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Abstract

Permanents of random matrices extend the concept of U-statistics with product kernels. In

this paper, we study limiting behavior of permanents of random matrices with independent

columns of exchangeable components. Our main results provide a general framework which

unifies already existing asymptotic theory for projection matrices as well as matrices of all-iid

entries. The method of the proofs is based on a Hoeffding-type orthogonal decomposition of a

random permanent function. The decomposition allows us to relate asymptotic behavior of

permanents to that of elementary symmetric polynomials based on triangular arrays of

rowwise independent rv’s.
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1. Introduction

Denote by A ¼ ½aij � an m � n real matrix with mpn: Then a permanent of the

matrix A is defined by

Per ðAÞ ¼
X

ði1;y;imÞ: fi1;y;imgCf1;y;ng
a1 i1yam im :
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The permanent function has a long history, having been first introduced by Cauchy
in 1812 in his celebrated memoir on determinants and, almost simultaneously, by
Binet [3]. More recently several problems in statistical mechanics, quantum field
theory, and chemistry as well as enumeration problems in combinatorics and linear
algebra have been reduced to the computation of a permanent. Unfortunately, the
fastest known algorithm for computing a permanent of an n � n matrix runs, as shown
by Ryser [19], in Oðn2nÞ time. Moreover, strong evidence for the apparent complexity
of the problem was provided by Valiant [24], who showed that evaluating a permanent
is #P-complete, even when restricted to 0–1 matrix. In view of these results, the
approximation theory for a permanent function in case of a large dimension of the
matrix A has become a very active area of research over the past 20 years (for most
recent results for both random and non-random settings cf. e.g., [6,8,13,17]).

In this work we shall be concerned with the asymptotic behavior of a random

permanent function, that is we shall consider the case of a random matrix A—the
situation which often arises naturally in statistical physics or statistical mechanics
problems, when the investigated physical phenomenon is driven by some random
process, and hence stochastic in nature. The asymptotic theory of random
permanents has been also of major interest since it was shown that, as in the
deterministic case, their direct calculation can be also computationally very difficult
(cf. e.g., [7] and references therein).

The investigation of the asymptotic behavior of random permanents has been until
now mostly limited to two special settings. In the first one, which, due to its natural
connection with the theory of U-statistics of infinite order, has been also receiving the
most attention, only very special types of matrices A were considered, namely, the
so-called finite dimensional projection matrices (i.e., of independent, identically
distributed columns and a finite number of independent blocks of identical rows). In
this setting, the limiting theory for permanents was considered for instance in
[20,25,4,11,21]. In the second, perhaps somewhat more natural setting introduced in
the early works of Girko (see e.g., [9, Chapter 2 and 7] and references therein), the
limiting theory for random permanents has been concerned simply with the matrices
of all independent identically distributed (iid) entries. As pointed out in [17], the iid
setting is of interest to statisticians since then the permanent function is an example
of a U-statistic of permanent design, an object belonging to a certain sub-class of
incomplete U-statistics (cf. e.g., [12]) which enjoys some optimal properties in the
sense of the statistical design theory. The results for the matrices of iid entries have
been also obtained for the special case of Bernoulli 0–1 entries in the context of
perfect matchings problem by Janson [10], and later still under some restrictive
assumptions on the entries of A by Rempa"a [14]. More recently, by reducing the
problem of the asymptotic behavior of a permanents of an iid-entries matrix to the
one of the asymptotic behavior of the permanent of some one-dimensional
projection matrix, Rempa"a and Weso"owski [15] have obtained a general limiting
result solely under the assumptions of square integreability of the entries of A.
Although the approach taken in [15] was quite effective, it was limited to the
particular case of all independent entries and, unfortunately, could not be extended
to handle a more general setting.
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The purpose of current paper is to present a quite general and thus unifying
approach to the problem of investigating the asymptotic behavior of random
permanents for matrices of independent columns. The primary tool of our
investigation is the orthogonal decomposition device introduced elsewhere (cf.
[16]) and similar to the one known for U-statistics. Indeed, the subtle connection
between the representation of a permanent function in terms of its orthogonal
decomposition components allows us to reduce the problem of describing limiting
behavior of random permanents to that of describing a limiting behavior of certain
statistics which turn out to be closely related to linear combinations of elementary
symmetric polynomials (i.e., U-statistics based on product kernels, see next section
for a definition). The method allows us to state a general limit theorem for random
permanents of matrices of independent columns of exchangeable components with
inter-component correlation coefficient r: The result puts on the common ground
the asymptotic results of both settings described above, that is, for one-dimensional
projection matrices (since then r ¼ 1), as well as all-iid-entries matrices (since then
r ¼ 0). In both those cases our results specialize to the ones obtained earlier.

The paper is organized as follows. In the next section, we provide some
preliminary results on elementary symmetric polynomial statistics based on random
arrays. In Section 3, we briefly discuss the martingale-type orthogonal decomposi-
tion of a random permanent function of Rempa"a and Wesolowski [16]. This
decomposition, which for the case of a one-dimensional projection matrix coincides
with the well-known Hoefding decomposition for an elementary symmetric
polynomial is our main tool in obtaining the limiting results. In Section 3, we also
prove a key result on the weak convergence of the components of the permanent’s
orthogonal decomposition. The result is based on a limit theorem for elementary
symmetric polynomials statistics obtained in Section 2. Once the result of Section 3 is
established, the theorems for random permanents follow. They are the main focus of
this paper and are discussed in detail in Section 4. Some additional technical results
on weak law of large numbers for random arrays are briefly outlined in the
Appendix.

2. A limit theorem for elementary symmetric polynomials

We shall start with a preliminary result on the weak convergence of elementary
symmetric polynomials based on triangular arrays of real random variables (rv’s).
For an arbitrary triangular array fYlkg ð1pkplÞ; of rv’s let us define a
corresponding elementary symmetric polynomial statistic of order cX1 as follows:

SlðcÞ ¼
X

1pi1o?oicpl

Yl;i1yYl;ic : ð2:1Þ

The result on the weak convergence of SlðcÞ is a consequence of the following
version of Waring formula which has been reported e.g., in [1]. For the sake of
readers’ convenience, however, we give here its elementary derivation.
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Lemma 1. Let Slð0Þ ¼ 1; then for any 1pcpl we have

cSlðcÞ ¼
Xc
1

d¼0

ð
1Þd
Slðc 
 d 
 1Þ

Xl

k¼1

Y dþ1
lk

 !
: ð2:2Þ

Proof. Let us introduce an auxiliary statistic Qðc; dÞ defined as

Qðc; dÞ

¼
X

1pk1o?okcpl

Y d
l;k1

yYl;kc
þ

X
1pk1o?okcpl

Yl;k1
Y d

l;k2
yYl;kc

þ ?þ
X

1pk1o?okcpl

Yl;k1
yY d

l;kc

¼
Xl

k¼1

Y d
lk

X
kiak

Yl;k1
yYl;kc
1

 !
;

where in the last expression the inner summation is taken over all possible
choices of c 
 1 distinct indices k1;y; kc
1 out of the set of indices f1; 2;y; lg\fkg:
From the definition of Qðc; dÞ it follows that for any positive integers 1pcpl

and d

Qðc; 1Þ ¼ cSlðcÞ and Qð1; dÞ ¼
Xl

k¼1

Y d
lk; ð2:3Þ

as well as that

Qðc; dÞ þ Qðc 
 1; d þ 1Þ ¼ Slðc 
 1Þ
Xl

k¼1

Y d
lk

 !
: ð2:4Þ

Now, solving for Qðc; 1Þ with the help of (2.3) and (2.4) we arrive at (2.2). &

With the above lemma, as well as the result of Proposition A.1 of the Appendix,
we are in position to prove our main result of this section.

Theorem 1. Let fYlkg be a triangular array of square integrable, rowwise independent,

real rv’s with EYlk ¼ 0 and liml-N Varð
Pl

k¼1 YlkÞ=l ¼ s240 satisfying additionally

the Lindeberg condition

(LC) 8e40
1
l

Pl
k¼1 EY 2

lkIfjYlkj4s
ffiffi
l

p
eg-0 as l-N:

Then, for any integer cX1;

Slð1Þ
l1=2

;
Slð2Þ
l2=2

;y;
SlðcÞ
lc=2

� �T

!d sH1ðNÞ
1!

;
s2H2ðNÞ

2!
;y;

scHcðNÞ
c!

� �T

; ð2:5Þ

where Hc is a Hermite polynomial of order c with the leading coefficient equal to one

and N is a standard normal rv.
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Proof. Let us assume (without loosing generality) that s2 ¼ 1: We shall prove the
above result by induction with respect to c: For c ¼ 1 the result is obvious since we
have assumed the required condition (LC) and since H1ðNÞ ¼ N: Hence

Slð1Þ
l1=2

!d H1ðNÞ: ð2:6Þ

Let us assume thus that (2.5) holds true for all integers i ¼ 1;y; c 
 1 and define a
ðc 
 1Þ-dimensional vector

YðlÞ
c ¼

P
Y 2

lk

l2=2
;

P
Y 3

lk

l3=2
;y;

P
Y c

lk

lc=2

� �T

:

First, let us note that by taking Xlk ¼ Y 2
lk we obtain the rowwise independent

random array satisfying conditions (A1) and (A2) of Proposition A.1 of the

Appendix with b ¼ 1 and cl ¼
ffiffi
l

p
: Thus,

YðlÞ
c !P ½1; 0;y; 0�T as l-N: ð2:7Þ

But (2.6) along with (2.7) imply that (cf. e.g., [2, Chapter 1]) the vector

Slð1Þ=
ffiffi
l

p
;YðlÞ

c

� 	T
converges weakly to the corresponding limit. On the other hand,

by (2.2) we have that for i ¼ 1;y; c 
 1;

l
i=2SlðiÞ ¼ Gi
Slð1Þ
l1=2

;YðlÞ
c


 �
;

where the continuous function Gi (known sometimes as a Waring function) depends
only upon i but not upon l: This and the induction hypothesis imply

Slð1Þ
l1=2

^
Slðc 
 1Þ

lðc
1Þ=2

SlðcÞ
lc=2

2
66666666664

3
77777777775
¼

G1
Sð1Þ
l1=2

;YðlÞ
c


 �
^

Gc
1
Sð1Þ
l1=2

;YðlÞ
c


 �

Gc

Slð1Þ
l1=2

;YðlÞ
c


 �

2
66666666664

3
77777777775
!D

H1ðNÞ=1!
^

Hc
1ðNÞ=ðc 
 1Þ!

Bc

2
6666664

3
7777775

ð2:8Þ

for some rv Bc: Hence, in order to arrive at (2.5), we need only to identify Bc: To this
end, using formula (2.2) we write

SlðcÞ
lc=2

¼ 1

c

Slðc 
 1Þ
lðc
1Þ=2

Slð1Þ
l1=2


 Slðc 
 2Þ
lðc
2Þ=2

Pl
k¼1 Y 2

lk

l

" #

þ Ac

c
:
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By (2.7) and (2.8), the first part of the above right-hand side converges to

Hc
1ðNÞN
 ðc 
 1ÞHc
2ðNÞ
c!

¼ HcðNÞ
c !

;

in view of the well-known recurrence relation for Hermite polynomials. For the
reminder term Ac; we have

Ac ¼
1

c

Xc
1

d¼2

ð
1Þd Slðc 
 1
 dÞ
lðc
1
dÞ=2

Xl

k¼1

Y
2ðdþ1Þ=2
lk

lðdþ1Þ=2

 !
!P 0:

The above implies that Bc ¼ HcðNÞ=c !; which entails (2.5). &

Remark 1. The results above implies in particular that

SðcÞ
lc=2

!d HcðNÞ
c!

;

which is a result derived in [23] and a special case of the quite general limit theorem
for U-statistics based on arrays of rv’s of Rubin and Vitale [18].

3. Orthogonal decomposition of a permanent function

Having established the results on elementary symmetric polynomials in the last
section, let us turn to the problem of weak convergence of random permanents.
Throughout the paper we shall assume that X ¼ ½Xij � is an m � n ðmpnÞ real random
matrix of square integrable components and such that its columns are build from the
first m terms of iid sequences ðXi;1ÞiX1; ðXi;2ÞiX1;y; ðXi;nÞiX1 of exchangeable rv’s.

Clearly, under these assumptions all entries of the matrix X are identically
distributed although not necessarily independent. For i; k ¼ 1;y;m and j ¼
1;y; n we denote m ¼ EXij; s2 ¼ Var Xij and r ¼ CorrðXkj ;XijÞ: Observe that,

necessarily, we must have rX0: In what follows, we shall always assume that ma0
and we shall also denote by g ¼ s=m the coefficient of variation.

In the sequel the major tool of our investigation will be the orthogonal
decomposition result of Rempa"a and Weso"owski [16] which states that

PerX
n
m

� �
m!mm

¼ 1þ
Xm

c¼1

m

c


 �
U ðm;nÞ

c ; ð3:1Þ

where

U ðm;nÞ
c ¼

n

c


 �
1
m

c


 �
1

c!
1
X

1pi1o?oicpm

X
1pj1o?ojcpn

Per ½X̃iujv �u¼1;y;c
v¼1;y;c

for X̃ij ¼ Xij=m
 1; i ¼ 1;y;m; j ¼ 1;y; n: Moreover, under our assumptions on

the entries of X the rv’s U
ðm;nÞ
c for c ¼ 1; 2;y;m are orthogonal, i.e.,

CovðU ðm;nÞ
c1

;U ðm;nÞ
c2

Þ ¼ 0 for c1ac2 ð3:2Þ
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with the variance

Var U ðm;nÞ
c ¼

n

c


 �
1
m

c


 �
1

g2c
Xc

r¼0

m 
 r

c 
 r


 �
rc
rð1
 rÞr

r!
: ð3:3Þ

Let us note that when r ¼ 1 then (3.1) becomes the well-known Hoeffding
decomposition of a normalized elementary symmetric polynomial (2.1), i.e., the U-
statistic based on the product kernel. It is well know that in this special case the rv’s

U
ðm;nÞ
c are backward martingales. In fact, it is not difficult to see that this property

carries over to 0pro1 and thus throughout the paper we often refer to (3.1) as the
‘‘martingale decomposition’’.

For any c and suitably large m and n define

WcðnÞ ¼
n

c


 �
m

c


 �
c!U ðm;nÞ

c ¼
X

1pi1o?oicpm

X
1pj1o?ojcpn

Per ½X̃iujv �u¼1;y;c
v¼1;y;c

:

The following results describes the asymptotic behavior of WcðnÞ which is the key to
investigating the asymptotic behavior of decomposition (3.1).

Proposition 1. Let c be an arbitrary positive integer. Assume that m ¼ mn-N as

n-N:
If r ¼ 0 then

W1ðnÞ
ð
ffiffiffiffiffiffiffi
nm

p
Þ;y;

WcðnÞ
ð
ffiffiffiffiffiffiffi
nm

p
Þc

� �T

!d g
1

H1ðNÞ;y;
gc

c!
HcðNÞ

� �T

:

If r40 then

W1ðnÞffiffiffi
n

p
m

;y;
WcðnÞ
ð
ffiffiffi
n

p
mÞc

� �T

!d gr1=2

1!
H1ðNÞ;y;

gcrc=2

c!
HcðNÞ

� �T

:

Proof. Consider first the case r ¼ 0: Define for an arbitrary fixed positive integer c

VcðnÞ ¼ n
c=2
X

1pj1o?ojcpn

Yn; j1yYn; jc ;

where

Yn; j ¼
1ffiffiffiffi
m

p
Xm

i¼1

X̃ij ;

j ¼ 1; 2;y; n: Here the first subscript indicates the dependence on n through m ¼
mðnÞ: Observe that VcðnÞ is just an elementary symmetric polynomial in variables

which are column sums of the matrix *X ¼ *XðnÞ normalized by
ffiffiffiffi
m

p
: Thus, EðY 2

n;1Þ ¼
g2 and we may use the limit theorem for elementary symmetric polynomials for
rowwise iid double arrays of square integrable rv’s of Section 2 to conclude that

½V1ðnÞ;y;VcðnÞ�T !d g
1!

H1ðNÞ;y;
gc

c!
HcðNÞ

� �T
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as long as the following version of the Lindeberg condition holds:

EðY 2
n;1IðjYn;1j4

ffiffiffi
n

p
eÞÞ-0

for any e40 as n-N: To prove that the condition is satisfied observe first that

EðY 2
n;1IðjYn;1j4

ffiffiffi
n

p
eÞÞp sup

kX1

EðY 2
k;1IðY 2

k;14ne2ÞÞ:

Consequently, it suffices to show that the sequence of rv’s ðY 2
k;1ÞkX1 is uniformly

integrable. To this end, let us observe the following:
(i) By a central limit theorem for exchangeable sequences—see e.g., [22,

Chapter 2]—it follows that Y 2
k;1 converges in distribution to EðX̃2

1;1jFÞN2; where

F is the s-algebra of permutable events for the exchangeable sequence ðX̃i;1ÞiX1; and

N is a standard normal rv independent of F; and

(ii) EðEðX̃2
1;1jFÞN2Þ ¼ EðX̃2

1;1Þ ¼ g2 which, on the other hand equals EðY 2
k;1Þ for

any kX1:

Finally, we conclude that the sequence fY 2
k;1gkX1 is uniformly integrable since it

converges in distribution and the corresponding sequence of expectations also
converges (all being equal) to the suitable limit.

Observe that for any k ¼ 1;y; c;

WkðnÞ
ð
ffiffiffiffiffiffiffi
nm

p
Þk

¼ VkðnÞ þ
RkðnÞ
ð
ffiffiffiffiffiffiffi
mn

p
Þk
;

where RkðnÞ is a sum of different products X̃i1;j1yX̃ik ;jk such that 1pj1o?jkpn;

ði1;y; ikÞAf1;y;mgk and at least one of i1;y; ik in the sequence ði1;y; ikÞ repeats.
Using the fact that RkðnÞ is a sum of orthogonal products (observe that the

covariance of any two of such different products equals zero since the columns are
independent and elements in each column have zero correlation) and that the

variance of any of such single product equals g2k while the number of products in

RkðnÞ equals n
k

� �
mk 
 m

k

� �
k!

� �
we obtain

Var
RkðnÞ
ð
ffiffiffiffiffiffiffi
nm

p
Þk

 !
¼ g2

n
k

� �
mk 
 m

k

� �
k!

� �
nkmk

p
g2

k!

mk 
 m
k

� �
k!

mk
¼ Oð1=mÞ-0

as n-N (since the numerator is of the order mk
1 while the denominator is of the

order mk).
Consequently, the first assertation of the proposition follows.
Now, let us consider the case r40: Similarly as above, let us define

VcðnÞ ¼ n
c=2
X

1pj1o?ojcpn

Yn; j1yYn; jc ;

where

Yn; j ¼
1

m

Xm

i¼1

X̃ij ;

j ¼ 1; 2;y; n:
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Similar to the first case, we will show that the sequence fY 2
k;1gkX1 is uniformly

integrable. To this end we observe first that by a version of law of large numbers for
exchangeable sequences (see, e.g., [5, Chapter 7]) it follows that as k-N;

Y 2
k;1 !

d
E2ðX̃1;1jFÞ;

where F is the s-algebra of permutable events. Further, by the de Finetti theorem
we have

EðE2ðX̃1;1jFÞÞ ¼EðEðX̃1;1jFÞEðX̃2;1jFÞÞ ¼ EðEðX̃1;2X̃2;1jFÞÞ

¼EðX̃1;1X̃1;2Þ ¼ rg2:

Also,

EðY 2
k;1Þ ¼

1

m2
½mg2 þ mðm 
 1Þrg2�-rg2; k-N

since m ¼ mðkÞ-N Thus, the sequence fY 2
k;1g is uniformly integrable and the

Lindeberg condition of Theorem 1 is satisfied. This allows us to conclude that

½V1ðnÞ;y;VcðnÞ�T !d
ð ffiffiffi

r
p

gÞ1

1!
H1ðNÞ;y;

ð ffiffiffi
r

p
gÞc

c!
HcðNÞ

" #T

:

Similar to the first case, for any k ¼ 1;y; c; we have

WkðnÞ
mkð

ffiffiffi
n

p
Þk

¼ VkðnÞ þ
RkðnÞ

mkð
ffiffiffi
n

p
Þk
:

However, this time some of the elements of RkðnÞ are correlated—this is true for
pairs of products originating from exactly the same columns; if at least one column
in the pair of products is different then their correlation is zero. Consequently,

Var
RkðnÞ

mk
ffiffiffi
n

p k

 !
¼ 1

m2knk

X
1pj1o?jkpn

VarðRj1;y; jkðnÞ ¼
n
k

� �
m2knk

VarðR1;y;kðnÞ;

where Rj1;y; jkðnÞ denotes sum of respective products arising from the columns

j1;y; jk: Since

jCovðX̃i1; j1yX̃ik ; jk ; X̃l1; j1yX̃lk ; jkÞjpg2k

for any choices of rows ði1;y; ikÞ and ðl1;y; lkÞ; we conclude that

VarðR1;y;kðnÞo mk 

m

k


 �
k!


 �2

g2k:

Hence, it follows that

Var
RkðnÞ

mkð
ffiffiffi
n

p
Þk

 !
o

n
k

� �
mk 
 m

k

� �
k!

� �2
g2k

m2knk
o
g2

k!

mk 
 m
k

� �
k!

� �2
m2k

-0
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as n-N: Consequently, RkðnÞn
c=2m
c !P 0 and the second assertation of the

proposition follows. &

4. Main results

The application of the martingale decomposition (3.1) along with Proposition 1
from the previous section allow us to finally formulate our main results for the
asymptotic behavior of random permanents. We state them in Theorems 2 and 3
below, covering the cases r ¼ 0 and r40; respectively. Our first result extends that
of Rempala and Wesolowski [15].

Theorem 2. Assume that r ¼ 0:
If m=n-l40 as n-N then

1
n
m

� �
m!mm

PerðXÞ!d exp
ffiffiffi
l

p
gN
 lg2=2

� �
: ð4:1Þ

If m=n-l ¼ 0 and m ¼ mn-N as n-N thenffiffiffiffi
n

m

r
PerðXÞ
n
m

� �
m!mm


 1

 !
!d gN: ð4:2Þ

Proof. Consider first the case l40: For any n and any N such that Nomn denote

SN;n ¼ 1þ
XN

c¼1

m

c


 �
U ðm;nÞ

c ¼ 1þ
XN

c¼1

WcðnÞ
n
c

� �
c!

¼ 1þ
XN

c¼1

ð
ffiffiffiffiffiffiffi
nm

p
Þc

n
c

� �
c!

WcðnÞ
ð
ffiffiffiffiffiffiffi
nm

p
Þc:

Observe that by the first assertation of Proposition 1 we have that

SN;n !
d

GN ¼
XN

c¼0

ðlg2Þc=2

c!
HcðNÞ;

as n-N; since for any c ¼ 1; 2;y;

ð
ffiffiffiffiffiffiffi
nm

p
Þc

n
c

� �
c!

-
ffiffiffi
l

p
:

Let us define also

TN;n ¼
Xmn

c¼Nþ1

m

c


 �
U ðm;nÞ

c

and observe that since U
ðm;nÞ
c are orthogonal then

VarðTN;nÞ ¼
Xmn

c¼Nþ1

m
c

� �
n
c

� �
c!
g2cp

XN
c¼Nþ1

g2c

c!
¼ aN

ARTICLE IN PRESS
G.A. Rempa!a, J. Weso!owski / Journal of Multivariate Analysis 91 (2004) 224–239 233



and aN-0 as N-N: Consequently, for Zn ¼ Per ðXÞ
n
mð Þm!mm

we have for any e40

PðZnpxÞ ¼PðSN;n þ TN;npxÞpPðSN;npx þ e; jTN;njpeÞ þ PðjTN;nj4eÞ

pPðSN;npx þ eÞ þ PðjTN;nj4eÞ:
On the other hand,

PðZnpxÞXPðSN;npx 
 e; jTN;njpeÞXPðSN;npx 
 eÞ 
 PðjTN;nj4eÞ:
Thus, for any xAR and any e40 we obtain the double inequality

PðSN;npx 
 eÞ 
 PðjTN;nj4eÞpPðZnpxÞpPðSN;npx þ eÞ þ PðjTN;nj4eÞ:
Hence, by the Tchebyshev inequality it follows that

PðSN;npx 
 eÞ 
 aN=e2pPðZnpxÞpPðSN;npx þ eÞ þ aN=e2:

Taking the limit as n-N we obtain

PðGNpx 
 eÞp lim
n-N

PðZnpxÞpPðGNpx þ eÞ:

But now GN converges almost surely to GN ¼ exp
ffiffiffi
l

p
gN
 lg2=2

� �
as N-N since

by the well-known property of Hermite polynomials (see, e.g., [23])

exp
ffiffiffi
l

p
gN
 lg2=2

� �
¼
XN
c¼0

ðlg2Þc=2

c!
HcðNÞ:

Hence, for any e40

PðGNpx 
 eÞp lim
n-N

PðZnpxÞpPðGNpx þ eÞ:

Consequently, Zn converges in distribution to GN:
For the proof in the case l ¼ 0; let us writeffiffiffiffi

n

m

r
PerðXÞ
n
m

� �
m!mm


 1

 !
¼

ffiffiffiffi
n

m

r
m

1


 �
U

ðm;nÞ
1 þ Rm;n ¼ W1ðnÞffiffiffiffiffiffiffi

nm
p þ Rm;n;

where

Rm;n ¼
ffiffiffiffi
n

m

r Xm

c¼2

m

c


 �
U ðm;nÞ

c :

Observe that Rm;n converges in probability to zero, since by (2) it follows that

Var Rm;n ¼ n

m

Xm

c¼2

m
c

� �
g2

n
c

� �
c!
p

m

n
expðg2Þ-0:

Hence, the result follows by Proposition 1 for m ¼ mn-N: &

Our second result treats the case r40 and, in particular, for r ¼ 1 specializes to
the theorems in [25,11].

Theorem 3. Assume that r40:
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If m2=n-l40 as n-N then

1
n
m

� �
m!mm

PerðXÞ!d exp
ffiffiffiffiffiffi
lr

p
gN
 lrg2=2

� �
: ð4:3Þ

If m2=n-l ¼ 0 and m ¼ mn-N as n-N thenffiffiffi
n

p

m

Per ðXÞ
n
m

� �
m!mm


 1

 !
!d ffiffiffi

r
p

gN: ð4:4Þ

Proof. As before, let us first consider the case l40: Then for any n and any N such
that Nomn denote

SN;n ¼ 1þ
XN

c¼1

m

c


 �
U ðm;nÞ

c ¼ 1þ
XN

c¼1

ð
ffiffiffi
n

p
mÞc

n
c

� �
c!

WcðnÞ
ð
ffiffiffi
n

p
mÞc:

Observe that by the second assertation of Proposition 1 we have that

SN;n !
d

GN ¼
XN

c¼0

ðlrg2Þc=2

c!
HcðNÞ;

as n-N; since for any c ¼ 1; 2;y;

ð
ffiffiffi
n

p
mÞc

n
c

� �
c!

-
ffiffiffi
l

p
:

Let us define also

TN;n ¼
Xmn

c¼Nþ1

m

c


 �
U ðm;nÞ

c :

Since U
ðm;nÞ
c are orthogonal, then by (2)

VarðTN;nÞ ¼
Xmn

c¼Nþ1

m
c

� �2
n
c

� �
c!
g2cep2le

XN
c¼Nþ1

g2c

c!
¼ aN

and aN-0 as N-N:
The final part of the proof follows now exactly along the lines of the proof of

Theorem 2 with g2 replaced by rg2:
For the case l ¼ 0; let us writeffiffiffi

n
p

m

PerðXÞ
n
m

� �
m!mm


 1

 !
¼

ffiffiffi
n

p

m

m

1


 �
U

ðm;nÞ
1 þ Rm;n ¼ W1ðnÞffiffiffi

n
p

m
þ Rm;n;

where

Rm;n ¼
ffiffiffiffi
n

m

r Xm

c¼2

m

c


 �
U ðm;nÞ

c :
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Observe that Rm;n converges in probability to zero, since by (2) it follows that

Var Rm;n ¼ n

m2

Xm

c¼2

m
c

� �
g2c

n
c

� � Xc

r¼0

1

r!

m 
 r

c 
 r


 �
ð1
 rÞrrc
r

p expð1Þ n

m2

Xm

c¼2

m2

n


 �c g2c

c!

p expð1Þ m2

n

Xm

c¼2

m2

n


 �c
2 g2c

c!
pexpð1Þ m2

n

Xm

c¼2

g2c

c!
p

m2

n
expð1þ g2Þ

if only n is large enough to have m2=no1: Hence, Var Rm;n-0 as m2=n-0 and

consequently Rm;n converges in probability to zero. Thus, the final result follows by the

second part of Proposition 1 if m ¼ mn-N and by Remark 1 if m is a constant. &

Remark 2. For c ¼ 1; the conclusions of Proposition 1 remain true also for a
constant m: It follows from two observations (see the proof above): (i) the Lindeberg
condition is then trivially satisfied; (ii) the remainder term Rn vanishes, i.e. properly
normalized W1ðnÞ simply equals V1ðnÞ: Consequently, the reasoning similar to the
above one above gives thenffiffiffi

n
p

m

PerX
n
m

� �
m!mm


 1

 !
!d tN;

where t2 ¼ ðrþ ð1
 rÞ=mÞg2 in the case r40: For r ¼ 0 we haveffiffiffiffi
n

m

r
PerX
n
m

� �
m!mm


 1

 !
!d gN:
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Appendix. WLLN for triangular arrays

Let us denote by fYlkg for lX1; k ¼ 1;y; l; an arbitrary triangular array of real
rv’s and consider the following conditions:

(A1) supl
1
l

Pl
k¼1 EjYlkj ¼ boN:

(A2) 1
l

Pl
k¼1 EjYlkjIfjYlkj4clg-0 as n-N; where the sequence cl satisfies cl-N

and cl=l-0:
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Proposition A.1. Let fYlkg for lX1; k ¼ 1;y; l; be a triangular array of rowwise

independent, integrable rv’s. If conditions (A1) and (A2) are satisfied then

(i) 1
l

Pl
k¼1 ðYlk 
 EYlkÞ!

P
0;

(ii) 1
la

Pl
k¼1jYlkja !

P
0 for any a41:

Proof. For the proof of (i), let us consider the expression

1

l

Xl

k¼1

ðYlk 
 EYlkÞ ¼
1

l

Xl

k¼1

ðYlkIfjYlkjpclg 
 EYlkIfjYlkjpclgÞ

þ 1

l

Xl

k¼1

ðYlkIfjYlkj4clg 
 EYlkIfjYlkj4clgÞ

¼ ðIÞ þ ðIIÞ: ðA:1Þ

But in view of (A1) and (A2), expressions (I) and (II) both converge to zero in
probability. Indeed, apropos (I), for any e40;

P
1

l

Xl

k¼1

ðYlkIfjYlkjpclg 
 EYlkIfjYlkjpclgÞ
�����

�����4e

 !

p
1

e2l2
Xl

k¼1

EY 2
lkIfjYlkjpclgp

cl

e2l
b-0

as l-N in view of (A1) and cl=l-0:
Similarly, apropos (II), for any e40 we have

P
1

l

Xl

k¼1

ðYlkIfjYlkj4clg 
 EYlkIfjYlkj4clgÞ
�����

�����4e

 !

p
2

le

Xl

k¼1

EjYlkjIfjYlkj4clg-0

as l-N; in view of assumption (A2).
For the proof of (ii), let us consider a decomposition similar to (A.1)

1

la

Xl

k¼1

jYlkja

¼ 1

la

Xl

k¼1

jYlkjaIfjYlkjpclg þ
1

la

Xl

k¼1

jYlkjaIfjYlkj4clg ¼ ðIIIÞ þ ðIVÞ:

Let e40 be arbitrary. Expression (III) converges to zero in probability in view of the
inequality

P
1

la

Xl

k¼1

jYlkjaIfjYlkjpclg
�����

�����4e

 !
p

cl

l

� �a
1 b
e
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and expression (IV) converges to zero in probability in view of

P
1

la

Xl

k¼1

jYlkjaIfjYlkj4clg
�����

�����4e

 !
pP

Xl

k¼1

jYlkj
l

IfjYlkj4clg4e1=a
 !

p
1

e1=al

Xl

k¼1

EjYlkjIfjYlkj4clg

and condition (A2). &
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