG(q, a2, a3) � ª(q, a3) then

(Y1, Y2, Y3) ¼ X 1 �
1

X 2 þ 1=X1 � 1=(X 3 þ 1=X 2)
, X 2 þ

1

X1

� 1

X3 þ 1=X2

, X3 þ
1

X 2

� �

� ª(q, a1) � GIG(q, a2, a1) � GIG(q, a3, a2)

and
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(Z1, Z2, Z3) ¼ X 1, X2 �
1

X 3 þ 1=X 2

, X 3 þ
1

X 2

� �

� GIG(q, a1, a2) � ª(q, a2) � GIG(q, a3, a2):

Example 3.2. Let G be the tree with V ¼ f1, 2, 3, 4g, E ¼ f(1, 2), (1, 3), (1, 4)g and

KG ¼ fk12 ¼ 1, k13 ¼ 1, k14 ¼ 1g. The mappings łr, r 2 V , are therefore

ł1(k1, k2, k3, k4) ¼ k1 �
1

k2

� 1

k3

� 1

k4

, k2, k3, k4

� �
,

ł2(k1, k2, k3, k4) ¼ k1 �
1

k3

� 1

k4

, k2 �
1

k1 � 1=k3 � 1=k4

, k3, k4

� �
,

ł3(k1, k2, k3, k4) ¼ k1 �
1

k2

� 1

k4

, k2, k3 �
1

k1 � 1=k2 � 1=k4

, k4

� �
,

ł4(k1, k2, k3, k4) ¼ k1 �
1

k2

� 1

k3

, k2, k3, k4 �
1

k1 � 1=k2 � 1=k3

� �
:

The decompositions in (2.8) and (2.9) are in this case

jkj ¼ k1 k2 k3 k4 � k2 k3 � k3 k4 � k2 k4 ¼ k1 �
1

k2

� 1

k3

� 1

k4

� �
k2 k3 k4

¼ k1 �
1

k3

� 1

k4

� �
k2 �

1

k1 � 1=k3 � 1=k4

� �
k3 k4

¼ k1 �
1

k2

� 1

k4

� �
k2 k3 �

1

k1 � 1=k2 � 1=k4

� �
k4

¼ k1 �
1

k2

� 1

k3

� �
k2 k3 k4 �

1

k1 � 1=k2 � 1=k3

� �

and
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a1 k1 þ a2 k2 þ a3 k3 þ a4 k4

¼ a1 k1 �
1

k2

� 1

k3

� 1

k4

� �
þ a2 k2 þ a1

1

k2

þ a3 k3 þ a1

1

k3

þ a4 k4 þ a1

1

k4

¼ a1 k1 �
1

k3

� 1

k4

� �
þ a2

1

k1 � 1=k3 � 1=k4

þ a2 k2 �
1

k1 � 1=k3 � 1=k4

� �

þ a3 k3 þ a1

1

k3

þ a4 k4 þ a1

1

k4

¼ a1 k1 �
1

k2

� 1

k4

� �
þ a3

1

k1 � 1=k2 � 1=k4

þ a2 k2 þ a1

1

k2

þ a3 k3 �
1

k1 � 1=k2 � 1=k4

� �

þ a4 k4 þ a1

1

k4

¼ a1 k1 �
1

k2

� 1

k3

� �
þ a4

1

k1 � 1=k2 � 1=k3

þ a2 k2 þ a1

1

k2

þ a3 k3 þ a1

1

k3

þ a4 k4 �
1

k1 � 1=k2 � 1=k3

� �
:

If K ¼ (K1, K2, K3, K4) follows the W c
G(q, KG, a) distribution with a ¼ (a1, a2, a3, a4)

then

(X1, X 2, X3, X4) ¼ ł3(K) � GIG(q, a1, a3) � GIG(q, a2, a1) � ª(q, a3) � GIG(q, a4, a1),

(Y1, Y2, Y3, Y4) ¼ ł1(K) � ª(q, a1) � GIG(q, a2, a1) � GIG(q, a3, a1) � GIG(q, a4, a1),

(Z1, Z2, Z3, Z4) ¼ ł2(K) � GIG(q, a1, a2) � ª(q, a2) � GIG(q, a3, a1) � GIG(q, a4, a1),

(T1, T2, T3, T4) ¼ ł4(K) � GIG(q, a1, a4) � GIG(q, a2, a1) � GIG(a3, a1) � ª(q, a4):

4. Characterization

In this section we will show that if the components of X r, r 2 L, are independent, then the

distribution of K is W c
G, which implies that, for all r 2 V , łr(K) follows a distribution

which is a product of gamma and GIGs as given in (3.2).

Theorem 4.1. Let G ¼ (V , E) be a tree of size p. Let L � V be its set of leaves. Let the set

KG be given and let K be a random vector taking its values in M(G, KG). Let X r ¼ łr(K),

r 2 V. If, for any root r 2 L, the components of X r ¼ (X1,(r), . . . , X p,(r)) are mutually

independent then there exist q . 0 and a ¼ (a1, . . . , a p) with positive components such that

K � W c
G(q, KG, a), which implies that (3.2) holds.
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Proof. Our proof is in three steps. In step 1 we will prove that there exist q . 0 such that, for

any root r 2 L, there exists ar . 0 such that X r,(r) � ª(q, ar). In step 2 using two arbitrarily

chosen leaves m, n 2 L, we will identify the densities of the random variables X j,( l) for

l ¼ m, n and j 2 V as gammas and GIGs with parameters q� l, a� l
j , j 2 V , l ¼ m, n. In step

3 we will show that the two sets of parameters, for l ¼ m and l ¼ n, are identical.

Step 1. In this step our method of proof is an extension of the method used in Letac and

Wesołowski (2000, Theorem 4.1).

For any positive integer Æ and any root r 2 L, let us define AÆ
r as follows

AÆ
r ¼ E

" Y
i2V

X i,(r)

!Æ

exp

(X
i2V

(si X i,(r) þ k2
ic(i)sc(i) X�1

i,(r))

)#
¼
Y
i2V

AÆ
i,(r), (4:1)

where

AÆ
i,(r) ¼ E[(X i,(r))

Æesi X i,( r)þk2
ic(i) sc(i) X�1

i,( r) ]:

By (2.8) and (2.9) it is clear that, for all r 2 L,

AÆ
r ¼ E

"
jKjÆ exp

 X
i2V

si Ki

!#
, (4:2)

where K is the matrix with random diagonal elements Kii ¼ Ki, i 2 V , and constant off-

diagonal elements Kij ¼ kij 2 KG, i 6¼ j.

Let us consider two roots m, n 2 L. There is a unique path P � V in G linking m and n.

Consider i, j 2 P, which are adjacent. Let us now differentiate the equality

log(AÆ
m) ¼

X
l2V

log E XÆ
l,(m)e

s l X l,( m)þk2
lc( l) sc( l) X�1

l,( m)

� �h i

¼ log(AÆ
n) ¼

X
l2V

log E XÆ
l,(n)e

s l X l,( n)þk2
lc( l) sc( l) X�1

l,( n)

� �h i
,

which is a consequence of (4.2), with respect to si and s j. Since the pair (si, s j) appears only

in one summand in each one of the expressions above, the differentiation leads to

1 �
AÆ�1

i,(m) AÆþ1
i,(m)

(AÆ
i,(m))

2
¼ 1 �

AÆ�1
j,(n) A

Æþ1
j,(n)

(AÆ
j,(n))

2
,

where we have assumed, without loss of generality, that j ¼ c(i) in the tree with root m and

thus i ¼ c( j) in the tree with root n. For Æ ¼ 1 this yields

A0
i,(m) A2

i,(m)

(A1
i,(m))

2
¼

A0
j,(n) A2

j,(n)

(A1
j,(n))

2
: (4:3)
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Using AÆ
m ¼ AÆ

n for Æ ¼ 0, 1, 2, we immediately obtain

Y
l2V

A0
l,(m) A2

l,(m)

(A1
l,(m))

2
¼
Y
l2V

A0
l,(n) A2

l,(n)

(A1
l,(n))

2
: (4:4)

We have

AÆ
l,(m) ¼ AÆ

l,(n) for l 62 P: (4:5)

For any i 2 P different from m on the directed path from n to m, there exists j ¼ c(i) 6¼ n

such that (4.3) holds. Similarly, for any j 2 P different from n on the directed path from m to

n, there exists i ¼ c( j) 6¼ n such that (4.3) holds. Using the identities (4.5) and the equalities

(4.3), we can simplify (4.4) to obtain

A0
m,(m) A2

m,(m)

(A1
m,(m))

2
¼

A0
n,(n) A2

n,(n)

(A1
n,(n))

2
:

By the principle of separation of variables the two sides of the equation above are constant.

Through a standard argument (see Letac and Wesołowski 2000), it follows that there exist

q, am and an positive such that X m,(m) � ª(q, am) and X n,(n) � ª(q, an). Since m and n were

chosen arbitrarily in L it follows that there exists q . 0 such that, for all r 2 L, there exist

ar . 0 such that X r,(r) � ª(q, ar).

Step 2. Since by (2.9), for any s ¼ (s1, . . . , s p) 2 R p,

(s, K) ¼ sr X r,(r) þ
X

j2V , j 6¼r

s j X j,(r)

with X j,(r), j 2 V , j 6¼ r, and X r,(r) independent, and since, as we have just proved, X r,(r) has

a density, it follows that K and thus all X j,(r), j 2 V , r 2 L, have densities.

We will now prove that the distributions of X j,(r), j 2 Vnfrg, r 2 L, are GIGs. This will

be done by induction on the size p of the graph G. Since we now know that the densities

of X j,(r) exist, we can rewrite the independence assumption as

Y
i2V

f i,(r)(ki,(r)) ¼ h(k) (4:6)

almost surely with respect to the Lebesgue measure for k ¼ (k1, . . . , k p) 2 M(G, KG),

where ki,(r) is the ith component of the vector łr(k), i 2 V , and where f i,(r) is the density of

X i,(r), i 2 V , r 2 L, and h is a function independent of r.

Let us fix m 2 L. Let m1 2 V be the only vertex adjacent to m in the tree G. Then (4.6)

can be written as
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Y
l2V

f l,(r)(k l,(r))

¼ f m,(m)

 
k m �

k2
mm1

k m1
�

X
j2 p(m1)

(k2
m1 j=k j,(m))

!
f m1,(m) k m1

�
X

j2 p(m1)

k2
m1 j

k j,(m)

0
@

1
A (4:7)

3
Y

i2Vnfm,m1g
f i,(m)(ki,(m))

for any r 2 Lnfmg.
We now fix k m and consider the ( p � 1)-dimensional vector k�m as defined in (2.2).

According to Lemma 2.1, this vector belongs to M(G�m, KG�m ). Consequently, since

k m ¼ k m,(r) for any r 2 Lnfmg, by Lemma 2.2 equation (4.7) can be rewritten as

f m,(r)(k m)
Y

l2V �m

f l,(r)(k�m
l,(r)) (4:8)

¼ f m,(m)

 
k m �

k2
mm1

k�m
m1

þ k2
m1 m=k m �

X
j2 p(m1)

(k2
m1 j=k�m

j,(m1))

!
f m1,(m) k�m

m1
þ

k2
m1 m

k m

�
X

j2 p(m1)

k2
m1 j

k�m
j,(m1)

0
@

1
A

3
Y

i2Vnfm,m1g
f i,(m)(k�m

i,(m1)):

Since, when m is not the root, the set p(m1)nfmg in G is identical to the set p(m1) in G�m,

it follows that

k�m
m1,(m1) ¼ k�m

m1
�

X
j2 p(m1)

k2
m1 j

k�m
j,(m1)

:

For r ¼ n 2 Lnfmg, (4.8) thus becomesY
i2V �m

f i,(n)(k�m
i,(n)) ¼ g(k�m

m1,(m1))
Y

i2V �mnfm1g
f i,(m)(k�m

i,(m1)), (4:9)

where

g(x) ¼ f m,(m) k m �
k2

m,m1

x þ k2
m1,m=k m

 !
f m1,(m) x þ

k2
m1,m

k m

 !�
f m,(n)(k m):

We can always choose k m in such a way that the above equation holds almost surely with

respect to the Lebesgue measure for k�m 2 M(G�m, K�m
G ). Since all the functions on the

left-hand side of (4.9), apart from g, are densities of X j,(n) ¼ X�m
j,(n) it follows that g is also

a density, in fact it is the density of X�m
m1,(m1). Since L�m � (Lnfmg) [ fm1g, it follows from

(4.9) and our induction assumption that there exist q�m . 0 and a�m
i . 0, i 2 V �m, such

that
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X�m
n,(n) ¼ X n,(n) � ª(q�m, a�m

n ),

X�m
j,(n) ¼ X j,(n) � GIG(q�m, a�m

j , k2
jc( j)a

�m
c( j)), j 2 V �mnfng, (4:10)

X�m
j,(m1) ¼ X j,(m) � GIG(q�m, a�m

j , k2
jc( j)a

�m
c( j)), j 2 V�mnfm1g: (4:11)

Note that c( j) in (4.11) denotes the child of j in the tree with root m, while in (4.10) c( j)

denotes the child of j in the tree with root n.

Swapping the roles of m and n, we have that there exist q�n . 0 and a�n
j . 0, j 2 V �n,

such that

X�n
m,(m) ¼ X m,(m) � ª(q�n, a�n

m ),

X�n
j,(m) ¼ X j,(m) � GIG(q�n, a�n

j , k2
jc( j)a

�n
c( j)), j 2 V �nnfmg, (4:12)

X�n
j,(n1) ¼ X j,(n) � GIG(q�n, a�n

j , k2
jc( j)a

�n
c( j)), j 2 V �nnfn1g, (4:13)

where, as before, c( j) in (4.13) refers to the tree with root n and in (4.12) to the tree with

root m. Thus we know the distributions of X j,( l) for any j 2 V, l ¼ m, n.

Step 3. We know from step 1 that X m,(m) and X n,(n) are respectively ª(q, am) and

ª(q, an), from which it follows immediately that q�m ¼ q�n ¼ q, a�m
n ¼ an and a�n

m ¼ am.

Then the independence equation (4.6) for r ¼ m, n, can be written as

Y
j2V

k j,(m)

 !q�1

exp
X

j2Vnfng
a�n

j k j,(m) þ a�n
c( j)

k2
jc( j)

k j,(m)

 !
þ a�m

n k n,(m) þ a�m
c(n)

k2
nc(n)

k n,(m)

2
4

3
5

¼
Y
j2V

k j,(n)

 !q�1

exp
X

j2Vnfmg
a�m

j k j,(n) þ a�m
c( j)

k2
jc( j)

k j,(n)

 !
þ a�n

m k m,(n) þ a�n
c(m)

k2
mc(m)

k m,(n)

2
4

3
5,

where on the left-hand side c( j) denotes the child of j in the tree with root m and on the

right it denotes the child of j in the tree with root n. Define

a�n
n ¼ a�m

n and a�m
m ¼ a�n

m :

Then, by (2.8) and (2.9), the equality above yields

X
j2V

a�m
j k j þ (a�n

c(m) � a�m
c(m))

k2
mc(m)

k m

¼
X
j2V

a�n
j k j þ (a�m

c(n) � a�n
c(n))

k2
nc(n)

k n

: (4:14)

Let k m ! 0. If a�n
c(m) and a�m

c(m) are different then the left-hand side of (4.14) tends to 1
while the right-hand side remains finite, which is impossible and therefore they are equal.

Similarly, a�m
c(n) ¼ a�n

c(n). Therefore (4.14) becomesX
j2V

a�n
j k j ¼

X
j2V

a�m
j k j:
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It is now obvious that a�m
j ¼ a�n

j ¼ a j, j 2 V . This completes the proof. h

Example 4.1. Let G and KG be as in Example 3.1, so that L ¼ f1, 3g. Let K ¼ (K1,

K2, K3) be a random vector taking its values in M(G, KG). Let

X ¼ (X 1, X2, X 3) ¼ ł3(K) ¼ K1, K2 �
1

K1

, K3 �
1

K2 � 1=K1

� �
,

Y ¼ (Y1, Y2, Y3) ¼ ł1(K) ¼ K1 �
1

K2 � 1=K3

, K2 �
1

K3

, K3

� �
:

If the components of X are independent and the components of Y are independent, then there

exist q, a1, a2, a3 positive such that K � W c
G(q, KG, a1, a2, a3). Consequently, the

distributions of X , Y and Z ¼ ł2(K) are products of one gamma and two GIGs as given

in Example 3.1.

Example 4.2. Let G and KG be as in Example 3.2. So L ¼ f2, 3, 4g. Let K ¼
(K1, K2, K3, K4) be a random vector taking its values in M(G, KG). Let

X ¼ (X1, X 2, X 3, X4) ¼ ł3(K) ¼ K1 �
1

K2

� 1

K4

, K2, K3 �
1

K1 � 1=K2 � 1=K4

, K4

� �
,

Z ¼ (Z1, Z2, Z3, Z4) ¼ ł2(K) ¼ K1 �
1

K3

� 1

K4

, K2 �
1

K1 � 1=K3 � 1=K4

, K3, K4

� �

T ¼ (T1, T2, T3, T4) ¼ ł4(K) ¼ K1 �
1

K2

� 1

K3

, K2, K3, K4 �
1

K1 � 1=K2 � 1=K3

� �
:

If the components of X are independent, the components of Z are independent and the

components of T are independent, then there exist q, a1, a2, a3, a4 positive such that

K � W c
G(q, KG, a1, a2, a3, a4). Consequently, the distributions of X , Y ¼ ł1(K), Z and T

are products of one gamma and three GIGs as given in Example 3.2.
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