
 

 

PLEASE SCROLL DOWN FOR ARTICLE

This article was downloaded by: [Universidad de Sevilla]
On: 19 March 2009
Access details: Access Details: [subscription number 908134069]
Publisher Taylor & Francis
Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House,
37-41 Mortimer Street, London W1T 3JH, UK

Communications in Statistics - Theory and Methods
Publication details, including instructions for authors and subscription information:
http://www.informaworld.com/smpp/title~content=t713597238

Martingales Defined by Reciprocals of Sums and Related Characterizations
Vanamamalai Seshadri a; Jacek Wesoowski b

a Department of Mathematics, McGill University, Montreal, Canada b Wydzia Matematyki i Nauk
Informacyjnych, Politechnika Warszawska, Warsaw, Poland

Online Publication Date: 01 January 2004

To cite this Article Seshadri, Vanamamalai and Wesoowski, Jacek(2004)'Martingales Defined by Reciprocals of Sums and Related
Characterizations',Communications in Statistics - Theory and Methods,33:12,2993 — 3007

To link to this Article: DOI: 10.1081/STA-200038871

URL: http://dx.doi.org/10.1081/STA-200038871

Full terms and conditions of use: http://www.informaworld.com/terms-and-conditions-of-access.pdf

This article may be used for research, teaching and private study purposes. Any substantial or
systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or
distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents
will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses
should be independently verified with primary sources. The publisher shall not be liable for any loss,
actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly
or indirectly in connection with or arising out of the use of this material.

http://www.informaworld.com/smpp/title~content=t713597238
http://dx.doi.org/10.1081/STA-200038871
http://www.informaworld.com/terms-and-conditions-of-access.pdf


Martingales Defined by Reciprocals of Sums and
Related Characterizations

Vanamamalai Seshadri1 and Jacek Wesołowski2,*

1Department of Mathematics, McGill University, Montreal, Canada
2Wydział Matematyki i Nauk Informacyjnych, Politechnika

Warszawska, Warsaw, Poland

ABSTRACT

We prove that linearly transformed inverses of cumulative sums form
backward martingales for gamma, inverse Gaussian, and Kendall
and Borel–Tanner sequences of independent, identically distributed

random variables. Conversely, a characterization of the family of
these four distributions by linearity of regression of inverses of
sums is obtained. The results in both directions are derived via the

technique of variance functions of natural exponential families.
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1. INTRODUCTION

Let ðXnÞn�1 be a sequence of independent identically distributed (iid)
random variables (rv’s) and let Sn ¼ X1 þ � � � þ Xn, Fn ¼ sðSn; Snþ1; . . .Þ,
n ¼ 1; 2; . . .. Consider a sequence of measurable functions ðfnÞn�1 such
that EjfnðSnÞj < 1 with the property that F ¼ ðfnðSnÞ;FnÞ is a back-
ward martingale. It is rather obvious that for fnðxÞ ¼ anx, where an is a
real number, n ¼ 1; 2; . . ., the sequence F is a backward martingale only
if EjX1j < 1 and then necessarily, an ¼ 1=n, n ¼ 1; 2; . . ., and no addi-
tional assumptions on the distribution of X1 is necessary. However, for
other sequences of functions ðfnÞn�1, only for special families of distribu-
tions F has the martingality property. For instance, if fnðxÞ ¼ anx2, then
F is a backward martingale if and only if the observations come from the
gamma distribution. The same holds true for fnðxÞ ¼ anxr , where r is a
positive number (for details see Hall and Simons, 1969). On the other
hand, taking fnðxÞ ¼ anx2 þ bnxþ gn leads to the Morris (1982) class of
six natural exponential families (nef’s) with quadratic variance functions
(normal, Poisson, binomial, negative binomial, gamma, and hyperbolic
cosine); this path can be traced back to Laha and Lukacs (1960) quadra-
tic regression characterizations. The case of fðxÞ ¼ anx3 þ bnx

2 þ gnxþ d
may be resolved using the regression characterization of Fosam and
Shanbhag (1997) which extends the Laha and Lukacs (1960) result to
cubic regressions. Then the family of 12 distributions is characterized.
This family was described earlier in Letac and Mora (1990) (abbreviated
to LM in the sequel) as the family of all nef’s with the cubic variance
function. In that paper, a full description of possible cubic variance
functions is given. Since the variance function uniquely determines the
distribution, the LM classification is a useful tool for identifying distribu-
tions which will be used later on in the present article.

Here we are interested in the case of fnðxÞ ¼ an=xþ bn. It will appear
that except for the known case of the gamma distribution (bn � 0), the
family also includes the inverse Gaussian law (an � 2), which, in view
of the Seshadri (1983) observation, was expected, and, rather surprisingly,
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ORDER                        REPRINTS

two other distributions are also included: The Kendall distribution
introduced in the theory of dams in Kendall (1957), studied also in Khan
and Jain (1978), and Jain and Khan (1979) as a kind of generalized
gamma distribution. Then it was rediscovered (and named the Kendall–
Ressel distribution) as one of the cubic variance nef’s in LM. The
Borel–Tanner distribution related to queuing theory, introduced by Borel
(1942) and Tanner (1953), and was also, studied for instance, in Jain
(1974) and identified by LM as another cubic variance nef (named there
the Abel distribution). Here we chose to refer to the distributions as:
Kendall rather than the Kendall–Ressel distribution and the Borel–
Tanner rather than the Abel distribution, i.e., different than those used
in LM, in an attempt to follow the tradition established in the statistical
literature. This family of four distributions, being a subclass of nef’s with
the cubic variance functions, was characterized by the property that the
reciprocal moments are affine functions of reciprocals of the mean in
Letac and Seshadri (1989).

The simplest formulation of the characterization problem, in which
we are also interested in here, lies in identifying all distributions for which

E
1

X

����X þ Y

� �
¼ a

X þ Y
þ b ð1:1Þ

for some real numbers a and b, where X and Y are iid positive non
degenerate rv’s. Observe that (1.1) equivalently can be written as

E
Y

X

����X þ Y

� �
¼ a� 1þ bðX þ Y Þ: ð1:2Þ

The case b ¼ 0 leads to the gamma distribution and was taken care of
in Wesołowski (1990), while for a ¼ 2, we get the inverse Gaussian
distribution according to the paper Seshadri (1983). It appears that for
all other possible choices for a and b the condition (1.1) characterizes
the Kendall or Borel–Tanner distributions. In a proof of this fact, see
Sec. 2, in which we will use some facts from the theory of the variance
functions of nef’s (for its basics see, for instance, LM). Unexpectedly,
the direct result, i.e., proving that (1.1) holds for iid rv’s with the Kendall
or Borel–Tanner distribution, appears to be somewhat more difficult that
the converse problem. This is due to difficulties with finding analytic
forms of some integrals related to the transformed Kendall density and
sums related to the Borel–Tanner probability mass function (pmf).

It may be worth mentioning that condition (1.2) with a ¼ 1 has
been recently considered in Wesołowski (2002) and earlier in Seshadri
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ORDER                        REPRINTS

and Wesołowski (2001) in the context of a so-called Matsumoto–Yor
property (see Matsumoto and Yor, 2001 or Letac and Wesołowski,
2000). It appears that for independent X and Y the property (1.2) together
with another regression condition

E
X

Y

����X þ Y

� �
¼ c

X þ Y
;

implies that the random variables X and Y have, respectively, generalized
inverse Gaussian and gamma distributions.

The characterizations based on (1.1) are treated in Sec. 2. In Sec. 3,
the results in both directions are extended to cumulative sums of iid
rv’s leading to backward martingale properties for the sequences of
observations from the four distributions considered.

2. REGRESSION CHARACTERIZATIONS

Denote by gl;p the gamma distribution defined by the density:

gl;pðdxÞ ¼
lp

GðpÞ x
p�1e�lxIð0;1ÞðdxÞ;

where l and p are positive constants. By ml;s, denote the inverse Gaussian
distribution with the density

ml;sðdxÞ ¼ e2
ffiffiffiffi
ls

p ffiffiffiffiffiffi
s
2p

r
x�3=2e�lx�s=xIð0;1ÞðdxÞ;

where l and s are positive constants. Define also the Kendall distribution
kl;y;r by the density

kl;y;rðdxÞ ¼ lylþrx
xlþrx�1e�yx

Gðlþ rxþ 1Þ Ið0;1ÞðdxÞ;

which l, y, and r are positive numbers such that y > r. Finally, define the
Borel–Tanner distribution BTp by the pmf

BTpðkÞ ¼ pðpþ kÞk�1

k!
e�ðpþkÞ; k ¼ 0; 1; . . .
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ORDER                        REPRINTS

It appears that the above class of four distributions is completely
characterized by the condition (1.1) with different possible choices for
a and b.

Theorem 2.1. Let X and Y be iid non degenerate positive rvs, such that
EðX�1Þ < 1. Then the condition (1.1) holds for some real numbers a

and b iff one of the following cases occurs:

(i) a ¼ 2, b > 0, and X � ml;s, where l > 0 and s ¼ 1
4b :

(ii) a > 2, b ¼ 0, and X � gl;p, where p ¼ a�1
a�2 > 1 and l > 0:

(iii) a > 2, b > 0, and X � kl;y;r , where l ¼ a�1
a�2 > 1 and r ¼ 2ða�1Þb

ða�2Þ2 :
(iv) 1 < a < 2, b > 0, and X ¼ cð1þ Z=pÞ, where Z � BTp, p ¼ a�1

2�a

and c ¼ 2�a
2b .

Proof. First assume that there exist probability distributions, i.e., also
rv’s X and Y , such that (1.1) holds for some constants a and b. Then,
(1.1) is equivalent to

hh00 ¼ ða� 1Þðh0Þ2 þ 2bh0h00; ð2:1Þ

where hðsÞ ¼ EðX�1 expðsXÞÞ, s < s0 � 0, which implies that it is
impossible to have a < 1 and b � 0 together. Now take derivatives of
both sides of (2.1) to get

h0h00 þ hh000 ¼ 2ða� 1Þh0h00 þ 2bðh00Þ2 þ 2bh0h000:

Eliminating h from the above equations, we get

ða� 1ÞL2L00 ¼ ð2a� 3ÞLL02 þ 2bL03;

where L ¼ h0 is the Laplace transform of X. Hence,

ða� 1Þ L00

L
� L0

L

� �2
" #

¼ ða� 2Þ L0

L

� �2

þ2b
L0

L

� �3

;

with a ¼ 1 implies that the distribution of X is degenerate. Thus, a 6¼ 1.
Consider now the nef defined by the distribution of X. Then the above
equation is equivalent to

ða� 1ÞV ðmÞ ¼ m2ða� 2þ 2bmÞ; 0 � a < m < b � 1; ð2:2Þ

Martingales Defined by Reciprocals of Sums 2997
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ORDER                        REPRINTS

where V is the variance function.

V ðmÞ ¼ a� 2

a� 1
m2 1þ 2b

a� 2
m

� �
; a < m < b: ð2:3Þ

Recall that earlier we observed that if a < 1 then b � 0 and a ¼ 1 are
impossible as well. Now by the uniqueness property of the variance func-
tion and the classification of nef’s with cubic variance functions given
in LM, it follows from (2.2) or (2.3) that a � 0, b ¼ 1 and only the
following cases are possible:

(i) a ¼ 0, a ¼ 2, b > 0 and then the rv X has an inverse Gaussian
distribution.

(ii) a ¼ 0, b ¼ 0, ða� 2Þða� 1Þ > 0 and then the rv X has a gamma
distribution.

(iii) a ¼ 0, ða� 1Þða� 2Þ > 0, bða� 2Þ > 0 and then the rv X has a
Kendall distribution.

(iv) a ¼ c > 0, 1 < a < 2, b > 0 and then the rv X has a linearly
transformed Borel–Tanner distribution (see Prop. 2.4 (v) in
LM).

Here, as emphasized in Sec. 1, due to historical reasons we use names for
the last two distributions different from those used in LM.

Now, in order to find out the exact values of the constants a and b

for each of the four distributions appearing in the formulation of the
theorem, differentiate (2.2) with respect to m. Then

ða� 1ÞV 0ðmÞ ¼ 2ða� 2Þmþ 6bm2: ð2:4Þ

Combining (2.2) and (2.4), we find that for m > 0 (observe that
2m2 þmV 0ðmÞ � 3VðmÞ > 0),

a ¼ 2m2 þmV 0ðmÞ � 3VðmÞ
m2 þmV 0ðmÞ � 3VðmÞ

and

b ¼ mV 0ðmÞ � 2VðmÞ
2m½m2 þmV 0ðmÞ � 3VðmÞ� :

Recall, following Morris (1982), that for the gamma law gl;p the
variance function has the form: V ðmÞ ¼ m2=p. Then it follows that
a ¼ 2p�1

p�1 and b ¼ 0. Observe that p > 1 since it is assumed that the first
inverse moment is finite and thus a > 2.
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ORDER                        REPRINTS

For the inverse Gaussian distribution ml;s we have V ðmÞ ¼ m3=s,
which yields a ¼ 2 and b ¼ 1=ð4sÞ.

For the Kendall distribution kl;y;r we have V ðmÞ ¼ m2

l ð1þ r
lmÞ and

since EðX�1Þ is finite, then l > 1 (see Letac and Seshadri, 1989). Thus,
a ¼ 2l�1

l�1 > 2 and b ¼ r
2lðl�1Þ.

For the random variable Z with the Borel–Tanner distribution BTp,

we have VZð~mmÞ ¼ ~mm
�
1þ ~mm

p

�
. If X ¼ cð1þ Z=pÞ, c > 0, thenm ¼ c

�
1þ ~mm

p

�
,

where m ¼ EðXÞ > c and

V ðmÞ ¼ c

p

� �2

VZð~mmðmÞÞ ¼ c

p

� �2

~mmðmÞ 1þ ~mmðmÞ
p

� �2

¼ m2

c

m

c
� 1

� �
:

Thus a ¼ 2pþ1
pþ1 and b ¼ 1

2cðpþ1Þ.
Now to complete the proof we have to show that there exist rv’s X

and Y for which (1.1) is satisfied. To this end let us define a function
v : ð0; 1=ð2bÞÞ ! ð0;1Þ by

vðxÞ ¼ ða� 2Þx2 þ 2bx3

1� 2bx
:

Observe that vðxÞ ¼P1
k¼2 ckx

k, where c2 ¼ a� 1 and ck ¼ að2bÞk�2,
k ¼ 3; 4; . . .. Consequently, for a > 1 the function v is a variance function
of some nef generated, say, by a positive measure n (See Corollary 3.3 in
LM). Hence, its cummulant function kn satisfies

k00n ¼ ða� 2Þk02n þ 2bk03n þ 2bk0nk
00
n :

Furthermore, its Laplace transform Ln satisfies

LnL
00
n ¼ ða� 1ÞL02

n þ 2bLnL
00
n :

Hence if we define a probabilistic measure Pn;y by taking
Pn;yðdxÞ ¼ eyx�knðyÞnðdxÞ for some y 2 Y and by L, we denote its Laplace
transform, then since LðsÞ ¼ Lnðsþ yÞ=LnðyÞ, it follows that the above
equation also is satisfied for L. Now define a new probabilistic measure
by taking ðx=cÞPn;yðdxÞ ¼ mðdxÞ, where c is a normalizing constant.
Then it follows that (1.1) holds for iid rv’s X and Y with the common
distribution m. &

Remark 2.1. Another possibility in approaching the problem, which we
solved above, may be based on the description of all nef’s for which the
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ORDER                        REPRINTS

expectation of reciprocal as the function of mean is affine in the
reciprocal of the mean. It appears that the set of such nef’s consists of
the same four distributions we characterized in Theorem 1 (see Theorem
3.1 in Letac and Seshadri, 1989).

Remark 2.2. Observe that the direct computation of the conditional
expectation of X�1, given X þ Y for the Kendall distribution, is rather dif-
ficult. Due to the fact that for two independent Kendall random variables
U and V with distributions kl1;y;r and kl2;y;r , the distribution of the sum
U þ V is also Kendall kl1þl2;y;r (see, for instance, Jain and Khan, 1979)
one needs to find out the value of the integral involving the conditional
densities which has the form

l
2

Z z

0

xlþrx�2ðz� xÞlþrðz�xÞ�1

z2lþrz�1

Gð2lþ rzþ 1Þ
Gðlþ rxþ 1ÞGðlþ rðz� xÞ þ 1Þ dx

¼ lGð2lþ rzþ 1Þ
2z

Z 1

0

tlþrzt�2ð1� tÞlþrzð1�tÞ�1

Gðlþ rztþ 1ÞGðlþ rzð1� tÞ þ 1Þ dt:

From (iii) of Theorem 2.1 it follows that the integral equals

1

l� 1

2l� 1

z
þ r

2l

� �
:

Remark 2.3. Similarly, the direct computation of the conditional
expectation of X�1, given X þ Y for the Borel–Tanner distribution,
is not simple. The property that for two Borel–Tanner independent
random variables U and V with distributions BTp1 and BTp2

, respectively,
the distribution of the sum U þ V is Borel–Tanner BTp1þp2

(see, for
instance, Jain and Khan, 1979) is helpful and leads finally to the following
sum

ð2pþ lÞ�ðl�1ÞXl
i¼0

l

i

� �
ðpþ iÞi�2ðpþ l� iÞl�i�1;

the computation of which seems to be rather involved. However, due to
(iv) of Theorem 2.1 it follows that the above expression equals

1

pþ 1

2pþ 1

2pþ l
þ 1

2p

� �
:

3000 Seshadri and Wesołowski

1
2
3
4
5
6
7
8
9

10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42

200038871_LSTA33_12_R2_112704

D
o
w
n
l
o
a
d
e
d
 
B
y
:
 
[
U
n
i
v
e
r
s
i
d
a
d
 
d
e
 
S
e
v
i
l
l
a
]
 
A
t
:
 
1
9
:
1
2
 
1
9
 
M
a
r
c
h
 
2
0
0
9



ORDER                        REPRINTS

3. MARTINGALE PROPERTIES

Consider now a sequence ðXnÞn�1 of iid positive non degenerate rv’s.
Let Sk ¼ X1 þ � � � þ Xk for any k ¼ 1; 2; . . .. Assume that EðX�1

1 Þ < 1.
Then, obviously, EðS�1

k Þ < 1 for any k ¼ 1; 2; . . ..
In this section we are interested in the condition

E
1

Sk

����Sn
� �

¼ a

Sn
þ b ð3:1Þ

for 1 � k � n and some constants a and b (possibly depending on k and n).
The situation is slightly different from the previous section since the
random variables Sk and Sn � Sk, though independent, are not identically
distributed in general. However, we will proceed in a similar manner as in
Sec. 2.

Here, the main issue is again the question if such sequences exist.
If the existence is assumed, then, similarly as in the previous section,
we have equivalence of (3.1) and

E
1

Sk
etSk

� �
E ðSn � SkÞetðSn�SkÞ
� �

¼ ða� 1ÞE etSn
� �þ bE Sne

tSn
� �

; t � 0: ð3:2Þ

But (3.2) can be rewritten as

ðn� kÞhkh
00
1 ¼ ða� 1Þðh0

1Þkþ1 þ nbðh0
1Þkh00

1;

where hiðtÞ ¼ EðS�1
i expðtSiÞÞ for i ¼ 1; k. Since h0

k ¼ ðh0
1Þk, repeating the

argument from Sec. 2, we get

V ðmÞ ¼ m2

a� 1
ðak� nþ knbmÞ; 0 � a < m < b � 1;

as the variance function of the nef generated by the distribution of X1.
Consequently, again using the LM classification of nef’s with cubic

variance functions, we conclude that only the four cases—gamma, inverse
Gaussian, Kendall, and Borel–Tanner—are allowed. Differentiating the
above formula for V ðmÞ, we obtain the expressions for a and b (note that
km2 þmV 0ðmÞ � 3VðmÞ > 0):

a ¼ nm2 þmV 0ðmÞ � 3V ðmÞ
km2 þmV 0ðmÞ � 3V ðmÞ ; b ¼ ðn� kÞ½mV 0ðmÞ � 2V ðmÞ�

knm½km2 þmV 0ðmÞ � 3V ðmÞ� :
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Hence we get:

(1) X1 � gl;p (p > 1) and then

a ¼ np� 1

kp� 1
>

n

k
; b ¼ 0:

(2) X1 � ml;s and then

a ¼ n

k
; b ¼ n� k

k2n2s
> 0:

(3) X1 � kl;y;r (l > 1) and then

a ¼ nl� 1

kl� 1
>

n

k
; b ¼ ðn� kÞr

knlðkl� 1Þ > 0:

(4) X1 ¼d cð1þ Z=pÞ, where Z � BTp and then

a ¼ npþ 1

kpþ 1
2 1;

n

k

� �
; b ¼ n� k

kncðkpþ 1Þ > 0:

Now we will resolve the question of existence of a sequence ðXnÞn�1

satisfying (3.1). Observe that we cannot just apply the argument given
in Sec. 2 since the rv’s Sk and Sn � Sk, in general, are not identically
distributed. Regardless, we will try to modify the previously developed
reasoning.

First consider a function v on ð0; ðn� kÞ=ðnbÞÞ (b > 0) defined by

vðxÞ ¼ x2ðak� nþ nbxÞ
n� k� nbx

:

Again using Corollary 3.3 from LM, we conclude that for a > 1 it is a
variance function of a nef. Consequently, there exists a positive rv, say V ,
with infinitely divisible distribution, such that

ðn� kÞgg00 ¼ kða� 1Þðg0Þ2 þ nbg0g00; ð3:3Þ

where gðtÞ ¼ EðV�1 expðtVÞÞ. Thus V ¼d X1 þ � � � þ Xk ¼ Sk for some
positive iid rv’s X1; . . . ;Xk. Therefore, (3.3) can be written as

ðn� kÞhkðh0
1Þk�1

h00
1 ¼ ða� 1Þðh0

1Þ2k þ knbðh0
1Þ2k�1

h00
1;

which implies (3.2) and thus (3.1) is also satisfied.
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Consequently, we are led to the martingale properties of four random
sequences considered above (which, since any affine transformation of a
martingale is a martingale again, are defined up to affinity).

Theorem 3.1. For a sequence ðXnÞn�1 of positive, non degenerate iid
rv’s define the sequence of tail s-algebras by taking
Fn ¼ sðSn; Snþ1; . . .Þ. Then the sequence

an
Sn

� bn;Fn

� �
n�1

is a backward martingale only in the following four cases:

(i) X1 � gl;p, an ¼ np� 1, bn ¼ 0, p > 1.

(ii) X1 � ml;s, an ¼ n, bn ¼ 1
n2s.

(iii) X1 � kl;y;r , an ¼ nl� 1, bn ¼ r
nl, l > 1.

(iv) X1 ¼d cð1þ Z=pÞ, where Z � BTp, an ¼ npþ 1, bn ¼ 1
cn
, c > 0,

p > 0.

Proof. Observe that if ðX; Y ;ZÞ is a random vector such that ðX; Y Þ and
Z are independent and EjXj < 1, then EðXjY ;ZÞ ¼ EðXjY Þ a.s. Hence,
for any 1 � k � n and any measurable function f such that
EjfðSkÞj < 1,

EðfðSkÞjFnÞ ¼ EðfðSkÞjSn;Xnþ1;Xnþ2; . . .Þ ¼ EðfðSkÞjSnÞ:

In view of (3.1) and 1–4 above, it proves the result. &

Remark 3.1. Note that in the two cases of the gamma and inverse
Gaussian distributions the property (3.1) can be derived directly.

The case of the gamma distribution. Consider a rv X with the
gamma gl;p distribution, and assume that p > 1. Then

E
1

X
esX

� �
¼ lp

ðp� 1Þðl� sÞp�1
; s < l:

Let Y be independent of X with the distribution gl;q. Then it follows that

E
1

X
esX

� �
E esY
� � ¼ pþ q� 1

p� 1
E

1

X þ Y
esðXþY Þ

� �
; s < l;
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which is equivalent to

E
p� 1

X

����X þ Y

� �
¼ pþ q� 1

X þ Y
a:s:

For a sequence ðXnÞn�1 of iid gamma gl;p (p > 1) rv’s, define
Sk ¼ X1 þ � � � þ Xk, k ¼ 1; 2; . . .. Then the above observations imply

E
kp� 1

Sk

����Sn
� �

¼ np� 1

Sn

for any 1 � k � n.

The case of the inverse Gaussian distribution. Consider a rv X with
the inverse Gaussian ml;s distribution. Then

E
1

X
esX

� �
¼

ffiffiffiffiffiffiffiffiffiffiffi
l� s

s

r
� 1

2s

 !
e�2

ffiffi
s

p ð
ffiffi
l

p
� ffiffiffiffiffiffi

l�s
p Þ; s < l:

Let Y be independent of X with the distribution ml;t. Then it follows that

E
1

X
esX

� �
E esY
� � ¼ ffiffiffi

s
p þ ffiffiffi

t
pffiffiffi

s
p E

1

X þ Y
esðXþY Þ

� �

þ
ffiffiffi
t

p
2sð ffiffiffi

s
p þ ffiffiffi

t
p ÞE esðXþY Þ

� �
; s < l;

which is equivalent to

E

ffiffiffi
s

p
X

� 1

2
ffiffiffi
s

p
����X þ Y

� �
¼

ffiffiffi
s

p þ ffiffiffi
t

p
X þ Y

� 1

2ð ffiffiffi
s

p þ ffiffiffi
t

p Þ a:s:

For a sequence ðXnÞn�1 of iid inverse Gaussian ml;s rv’s, define
Sk ¼ X1 þ � � � þ Xk, k ¼ 1; 2; . . .. Then the above observations imply

E
k

Sk
� 1

2sk

����Sn
� �

¼ n

Sn
� 1

2sn

for any 1 � k � n.
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Remark 3.2. To find the conditional expectation of S�1
k given Sn for the

Kendall distribution via the direct computation, one needs to find out the
value of the integral involving the conditional densities of the form

kðn� kÞl
n

Z z

0

xklþrx�2ðz� xÞðn�kÞlþrðz�xÞ�1Gðnlþ rzþ 1Þ
znlþrz�1Gðklþ rxþ 1ÞGððn� kÞlþ rðz� xÞ þ 1Þ dx

¼ kðn� kÞlGðnlþ rzþ 1Þ
nz

Z 1

0

tklþrzt�2ð1� tÞðn�kÞlþrzð1�tÞ�1

Gðlþ rztþ 1ÞGðlþ rzð1� tÞ þ 1Þ dt:

From the result of 3 in this section, it follows that this expression equals

1

kl� 1

nl� 1

z
þ ðn� kÞr

knl

� �
;

extending the formula given in Remark 2.2.

Remark 3.3. Similarly, for finding the conditional expectation of S�1
k

given Sn for the Borel–Tanner distribution directly, one has to compute
the following sum

1

ðnpþ lÞl�1

Xl
i¼0

l

i

� � ðkpþ iÞi�1

pþ i
½ðn� kÞpþ l� i�l�i�1:

From the result 4 in this section, we obtain the value of this expression as

1

kpþ 1

npþ 1

npþ l
þ n� k

knp

� �
;

which is a straightforward extension of the formula obtained in
Remark 2.3.
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