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Abstract. We show that stochastic processes with linear conditional expectations and qua-
dratic conditional variances are Markov, and their transition probabilities are related to a
three-parameter family of orthogonal polynomials which generalize the Meixner polynomi-
als. Special cases of these processes are known to arise from the non-commutative general-
izations of the Lévy processes.

1. Introduction

1.1. Motivation

It has been known since the work of Biane [10] that every non-commutative pro-
cess with free increments gives rise to a classical Markov process, whose transition
probabilities “realize” the non-commutative free convolution of the correspond-
ing measures. It is natural to ask how to recognize in classical probabilistic terms
which Markov processes might arise from this construction. Unfortunately, the
non-commutative freeness seems to be poorly reflected in the corresponding clas-
sical Markov process, which makes it hard to answer this question. A more general
framework might be less constraining and easier to handle.

Non-commutative processes with free increments can be thought as a special
case corresponding to the value q = 0 of the more general class of q-Lévy pro-
cesses [3], [7]. Markov processes are known to arise in this more general setting
in two important cases: Bożejko, Kümmerer, and Speicher, give explicit Markov
transition probabilities for the q-Brownian motion, see [11, Theorem 1.10], and
Anshelevich [6, Corollary A.1] proves the corresponding result for the q-Poisson
process. Other q-Lévy processes are still not well understood, so it is not known
whether Markov processes arise in the general case; for indications that Markov
property may perhaps fail, see [4].
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This paper arose as an attempt to better understand the emergence of related
Markov processes from probabilistic assumptions. We define our class of processes
by assuming that the first two conditional moments are given respectively by the
generic linear and quadratic expressions. Such assumptions are familiar from Lévy’s
characterization of the Wiener process as a martingale and a quadratic martingale
with continuous trajectories. For more general processes the assumption of conti-
nuity of trajectories fails, so we replace it by conditioning with respect not only to
the past, but also to the future. This approach originated with Plucińska [23] who
proved that processes with linear conditional expectations and constant conditional
variances are Gaussian. Subsequent papers covered discrete Gaussian sequences
[16], L2-differentiable processes [28], Poisson process [14], Gamma process [31].
Wesołowski [32] unified several partial results, identifying the general quadratic
conditional variance problem which characterizes the five Lévy processes of inter-
est in this note: Wiener, Poisson, Pascal, Gamma, and Meixner. Our main result,
Theorem 3.5, extends [32, Theorem 2] to the more general quadratic conditional
variances. Similar analysis of stationary sequences in [15] yields the classical ver-
sions of the non-commutative q-Gaussian processes of [11]. Further contributions
to the stationary case can be found in [21].

Stochastic processes with linear conditional expectations and quadratic con-
ditional variances turn out to depend on three numerical parameters −∞ < θ <

∞, τ ≥ 0, and −1 ≤ q ≤ 1. They are Markov, and arise from the non-commutative
constructions, at least for those values of the parameters when such constructions
are known. To point out the connection with the orthogonal polynomials from which
they are derived, we call them q-Meixner processes.

When q = 1, the q-Meixner processes have independent increments and we
recover the five Lévy processes from [32, Theorem 2]. For other values of param-
eter q, we encounter several processes that arose in non-commutative probability.
If τ = θ = 0, we get the classical version of the q-Brownian motion [11]. If
τ = 0, θ �= 0 the q-Meixner processes arise as the classical version from the q-
Poisson process defined in [3, Def. 6.16]. When q = 0 the q-Meixner processes
are related to the class of free Lévy processes considered by Anshelevich [5].

The reasons why these special cases of q-Meixner processes should arise from
the Fock space constructions are not clear to us. It is not known whether the generic
q-Meixner process arises as a classical version of a non-commutative process, but
the situation must be more complex. The connection with the q-Levy processes on
the q-Fock space as defined in [3] fails for the following reason. In Proposition
3.3 below we establish a polynomial martingale property (46) for all q-Meixner
processes. But from Anshelevich [4, Appendix A.2] we know that a generic q-Levy
process does not have martingale polynomials; the exceptions are q = 0, q = 1, the
q-Poisson process, and the q-Brownian motion, and these are precisely the cases
that we already mentioned above.

1.2. Assumptions

Throughout this paper (Xt )t≥0 is a separable square-integrable stochastic process,
normalized so that for all t, s ≥ 0
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E(Xt) = 0, E(XtXs) = min{t, s}. (1)

We are interested in the processes with linear conditional expectations and quadratic
conditional variances. More specifically, we assume the following.

For all 0 ≤ s < t < u,

E(Xt |F≤s ∨ F≥u) = aXs + bXu, (2)

where a = a(s, t, u), b = b(s, t, u) are the deterministic functions of s, t, u, and
F≤s ∨ F≥u denotes the σ -field generated by {Xt : t ∈ [0, s] ∪ [u,∞)}.

For ease of reference, we list the following trivial consequences of (2). From
the form of the covariance it follows that

a = u− t

u− s
, b = t − s

u− s
. (3)

Notice that from (2) we have

E(E(Xt |Fs)−Xs)
2 = E(E(E(Xt |F≤s ∨ F≥u)|Fs)−Xs)

2

= b2E(E(Xu −Xs |Fs))2 ≤ (t − s)2/(u− s).

Passing to the limit as u → ∞ we see that

E(Xt |F≤s) = Xs (4)

for 0 ≤ s ≤ t . Similarly, taking s = 0 in (2) we get

E(Xt |F≥u) = t

u
Xu. (5)

Processes which satisfy condition (2) are sometimes called harnesses, see [20],
[33]. We assume in addition that the conditional variance of Xt given F≤s ∨ F≥u
is given by a quadratic expression in Xs , Xu. Recall that the conditional variance
of X with respect to a σ -field F is defined as

Var(X|F) = E(X2|F)− (E(X|F))2 .

For later calculations, it is convenient to express this assumption as follows.
For all 0 ≤ s < t < u,

E(X2
t |F≤s ∨ F≥u) = AX2

s + BXsXu + CX2
u +D + αXs + βXu, (6)

where A = A(s, t, u), B = B(s, t, u), C = C(s, t, u),D = (s, t, u),

α = α(s, t, u), β = β(s, t, u) are the deterministic functions of s, t, u.
Since X0 = 0, the coefficients a,A,B, α are undefined at s = 0. In some

formulas for definiteness we assign these values by continuity.
It turns out that under mild assumptions, the functions A,B,C,D, α, β, are

determined uniquely as explicit functions of s, t, u, up to some numerical con-
stants. The next assumption specifies two of these constants by requesting that
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Var(Xt |F≤s) = const for all 0 ≤ s ≤ t . We use (4) to state this assumption in the
following more explicit form.

E(X2
t |F≤s) = X2

s + t − s. (7)

Notice that equations (4) and (7) imply that {Xt : t ≥ 0} and {X2
t − t : t ≥ 0}

are martingales with respect to the natural filtration F≤t ; these two martingale
conditions (and continuity of trajectories) are the usual assumptions in the Lévy
theorem.

2. Conditional variances

It is interesting to note that under mild assumptions, assumption (6) can be written
explicitly, up to some numerical constants. Two of these numerical constants appear
already under one-sided conditioning.

Proposition 2.1. Let (Xt )t≥0 be a separable square integrable stochastic process
which satisfies conditions (1), (2), and such that 1, Xt ,X2

t are linearly independent
for all t > 0. If for every 0 < t < u the conditional expectation E(X2

t |F≥u) is
a quadratic expression in variable Xu, then there are constants τ ∈ [0,∞] and
θ ∈ R such that

Var(Xt |F≥u) =





t (u−t)
u+τ

(
τ
X2
u

u2 + θ Xu
u

+ 1
)

if τ < ∞,

t (u− t)
(
X2
u

u2 + θ Xu
u

)
if τ = ∞.

(8)

for all 0 ≤ t < u.

Proof. By assumption, for any 0 < s < t

E(X2
s |F≥t ) = m(s, t)X2

t + n(s, t)Xt + o(s, t) , (9)

where m, n, o are some functions.
On the other hand from (5) we get

E(XsXt |F≥u) = E(E(Xs |F≥t )Xt |F≥u) = s

t
E(X2

t |F≥u),

and from (2) we get

E(XsXt |F≥u) = E(XsE(Xt |F≤s ∨ F≥u)|F≥u)

= u− t

u− s
E(X2

s |F≥u)+ t − s

u− s
XuE(Xs |F≥u)

= u− t

u− s
E(X2

s |F≥u)+ (t − s)s

(u− s)u
X2
u .

Combining the above two formulas we have

s

t
E(X2

t |F≥u) = u− t

u− s
E(X2

s |F≥u)+ (t − s)s

(u− s)u
X2
u. (10)
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Now we substitute the conditional moments from (9) into (10), getting

s

t

(
m(t, u)X2

u + n(t, u)Xu + o(t, u)
)

= u− t

u− s

(
m(s, u)X2

u + n(s, u)Xu + o(s, u)
)

+ (t − s)s

(u− s)u
X2
u .

Recall that 1, Xu,X2
u are linearly independent. Comparing the coefficients of respec-

tive powers of Xu we obtain

s

t
m(t, u) = u− t

u− s
m(s, u)+ (t − s)s

(u− s)u
,

s

t
n(t, u) = u− t

u− s
n(s, u) ,

s

t
o(t, u) = u− t

u− s
o(s, u) .

The first equation leads to
(
m(t, u)

t
− 1

u

)
1

u− t
=
(
m(s, u)

s
− 1

u

)
1

u− s
,

and hence
m(t, u) = t

u
+ t (u− t)i(u)

for some function i : R → R. The next two equations give

n(t, u) = t (u− t)j (u) and o(t, u) = t (u− t)k(u)

for some functions j, k : R → R. Thus from (9) we get

E(X2
t |F≥u) =

(
t

u
+ t (u− t)i(u)

)

X2
u + t (u− t)j (u)Xu + t (u− t)k(u) .

Taking the expectations of both sides we get t = t + tu(u− t)i(u)+ t (u− t)k(u),
so k(u) = −ui(u). Finally we have

E(X2
t |F≥u) = t

u
X2
u + t (u− t)

[
i(u)(X2

u − u)+ j (u)Xu

]
. (11)

To identify the functions i and j we fix s < t < u and insert (11) into the
formula

E(X2
s |F≥u) = E(E(X2

s |F≥t )|F≥u) .
This gives

s

u
X2
u + s(u− s)

[
i(u)(X2

u − u)+ j (u)Xu

]

= E
( s

t
X2
t + s(t − s)

[
i(t)(X2

t − t)+ j (t)Xt

]∣
∣
∣F≥u

)

= s

t

{
t

u
X2
u + t (u− t)

[
i(u)(X2

u − u)+ j (u)Xu

]}

+s(t − s)i(t)

{
t

u
X2
u + t (u− t)

[
i(u)(X2

u − u)+ j (u)Xu

]}

+s(t − s)j (t)
t

u
Xu − st (t − s)i(t) .
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Comparing the coefficients of respective powers of Xu we obtain

ui(u) = t i(t)+ (u− t)ti(t)ui(u) , (12)

uj (u) = tj (t)+ (u− t)ti(t)uj (u) . (13)

If i is non-zero for all t > 0 then (12) gives 1
t i(t)

+ t = 1
ui(u)

+ u. This means that
1
t i(t)

+ t = −τ for some constant τ , and τ ≥ 0 since 1/i(t) cannot vanish for any
t > 0. Hence

i(t) = − 1

t (t + τ)
. (14)

Using this in (13) we get u(u+ τ)j (u) = t (t + τ)j (t). Thus

j (t) = θ

t (t + τ)

for some real constant θ . We get

E(X2
s |F≥t ) = s(s + τ)

t (t + τ)
X2
t + s(t − s)

t (t + τ)
θXt + s(t − s)

t + τ
. (15)

Suppose now that i(t) = 0 for some t > 0. Then (12) implies that i is a zero
function, corresponding to τ = ∞ in (14). In this case (13) leads to uj (u) = tj (t),
which means that j (t) = θ/t for some real number θ . Thus in this case

E(X2
s |F≥t ) = s

t
X2
t + s(t − s)

t
θXt . (16)

	


Notice that taking the expected value of both sides of (6), we get a trivial relation

t − As − Cu = Bs +D, (17)

valid for all 0 ≤ s < t < u. We need additional relations between the coefficients
in (6).

Lemma 2.2. Let (Xt )t≥0 be a separable square integrable stochastic process which
satisfies conditions (1), (2), and such that 1, Xt ,X2

t are linearly independent for all
t > 0. Suppose that condition (6) holds with D(s, t, u) �= 0 for all 0 ≤ s < t < u.
Then the conditional expectationE(X2

u|F≤t ) is quadratic inXt for any 0 ≤ t < u.
Moreover,

E(X2
u − u|F≤s) =

(

1 + A+ B + C − 1

b − C

)

(X2
s − s)+ α + β

b − C
Xs. (18)
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Proof. Equation (4) implies that E(X2
t |F≤s) = E(XtXu|F≤s), so from (2) we get

E(X2
t |F≤s) = aX2

s + bE(X2
u|F≤s).

From (6) we get
E(X2

t |F≤s) = AX2
s + BX2

s + CE(X2
u|F≤s)+ (α + β)Xs +D.

Notice that this implies C �= b. Indeed, if C = b then subtracting the equations we
get a quadratic equation for Xs . If this equation is non-trivial, then 1, Xs,X2

s are
linearly dependent. So the coefficients in the quadratic equation must all be zero;
in particular, D = 0, contradicting the assumption.

Since C �= b, we can solve the equations for E(X2
t |F≤s) and E(X2

u|F≤s).
Using (17), we get (18) after a calculation. 	

Lemma 2.3. Let (Xt )t≥0 be a separable square integrable stochastic process which
satisfies conditions (1), (2), (7) and such that 1, Xt ,X2

t are linearly indepen-
dent for all t > 0. Suppose that condition (6) holds with D(s, t, u) �= 0 for all
0 ≤ s < t < u. Then the conditional expectations E(X2

s |F≥t ) are quadratic in Xt
for any 0 ≤ s < t . Moreover, there are constants 0 ≤ τ < ∞,−∞ < θ < ∞ such
that (8) holds true, and the parameters in (6), evaluated at 0 ≤ s < t < u, satisfy
the following equations.

A+ B + C = 1, (19)

As2 + Bsu+ Cu2 − t2 = τD, (20)

sα + uβ = θD, (21)

α + β = 0. (22)

Proof. Comparing the coefficients in (7) and (18), we get (19), and (22).
Setting s = 0 in (6) we see that E(X2

t |F≥u) is quadratic in Xu. Thus Proposi-
tion 2.1 implies that (8) holds true. Notice that sinceD(0, t, u) �= 0, we must have
τ < ∞, so (15) holds. We use the latter in

E(X2
t |F≥u) = AE(X2

s |F≥u)+ s

u
BX2

u + CX2
u +

( s

u
α + β

)
Xu +D,

which follows from (6). We get (20) from the comparison of the quadratic terms,
and (21) from the comparison of the linear terms. 	

For future reference we state the following.

Remark 2.1. The system of equations (17), (19), (20), (21), (22) has the solution

α = D
−θ
u− s

, (23)

β = D
θ

u− s
, (24)

A = ta

s
−D

u+ τ

s(u− s)
, (25)

B = D
s + u+ τ

s(u− s)
− u− s

s
ab, (26)

C = b −D
1

u− s
. (27)
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We need the following version of [32, Theorem 2].

Proposition 2.4. Let (Xt )t≥0 be a separable square integrable stochastic process
which satisfies conditions (1), (2), (6), and (7). Suppose that the coefficient D in
(6) satisfies D(s, t, u) �= 0 for all 0 ≤ s < t < u, and that 1, Xt ,X2

t are linearly
independent for all t > 0. Then E(|Xt |p) < ∞ for all p ≥ 0.

Moreover, if (Xt ) and (Yt ) satisfy these assumptions with the same coefficients
in (6), then the joint moments of both processes are equal,

E(X
n1
t1
X
n2
t2
. . . X

nk
tk
) = E(Y

n1
t1
Y
n2
t2
. . . Y

nk
tk
)

for all t1, t2, . . . , tk > 0, n1, n2, . . . , nk ∈ N, k ∈ N.

Proof. Fix s < t and let {tk : k ≥ 0} be an arbitrary infinite strictly increasing
sequence which contains s and t as consecutive elements, say s = tN , t = tN+1
for some N ∈ N.

We apply [32, Theorem 2] to the sequence ξk = Xtk . Of course,
σ(ξ1, . . . , ξk, ξk+1) ⊂ F≤tk−1 ∨ F≥tk+1 . Therefore, conditions (4), (2), (7), and (6)
imply [32, (6), (7), (8), and (9)], respectively. Since corr(ξk−1, ξk) = √

tk−1/tk �=
0,±1, the assumption [32, (10)] holds true, too. Finally, notice that Wesołowski’s
αk = 1, and his ak = C(tk−1, tk, tk+1) �= ak = b(tk−1, tk, tk+1) because from
(27) we see that D �= 0 if and only if C �= b. Thus [32, (11)] hold true. From [32,
Theorem 2] we see that E(|Xt |p) < ∞ for all p > 0, and that for n = 1, 2 . . . , the
conditional moment E(Xnt |Xt1 , . . . , XtN−1 , Xs) is a unique polynomial of degree
n in the variable Xs .

If two processes satisfy the assumptions, then the conditional moments of both
processes can be expressed as polynomials with the same coefficients. This implies
that all joint moments of the processes are equal. 	


Next we give the general form of the conditional variance under the two-sided
conditioning.

Proposition 2.5. Let (Xt )t≥0 be a separable square integrable stochastic process
which satisfies conditions (1), (2), (6), and (7). Suppose that the coefficientD in (6)
satisfiesD(s, t, u) �= 0 for all 0 ≤ s < t < u, and that 1, Xt ,X2

t are linearly inde-
pendent for all t > 0. Then there are parameters −∞ < θ < ∞, and 0 ≤ τ < ∞
such that the first part of (8) holds true. In addition, there exists −1 < q ≤ 1 such
that

Var(Xt |F≤s ∨ F≥u)

= (u− t)(t − s)

u+ τ − qs

(

(1 − q)
(Xu −Xs)(sXu − uXs)

(u− s)2

+τ (Xu −Xs)
2

(u− s)2
+ θ

Xu −Xs

u− s
+ 1

)

. (28)

Proof. By Proposition 2.4, all moments of Xt are finite. Fix s < t . Then from (5)
and (7) we get s

t
E(X3

t ) = E(X2
t Xs) = EX3

s , so E(X3
t )/t does not depend on

t > 0. On the other hand, from (15) we get
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E(X3
s ) = E(X2

s Xt ) = s(s + τ)

t (t + τ)
E(X3

t )+ s(t − s)

t + τ
θ.

Hence

EX3
t = tθ. (29)

Similarly, from (7) we get

E(X2
t X

2
s ) = EX4

s + s(t − s),

and from (8) we get

E(X2
t X

2
s ) = s(s + τ)

t (t + τ)
EX4

t + θ
s(t − s)

t (t + τ)
E(X3

t )+ st
t − s

t + τ
.

Using (29) we get after a calculation that E(X
4
s )−s(s+θ2)

s(s+τ) does not depend on s. Thus

E(X4
t ) = (1 + q)t (t + τ)+ t (t + θ2) (30)

for some constant q ∈ R.
A calculation gives

E(Xt −Xs)
2 = t − s, E(Xt −Xs)

3 = θ(t − s),

and
E(Xt −Xs)

4 = (t − s)
(

6s + θ2 − τ + (2 + q)(t + τ − 3s)
)
.

Since the determinant

1

(t − s)2
det




1 E(Xt −Xs) E((Xt −Xs)

2)

E(Xt −Xs) E((Xt −Xs)
2) E((Xt −Xs)

3)

E((Xt −Xs)
2) E((Xt −Xs)

3) E((Xt −Xs)
4)





= q (t + τ − 3s)+ s + t + τ

is non-negative, taking s = t − 1 and t → ∞, we get q ≤ 1. Since 1, Xt ,X2
t are

linearly independent, the determinant evaluated at s = 0 must be strictly positive,
see [18, pg. 19]. This shows that q > −1.

It remains to determine the coefficients in (6). Fix s < t < u. Comparing the
two representations of E(XtX2

u|F≤s) as

E(E(Xt |F≤s ∨ F≥u)X2
u|F≤s) = E(XtE(X

2
u|F≤t )|F≤s),

and the similar two expressions forE(X2
t Xu|F≤s), we get two different expressions

for E(X3
t |F≤s). Equating them, we get

aX3
s + bE(X3

u|F≤s) = AX3
s + BX3

s + BXs(u− s)+ CE(X3
u|F≤s)

+DXs + (α + β)X2
s + β(u− s).
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We can solve this equation for E(X3
u|F≤s), as (27) implies that C �= b. Using (24)

and (19), the answer simplifies to

E(X3
u|F≤s) = X3

s + B(u− s)+D

b − C
Xs + (u− s)

β

b − C
.

From this we get

s

u
E(X4

u) = E(XsX
3
u) = E(X4

s )+ B(u− s)+D

D
(u− s)s.

Substituting (30) we deduce the following equation

(u− s)B

D
= 1 + q. (31)

Solving together equations (19), (20), (21), (22), and (31) for A,B,C,D, α, β
we obtain (28). 	

Remark 2.2. Solving together equations (19), (20), (21), (22), and (31) for
A,B,C,D, α, β we get

A = u− t

u− s
× u+ τ − qt

u+ τ − qs
, (32)

B = (1 + q)
t − s

u− s
× u− t

u+ τ − qs
, (33)

C = t − s

u− s
× t + τ − qs

u+ τ − qs
, (34)

D = (u− t)(t − s)

u+ τ − qs
, (35)

α = −θ (u− t)(t − s)

(u− s)(u+ τ − qs)
, (36)

β = θ
(u− t)(t − s)

(u− s)(u+ τ − qs)
. (37)

Remark 2.3. From the formula for E(Xt − Xs)
4 we see that except for the case

q = 1, the increments of the processXt are not stationary. For τ = 0, the increments
of the corresponding non-commutative processes are stationary, but this property
is not inherited by the classical version.

3. q-Meixner Markov processes

We use the standard notation

[n]q = 1 + q + · · · + qn−1,

[n]q ! = [1]q [2]q . . . [n]q,
[
n

k

]

q

= [n]q !

[n− k]q ![k]q !
,
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with the usual conventions [0]q = 0, [0]q ! = 1. For fixed real parameters
x, s, t, q, θ, τ , define the polynomials Qn in variable y by the three step recur-
rence

yQn(y|x) = Qn+1(y|x)+ (θ [n]q + xqn)Qn(y|x)
+(t − sqn−1 + τ [n− 1]q)[n]qQn−1(y|x), (38)

where n ≥ 1, and Q−1(y|x) = 0, Q0(y|x) = 1, so Q1(y|x) = y − x. It is well
known that such polynomials are orthogonal with respect to a probability measure
if the last coefficient of the three step recurrence is positive, see [18, Theorem I.4.4].
Therefore, (38) defines a probability measure whenever x, θ ∈ R, 0 < s < t, τ ≥
0,−1 ≤ q ≤ 1. Moreover, in this case

∑

n

1
√

(t − sqn−1 + τ [n− 1]q)[n]q
= ∞, (39)

so from Carleman’s criterion (see [27, page 59]), this measure is unique. We denote
this unique probability measure by µx,s,t (dy).

Of course, µx,s,t (dy) = µx,s,t,q,θ,τ (dy) depends on all the parameters of the
recurrence (38). It is worth noting explicitly that if q = −1 then [2]q = 0, so
µx,s,t (dy) is supported on two points only. In general, more explicit expressions for
µx,s,t (dy) can perhaps be derived from [9, Theorem 2.5] by taking their parameters
b = c = 0, ad = −(s(1 − q) + τ)/(t (1 − q) + τ), a + d = ((1 − q)x −
1)/

√
t + τ/(1 − q).

If we need to indicate the dependence of the polynomials in (38) on the addi-
tional parameters in the recurrence (38), we write Qn(y|x, s, t).

We will need two algebraic identities; the first one resembles [2, (2.3)] but is in
fact different; the second one is a slight generalization of [17, Theorem 1].

Lemma 3.1. For every x, y, z ∈ R, n ∈ N, and 0 ≤ s ≤ t ≤ u we have

Qn(z|x, s, u) =
n∑

k=0

[
n

k

]

q

Qn−k(y|x, s, t)Qk(z|y, t, u). (40)

Furthermore,

Qn(z|y, t, u)

=
n∑

k=1

[
n

k

]

q

Qn−k(0|y, t, 0) (Qk(z|0, 0, u)−Qk(y|0, 0, t)) . (41)

Proof. Consider first the case |q| < 1. It is easy to check by q-differentiation with
respect to ζ that the generating function

φ(ζ, y, x, s, t) =
∞∑

n=0

ζ n

[n]q !
Qn(y|x, s, t)
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of the polynomials Qn is given by

φ(ζ, y, x, s, t) =
∞∏

k=0

1 + θζqk − (1 − q)xζqk + ((1 − q)s + τ)ζ 2q2k

1 + θζqk − (1 − q)yζqk + ((1 − q)t + τ)ζ 2q2k .

For details, see [2]. Notice that for |q| < 1, the series defining φ(ζ, y, x, s, t) con-
verges for all |ζ | small enough. Indeed, from (38) we get by induction |Qn+1| ≤ Cn

with C = max{1, (|x| + |y| + |θ | + τ + t + s)/(1 − |q|)2}.
Therefore,

φ(ζ, z, x, s, u) = φ(ζ, y, x, s, t)φ(ζ, z, y, t, u), (42)

which implies (40) for all n ≥ 0 and |q| < 1. Since (40) is an identity between the
polynomial expressions in variables z, y, q, it must hold for all q.

Since 1/φ(ζ, y, x, s, t) = φ(ζ, x, y, t, s), from (42) we get

φ(ζ, z, y, t, u) = φ(ζ, z, x, s, u)

φ(ζ, y, x, s, t)

= 1 + 1

φ(ζ, y, x, s, t)
(φ(ζ, z, x, s, u)− φ(ζ, y, x, s, t))

= 1 + φ(ζ, x, y, t, s) (φ(ζ, z, x, s, u)− φ(ζ, y, x, s, t)) .

Evaluating this at s = 0, x = 0 we get

φ(ζ, z, y, t, u) = 1 + φ(ζ, 0, y, t, 0) (φ(ζ, z, 0, 0, u)− φ(ζ, y, 0, 0, t)) .

This shows that (41) holds for all n ≥ 1 and |q| < 1. Since (41) is an identity
between the polynomial expressions in variables z, y, q, it must hold for all q. 	

We now verify that µx,s,t (dy) are the transition probabilities of a Markov process.

Proposition 3.2. If 0 ≤ s < t < u, then

µx,s,u(·) =
∫

µy,t,u(·)µx,s,t (dy).

Proof. Let ν(dz) = ∫
µx,s,t (dy)µy,t,u(dz). To show that ν(dz) = µx,s,u(dz), we

verify that Qn(z|x, s, u) are orthogonal with respect to ν(dz). Since Qn(z|x, s, u)
satisfy the three-step recurrence (38), we need only to show that for n ≥ 1 these
polynomials integrate to zero. Since

∫
Qk(z|y, t, u)µy,t,u(dz) = 0 for k ≥ 1, by

(40) we have
∫

Qn(z|x, s, u)ν(dz)

=
n∑

k=0

[
n

k

]

q

∫ (∫

Qk(z|y, t, u)µy,t,u(dz)
)

Qn−k(y|x, s, t)µx,s,t (dy)

=
∫

Qn(y|x, s, t)µx,s,t (dy) = 0,

as n ≥ 1. 	
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Let (Xt ) be a Markov process with the transition probabilities defined for 0 ≤ s < t

by

Ps,t (x, dy) = µx,s,t (dy), (43)

where µx,s,t (dy) is the distribution orthogonalizing the polynomials (38),X0 = 0.
Since the distribution of Xt is µ0,0,t (dx), the monic polynomials pn(x, t) orthog-
onal with respect to the distribution of Xt are pn(x, t) = Qn(x|0, 0, t). These
polynomials satisfy a somewhat simpler three-step recurrence

xpn(x, t) = pn+1(x, t)+ θ [n]qpn(x, t)

+(t + τ [n− 1]q)[n]qpn−1(x, t), n ≥ 1. (44)

Identity (41) can be re-written as

Qn(y|x, s, t) =
n∑

k=1

Bn−k(x) (pk(y, t)− pk(x, s)) , (45)

where Bk(x) are polynomials in variable x such that B0 = 1.
If −1 ≤ q < 1, then the coefficients of the recurrence (44) are uniformly

bounded. Therefore, the distribution of Xt has bounded support, see [30, Theorem
69.1]. If q = 1, these are classical Meixner polynomials (see [18, Ch. VI.3] or [26,
Sections 4.2 and 4.3]), and their distributions have analytic characteristic functions.
This implies that polynomials are dense in L2(Xs,Xu), see [19, Theorem 3.1.18].

We use these observations to extend [26, (4.4)] to some non-Lévy processes.

Proposition 3.3. If (Xt ) is the Markov process with transition probabilities (43)
and X0 = 0, then for t > s and n ≥ 0 we have

E(pn(Xt , t)|F≤s) = pn(Xs, s). (46)

Proof. Notice that for n ≥ 1 we haveE(Qn(Xt |Xs, s, t)|Xs) = 0, asQn(y|x, s, t)
is orthogonal toQ0 = 1 under the conditional probability (43). We use this to prove
(46) by induction.

Since p0 = 1, (46) holds true for n = 0. Suppose (46) holds true for all
0 ≤ n ≤ N . From (45) and the induction assumption it follows that

0 = E(QN+1(Xt |Xs, s, t)|Xs) = B0(Xs) (E(pN+1(Xt , t)|Xs)− pN+1(Xs, s)) .

Since B0 = 1, this proves that E(pN+1(Xt , t)|Xs) = pN+1(Xs, s), which by the
Markov property implies (46) for n = N + 1. 	

Proposition 3.4. If −1 ≤ q ≤ 1 and (Xt ) is the Markov process with transition
probabilities (43) and X0 = 0, then (1), (2), (7), and (28) hold true.

Proof. Let pn(x, t) be the monic polynomials which are orthogonal with respect
to the distribution ofXt . For the first part of the proof we will write their three step
recurrence (44) as

xpn(x, t) = pn+1(x, t)+ an(t)pn(x, t)+ bn(t)pn−1(x, t), (47)
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where the coefficients are

an(t) = θ [n]q, bn(t) = (t + τ [n− 1]q)[n]q . (48)

We will also use the notation

an(t) = αn + tβn, bn(t) = γn + tδn. (49)

Recall that

E(p2
n+1(Xt , t)) = bn+1(t)E(p

2
n(Xt , t)), (50)

see [18, page 19].
We first verify (7). Since p1(x, t) = x, p2(x, t) = x2 − θx − t , from (46)

we get E(X2
t |Xs) = E(p2(Xt , t)|Xs) + θE(p1(Xt , t)|Xs) + t = p2(Xs, s) +

θp1(Xs, s)+ t = X2
s + t − s.

Condition (1) holds true asE(Xt) = E(p1(Xt , t)p0(Xt , t)) = 0, and for s < t

we have E(XsXt ) = E(Xsp1(Xs, s)) = E(p2(Xs, s)+ θp1(Xs, s)+ s) = s.
To verify (2), we use the fact that polynomials are dense in L2(Xs,Xu). Thus

by the Markov property to prove (2) we only need to verify that

E (pn(Xs, s)Xtpm(Xu, u))

= aE (Xspn(Xs, s)pm(Xu, u))+ bE (pn(Xs, s)Xupm(Xu, u)) (51)

for all m, n ∈ N and 0 < s < t . To prove this, we invoke Proposition 3.3. By (46)

E(pn(Xs, s)Xtpm(Xu, u)) = E(pn(Xs, s)Xtpm(Xt , t)).

Then by (47) and again using (46) we get that the left hand side of (51) is

E(pn(Xs, s)pm+1(Xs, s))+ am(t)E(pn(Xs, s)pm(Xs, s))

+bm(t)E(pn(Xs, s)pm−1(Xs, s)).

Thus the left hand side of the equation is zero, except when n = m+ 1, n = m, or
n = m− 1.

Similar argument applies to the right hand side of (51). Thus, writing Ep2
m for

E(p2
m(Xs, s)), equation (51) takes the form 0 = 0, except for the following three

cases.

(i) Case n = m+ 1. Then the equation reads

Ep2
m+1 = a(s, t, u)bm+1(s)Ep

2
m + b(s, t, u)Ep2

m+1.

By (50) this holds true as a + b = 1, see (3).
(ii) Case n = m. Then the equation reads

am(t)Ep
2
m = a(s, t, u)am(s)Ep

2
m + b(s, t, u)am(u)Ep

2
m.

By (3), this equation holds true for any three step recurrence (47) with the
coefficients an(t) that are linear in variable t .
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(iii) Case n = m− 1. In this case, (51) reads

bm(t)Ep
2
m−1 = a(s, t, u)Ep2

m + b(s, t, u)bm(u)Ep
2
m−1.

By (50) this is equivalent to bm(t) = a(s, t, u)bm(s)+b(s, t, u)bm(u)Ep2
m−1,

which by (3) holds true for any three step recurrence (47) with the coefficients
bn(t) that are linear in variable t .

The proof of (28) follows the same plan. We verify that (6) holds true with the
parameters given by formulas (32), (33), (34), (35), (36), (37). (In fact, our proof
indicates also how these formulas and the recurrence (44) were initially derived.)
To do so, from the three step recurrence (47) we derive

x2pn−1(x) = pn+1(x)+ (an + an−1)pn(x)+ (a2
n−1 + bn + bn−1)pn−1(x)

+bn−1(an−1 + an−2)pn−2(x)+ bn−1bn−2pn−3(x) (52)

for n ≥ 2. (Recall that we use the convention p−1(x) = 0.)
We need to prove that for any n,m ∈ N and 0 < s < t

E
(
pn(Xs, s)X

2
t pm(Xu, u)

)

= AE
(
X2
s pn(Xs, s)pm(Xu, u)

)
+ BE (Xspn(Xs, s)Xupm(Xu, u))

+CE
(
pn(Xs, s)X

2
upm(Xu, u)

)
+ αE (Xspn(Xs, s)pm(Xu, u))

+βE (pn(Xs, s)Xupm(Xu, u))+DE (pn(Xs, s)pm(Xu, u)) . (53)

For the remainder of the proof, all the polynomials are evaluated at (Xs, s). Using
(52), (47) and (46), we get

Epnpm+2 + (am+1(t)+ am(t))Epnpm+1 + (a2
m(t)+ bm+1(t)+ bm(t))Epnpm

+bm(t)(am(t)+ am−1(t))Epnpm−1 + bm(t)bm−1(t)Epnpm−2

= A(Epn+2pm + (an+1(s)+ an(s))Epn+1pm

+(a2
n(s)+ bn+1(s)+ bn(s))Epnpm + bn(s)(an(s)

+an−1(s))Epn−1pm + bn(s)bn−1(s)Epn−2pm)

+BE ((pn+1 + an(s)pn + bn(s)pn−1)(pm+1 + am(u)pm + bm(u)pm−1))

+C(Epnpm+2 + (am+1(u)+ am(u))Epnpm+1 + (a2
m(u)+ bm+1(u)

+bm(u))Epnpm + bm(u)(am(u)+ am−1(u))Epnpm−1

+bm(u)bm−1(u)Epnpm−2)+ α(Epn+1pm

+an(s)Epnpm + bn(s)Epn−1pm)+ β(Epnpm+1

+am(u)Epnpm + bm(u)Epnpm−1)+DEpnpm.

Thus the equation (53) takes the form 0 = 0, except for the following five cases:

(i) Case n = m+ 2. In this case, equation (53) reads

Ep2
m+2 = Abm+2(s)bm+1(s)Ep

2
m + Bbm+2(s)Ep

2
m+1 + CEp2

m+2.

By (50), this is equivalent to (19), which holds true by our choice ofA,B,C.
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(ii) Case n = m+ 1. In this case, equation (53) reads

(am+1(t)+ am(t)) Ep
2
m+1

= Abm+1(s)(am+1(s)+ am(s))Ep
2
m

+B(am+1(s)Ep
2
m+1 + bm+1(s)am(u)Ep

2
m)

+C(am+1(u)+ am(u))Ep
2
m+1 + αbm+1(s)Ep

2
m + βEp2

m+1.

By (49) and (50), this reduces to equation (βn+βn−1) = (u−s)B
D

βn−1, which
holds true since βn = 0, see (48).

(iii) Case n = m. In this case, equation (53) reads
(
a2
m(t)+ bm+1(t)+ bm(t)

)
Ep2

m

= A
(
a2
m(s)+ bm+1(s)+ bm(s)

)
Ep2

m

+B
(
Ep2

m+1 + am(s)am(u)Ep
2
m + bm(s)bm(u)Ep

2
m−1

)

+C
(
a2
m(u)+ bm+1(u)+ bm(u)

)
Ep2

m

+αam(s)Ep2
m + βam(u)Ep

2
m +DEp2

m.

After a calculation, this reduces to equation δn+δn−1 = δn−1
(u−s)B
D

+1. The
latter holds true by (48) and (31).

(iv) Case n = m− 1. In this case, equation (53) reads

bm(t)(am(t)+ am−1(t))Ep
2
m−1

= Abm(s)(am(s)+ am−1(s))Ep
2
m−1

+B(am(u)Ep2
m + am−1(s)bm(u)Ep

2
m−1)

+Cbm(u)(am(u)+ am−1(u))Ep
2
m−1 + αEp2

m + βbm(u)Ep
2
m−1.

After a calculation, this reduces to equation

(αn−1 + αn−2)δn−1 = (1 + q)δn−1αn−2 + δn−1
sα + uβ

D(s, t, u)
.

The latter holds true for all n ≥ 2 by (48) and (21).
(v) Case n = m− 2. In this case, equation (53) reads

bm(t)bm−1(t)Ep
2
m−2 = AEp2

m+Bbm(u)Ep2
m−1 +Cbm(u)bm−1(u)Ep

2
m−2.

After a calculation, this reduces to equation

δn−1γn−2+δn−2γn−1 =(1+q)δn−1γn−2+δn−1δn−2
As2 + Bsu+ Cu2 − t2

D
.

Using relation (20), this gives

δn−2γn−1 = τδn−1δn−2 + qδn−1γn−2.

The latter is satisfied with the initial condition γ1 = 0 whenever

γn = τ [n− 1]qδn. 	
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From Proposition 2.5 we see that the conditional variance of a stochastic pro-
cess (Xt ) that satisfies (1), (2), (6) with D �= 0, (7), and which has at least 3-point
support is given by (58) with parameters −∞ < θ < ∞,−1 < q ≤ 1, τ ≥ 0.

Let (Yt ) be the Markov process with the transition probabilities (43) and the
same parameters. By Proposition 3.4, this process satisfies (1), (2), (7), and (28).

Since processes (Xt ) and (Yt ) satisfy (1), (2), (7), and (28) with the same param-
eters q, θ, τ , and the distribution of (Yt ) is determined uniquely by moments, there-
fore by Proposition 2.4 the processes have the same finite dimensional distributions.
This establishes our main result.

Theorem 3.5. Let (Xt )t≥0 be a separable square integrable stochastic process
which satisfies conditions (1), (2), (6), and (7). Suppose that the coefficient D in
(6) satisfies D(s, t, u) �= 0 for all 0 ≤ s < t < u, and that 1, Xt ,X2

t are linearly
independent for all t > 0. Then there are parameters −1 < q ≤ 1, θ ∈ R, and
τ ≥ 0 such that (Xt ) is a Markov process, with the transition probabilities (43),
X0 = 0.

Conversely, for any −1 < q ≤ 1, τ ≥ 0, θ ∈ R, the Markov process with
transition probabilities (43) satisfies (1), (2), (6), and (7).

Remark 3.1. If 1, Xu,X2
u are linearly dependent, then the coefficients in (6) are not

unique; in particular, one can modify β(s, t, u) and C(s, t, u) to getD(s, t, u) = 0
for all s < t < u, and the assumption D �= 0 makes little sense. However, this can
sometimes be circumvented, see Theorem 4.1.

Remark 3.2. For q = 1, expression (28) depends on the increments of (Xt ) only,
i.e., it takes the form analyzed in [32, Theorem 1], see also Theorem 4.2. It is tempt-
ing to use this case as a model and define the q-generalizations of the five types of
Lévy processes determined in [32]:

(i) q-Wiener processes: τ = 0, θ = 0.
(ii) q-Poisson type processes: τ = 0, θ �= 0.

(iii) q-Pascal type processes: τ > 0, θ2 > 4τ .
(iv) q-Gamma type processes: τ > 0, θ2 = 4τ .
(v) q-Meixner type processes: θ2 < 4τ .

Some of these generalizations have already been studied in the non-commutative
probability; for the q-Brownian motion see [11], for the q-Poisson process see [6],
[22], [24], and the references therein.Anshelevich [5, Remark 6] states a recurrence
which is equivalent to (38) for s = 0, x = 0; the latter, written as (44), plays the
role in our proof of Theorem 3.5.

However, it is also possible that for |q| < 1 the differences between these pro-
cesses are less pronounced; when q = 0, the transition probabilities in Theorem 4.3
share the continuous component and its discrete components also admit a common
interpretation, dispensing with the “cases”. The case of q = 0 is especially interest-
ing, as it corresponds to certain free Lévy processes. As we already pointed out in
the introduction, all free Lévy non-commutative processes have classical Markov
versions by [10, Theorem 3.1].
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4. Some special cases and examples

As we already mentioned in the introduction, some of the examples we encounter
are classical versions of the non-commutative processes that already have been
studied. It might be useful to clarify terminology. A non-commutative (real) pro-
cess (Xt )t∈[0,∞) is a family of elements of a unital ∗-algebra A equipped with a
state (i.e., normalized positive linear functional) � : A → C such that X∗

t = Xt .
A classical version of a non-commutative process (Xt ) is a stochastic process (Xt )
such that for every finite choice 0 ≤ t1 ≤ t2 ≤ · · · ≤ tk the corresponding moments
match:

�(Xt1 . . .Xtk ) = E(Xt1 . . . Xtk ). (54)

If
∑
an�(X2n

t )/2n! < ∞ for some a > 0, i.e.,Xt has finite exponential moments,
this condition determines uniquely the finite-dimensional distributions of (Xt ). Of
course, the left hand side of (54) depends on the order of {tj }, which cannot be
permuted.

4.1. q-Brownian process

For −1 ≤ q ≤ 1, the classical version of the q-Brownian motion, see [11, Defi-
nition 3.5 and Theorem 4.6], is a Markov process with the transition probabilities
Ps,t (x, dy) for 0 < s < t given by





1

2

(
1 +

√
s/t
)
δx

√
t/s (dy)+ 1

2

(
1 −

√
s/t
)
δ−x√t/s (dy) if q = −1,√

1 − q

2π
√

4t − (1 − q)y2

×∏∞
k=0

(t−sqk)(1−qk+1
)(
t (1+qk)2−(1−q)y2qk

)

(t−sq2k)2−(1−q)qk(t+sq2k)xy+(1−q)(sy2+tx2)q2k dy if − 1 < q < 1,

1√
2π(t − s)

exp

(

− (y − x)2

2(t − s)

)

dy if q = 1.

(55)

The support consists of two-point ±
√
t√
s
x when q = −1, and is bounded |y| <

2
√
t/

√
1 − q when −1 < q < 1.

The univariate distribution of Xt, t > 0 is given by the transitions P0,t (0, dy)
from X0 = 0, which are given by





1
2δ

√
t (dy)+ 1

2δ−√
t (dy) if q = −1,

√
1−q

2π
√

4t−(1−q)y2

∏∞
k=0

(
(1 + qk)2 − (1 − q)

y2

t
qk
)

× ∏∞
k=0(1 − qk+1) if − 1 < q < 1,

1√
2πt

exp(− y2

2t ) dy if q = 1.

(56)
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The following shows that theq-Brownian motion is characterized by the assump-
tion that conditional variances are quadratic, coupled with the additional assumption
that for t < u the conditional variances Var(Xt |F≥u) are non-random.

Theorem 4.1. Suppose that (Xt )t≥0 is a square-integrable separable process such
that (1), (2), (6), (7) hold true, and in addition

Var(Xt |F≥u) = t

u
(u− t), (57)

for all t < u. Then there exists q ∈ [−1, 1] such that

Var(Xt |F≤s ∨ F≥u) = (t − s)(u− t)

u− qs

(
(1 − q)

(u− s)2
(Xu −Xs)(sXu − uXs)+ 1

)

.

(58)

Moreover, then (Xt ) is Markov with transition probabilities (55) and (56). Con-
versely, a Markov process, X0 = 0, with the transition probabilities given by (55)
satisfies conditions (2), (6), (7), and (57).

Proof. Formulas (7) and (8) hold true with τ = θ = 0 by assumption. The proof
of (30) relies only on these two formulas. Therefore, E(X4

t ) = (2 + q)t2 for some
−1 ≤ q ≤ 1. In particular, q = −1 iff (E(X2

t ))
2 = E(Xt)

4, i.e., Xt = ±√
t with

equal probabilities. We need to consider separately cases q = −1 and q > −1.
If q = −1, the joint moments are uniquely determined from (4). Namely,

if s < t and m is odd then E(Xmt |F≤s) = t (m−1)/2E(Xt |F≤s) = t (m−1)/2Xs .
This determines all mixed moments uniquely: if n1, . . . , nk are even numbers,
m1,m2, . . . , m� are odd numbers, s1 < s2 < · · · < s�, and � is even then we have

E
(
X
n1
t1
X
n2
t2
. . . X

nk
tk
Xm1
s1
Xm2
s2
. . . Xm�s�

) =
k∏

j=1

t
nj /2
j

�/2∏

j=1

(
s
(m2j−1+1)/2
2j−1 s

(m2j−1)/2
2j

)
.

If � is odd, then E
(
X
n1
t1
X
n2
t2
. . . X

nk
tk
X
m1
s1 X

m2
s2 . . . X

m�
s�

) = 0. Since the same holds
true for the two-valued Markov chain, and its conditional variance can be written
as (58), this ends the proof when q = −1.

If −1 < q ≤ 1, then 1, Xt ,X2
t are linearly independent for all t > 0. To apply

Theorem 3.5 we need to verify that D(s, t, u) �= 0 for all s < t < u. Suppose
D(s, t, u) = 0 for some 0 ≤ s < t < u. Inspecting the proof of Lemma 2.3 we see
that equations (7), (16) (which hold true by assumption) and linear independence
imply (23),(24), (25), (26), and (27) with D = 0.

We now use these values and the value E(XsX2
t Xu) to derive a contradiction.

Notice that (4) and (5) imply that E(XsX2
t Xu) = s/tE(X4

t ) = (2 + q)st . On the
other hand, since E(X3

t ) = 0 and D = 0, from (6) we get

E(XsX
2
t Xu) = AE(X4

s )+ BE(X2
s X

2
u)+ s

u
CE(X4

u).

Since E(X4
s ) = (2 + q)s2, and A,B,C are given explicitly, a calculation shows

that this equation holds true only if (u− t)(t − s) = 0. ThusD(s, t, u) �= 0 for all
0 ≤ s < t < u.
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This shows that the assumptions of Theorem 3.5 are satisfied. Theorem 3.5
shows that Xt is Markov with uniquely determined transition probabilities. For-
mulas (55) and (56) give the distribution which orthogonalizes the corresponding
Al-Salam–Chihara polynomials, see [8]. 	

4.2. Lévy processes with quadratic conditional variance

A special choice of the coefficients in (6) casts the conditional variance as a qua-
dratic function of the increments of the process,

Var(Xt |F≤s ∨ F≥u) = C2(Xu −Xs)
2 + C1(Xu −Xs)+ C0, (59)

whereC0 = C0(s, t, u), C1 = C1(s, t, u), C2 = C2(s, t, u) are deterministic func-
tions of s < t < u.

As an application of Theorem 3.5, we give the following version of [32, Theorem
1].

Theorem 4.2 (Wesolowski). Let (Xt )t≥0 be a square integrable separable sto-
chastic process such that the conditions (1), (2), and (59) hold true, and C2 �= ab.
If for every t > 0 the distribution of Xt has at least 3 point support, then there are
numbers θ ∈ R, τ ≥ 0 such that the conditional variance (59) is given by

Var(Xt |F≤s ∨ F≥u) = (u− t)(t − s)

u− s + τ

(

τ
(Xu −Xs)

2

(u− s)2
+ θ

Xu −Xs

u− s
+ 1

)

.

(60)

Moreover, one of the following holds:

(i) τ = 0, θ = 0, and (Xt ) is the Wiener processes,

E(exp(iuXt )) = exp(−tu2/2).

(ii) τ = 0, θ �= 0, and (Xt ) is a Poisson type processes,

E(exp(iuXt )) = exp

(
t

θ2 e
iuθ − i

ut

θ

)

.

(iii) τ > 0 and θ2 > 4τ , and (Xt ) is a Pascal (negative-binomial) type process,

E(exp(iuXt )) = (p exp(iuδ1)+ (1 − p) exp(iuδ2))
−t/τ ,

where δ1 < δ2 are the roots of 1 − θx + τx2 = 0 and p = 1 − δ1/δ2.
(iv) τ > 0 and θ2 = 4τ , and (Xt ) is a Gamma type process,

E(exp(iuXt )) = exp
(
−2iut/θ2

)(

1 − i
uθ

2

)−4t/θ2

.

(v) θ2 < 4τ , and (Xt ) is a Meixner (hyperbolic-secant) type process,

E(exp(iuXt )) = exp

(

−i uθt
2τ

)(

cosh(

√
4τ − θ2u

2
)

+i θ√
4τ − θ2

sinh(

√
4τ − θ2u

2
)

)−t/τ
.
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Proof. We verify that the assumptions of Theorem 3.5 are satisfied.
Assumption (59) implies that (6) holds true with parametersA = C2 +a2, B =

2ab − 2C2, C = C2 + b2, and α + β = 0. Therefore, A + B + C = 1, which
together with (17) implies (27). Since C2 �= ab is the same as C �= b, the latter
implies that D �= 0. Thus we can use Lemma 2.2. From (18) we get (7). Theorem
3.5 implies that (Xt ) is a Markov process with the transition probabilities which are
identified uniquely from their orthogonal polynomials, see [18, Ch VI.3]; see also
[26, Sections 4.2 and 4.3]. In particular, (Xt ) has independent and homogeneous
increments, with the distribution of Xt+s −Xs ∼= Xt as listed in the theorem.

From separability, the usual properties of the trajectories of the Wiener and
Poisson processes follow. 	


4.3. Free Lévy processes with quadratic conditional variance

A special choice of the coefficients in (6) leads to the following conditional variance

Var(Xt |F≤s ∨ F≥u)

= ab

(
(Xu −Xs)(sXu − uXs)

u+ τ
+ τ

(Xu −Xs)
2

(u− s)2
+ θ

Xu −Xs

u− s
+ 1

)

, (61)

where a, b are the coefficients from (2). This formula seems hard to separate by
natural assumptions from the general expression (28), but the fact that q = 0 leads
to considerable computational simplifications. Theorem 3.5 in this setting takes the
following form, with explicit foarmulas for the transition probabilities.

Theorem 4.3. Let (Xt )t≥0 be a square integrable separable stochastic process
such that the conditions (1), (2), and (61) hold true. If for every t > 0 the distri-
bution of Xt has at least 3 point support, then (Xt ) is a Markov process with the
transition probabilities Ps,t (x, dy) given for 0 ≤ s < t by the Stieltjes-Cauchy
transform

∫

R

1

z− y
Ps,t (x, dy)

= 1

2

(t + s + 2τ)(z− x)+ (t − s)θ − (t − s)
√
(z− θ)2 − 4(t + τ)

τ (z− x)2 + θ(t − s)(z− x)+ tx2 + sz2 − (s + t)xz+ (t − s)2
. (62)

The absolutely continuous part of Ps,t (x, dy) is given by the density

1

2π

(t − s)
√

4(t + τ)− (y − θ)2

τ(y − x)2 + θ(t − s)(y − x)+ tx2 + sy2 − (s + t)xy + (t − s)2
,

supported on (y − θ)2 < 4(t + τ); the singular part is zero, and the discrete part
is zero except for the following cases.

(i) τ = 0, θ �= 0. Then the discrete part of Ps,t (x, dy) is non-zero only for
x = −s/θ, 0 < s < t < θ2 and is then

1 − t/θ2

1 − s/θ2 δ−t/θ .
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(ii) τ > 0 and θ2 > 4τ . Then the discrete part of Ps,t (x, dy) is non-zero only if
x = y∗(s) and is then

(
1 − t

2τ
|θ |−√

θ2−4τ√
θ2−4τ

)+

1 − s
2τ

|θ |−√
θ2−4τ√

θ2−4τ

δy∗(t),

where

y∗(t) =
{

−t θ−
√
θ2−4τ
2τ if θ > 0

−t θ+
√
θ2−4τ
2τ if θ < 0

.

Proof. From (61) it follows thatD = ab �= 0 andA+B+C = 1. Since 1, Xt ,X2
t

are linearly independent by assumption, from (18) we deduce (7). Thus by Theorem
3.5, (Xt ) is a Markov process with the transition probabilities defined by (38). It
remains to find the Cauchy-Stieltjes transform of the distribution.

It is well known that the Cauchy-Stieltjes transform

Gx,s,t (z) =
∫

R

1

z− y
Ps,t (x, dy)

is given by the continued fraction expansion associated with the orthogonal poly-
nomials, [18, page 85]. The initial polynomials are

Q0(y) = 1, Q1(y) = y − x, Q2(y) = y2 − (x + θ)y + θx − (t − s).

For n ≥ 2, we have

yQn(y) = Qn+1(y)+ θQn(y)+ (t + τ)Qn−1(y),

so for n ≥ 2 this is a constant-coefficients recurrence. Thus the corresponding
continued fraction is

Gx,s,t (z) = 1

z− x − t − s

z− θ − t + τ

z− θ − t + τ

. . .

.

This gives

Gx,s,t (z) = 1

z− x − t − s

φ(z)

,

where

φ(z) = z− θ +
√
(z− θ)2 − 4(t + τ)

2
solves the quadratic equation

φ(z) = z− θ − t + τ

φ(z)
.
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The branch of the root should be taken so that the imaginary parts satisfy
�(z)�(Gx,s,t (z)) ≤ 0. This branch should be taken as the regular branch when
θ > x (with the cut from −∞ to 0), and as the negative of the regular branch when
θ < x.

To get the explicit transition probabilities, we use the Stieltjes inversion for-
mula: Ps,t (x, dy) is the weak limit limε→0+ − 1

π
�G(y + iε)dy, see [1, page 125],

[18, (4.9)], [30, (65.4)].
For computational purposes, the following form is more convenient

Gx,s,t (z) = 1

2

(t + s + 2τ)(z− x)+ (t − s)θ − (t − s)
√
(z− θ)2 − 4(t + τ)

τ (z− x)2 + θ(t − s)(z− x)+ tx2 + sz2 − (s + t)xz+ (t − s)2
.

The calculations are cumbersome but routine, and an equivalent calculation has
been done by several authors, see [25, Theorem 2.1], [5, Theorem 4 ]. To get the
answer given above, one relies on Markov property to determine the values of x
which can be reached from 0 at time s. 	

Remark 4.1. The transition probabilities from Theorem 4.3 can be cast into the
form resembling Theorem 4.2. Since the continuous part varies smoothly as we
vary the parameters, the main distinctions between the “five” processes are in the
presence of the discrete component. Accordingly, we have the following cases:

(i) τ = 0, θ = 0, and (Xt ) is the free Brownian motion with the law ofXt given
by

1

2πt

√
4t − x2 1x2≤4t dx,

see [10, Section 5.3].
(ii) τ = 0, θ �= 0, and (Xt ) is a free Poisson type processes with the law of Xt

given by
(

1 − t/θ2
)+
δ−t/θ (dx)+ 1

2π

1

θx + t

√
4t − (x − θ)2 1(x−θ)2≤4t dx,

compare [29, Section 2.7].
(iii) τ > 0 and θ2 > 4τ , and (Xt ) is a free Pascal (Negative binomial) process

with the law of Xt given by

p∗(t)δx∗ + 1

2π

t

τx2 + tθx + t2

√
4(t + τ)− (x − θ)2 1(x−θ)2≤4(t+τ) dx,

where

p∗(t) =
(

1 − t

2τ

|θ | − √
θ2 − 4τ√

θ2 − 4τ

)+
,

and

x∗(t) =






t (
√
θ2 − 4τ − θ)/(2τ) if θ > 0,

−t (√θ2 − 4τ + θ)/(2τ) if θ < 0,

compare [5, Theorem 4 ].
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(iv) τ > 0 and θ2 = 4τ and (Xt ) is a free Gamma type process with the law of
Xt given by

1

2π

4t

(xθ + 2t)2
√

4t + θ2 − (x − θ)2 1(x−θ)2≤4t+θ2 dx,

compare [5, Theorem 4 ].
(v) θ2 < 4τ , and (Xt ) is a free Meixner (hyperbolic-secant) type process with

the law of Xt given by

1

2π

t

τx2 + tθx + t2

√
4(t + τ)− (x − θ)2 1(x−θ)2≤4t dx,

compare the “Continuous Binomial process” in [5, Theorem 4 ].

We remark that these measures occurred in the literature. The free Brownian and
free Poisson processes have been studied in considerable detail, see [29] and the
references therein. Symmetric free Meixner distribution appears in [13, Theorem
3], and in [12]. According to [25, Theorem 3.2(2)], these laws are infinitely divis-
ible with respect to the free convolution, with explicit Lévy representations. All
five distributions occur in Anshelevich [5, Theorem 4]; Anshelevich also points out
that the correspondence between the classical and free Levy processes based on the
values of parameters θ, τ does not match the Bercovici-Pata bijection.

4.4. Binomial Example

The coefficients in (2) and (6) alone do not determine the distribution of a process,
and (2) and (6) may be satisfied by processes with univariate distributions different
than those listed in Theorem 3.5.

Proposition 4.4. Let p : [0,∞) → [0,∞) be such that
∫∞

0 p(x) dx < 1. Fix

m ∈ N and let π(s, t) = ∫ t
s
p(x) dx. The Markov process (Ys)s≥0 with Y0 = 0

and the transition probabilities

P(Yt = j |Ys = i) = (m− i)!

(j − i)!(m− j)!

(π(s, t))j−i (1 − π(0, t))m−j

(1 − π(0, s))m−i ,

for 0 ≤ i ≤ j ≤ m and any 0 ≤ s < t , satisfies (2) and (6) with the coefficients
that do not depend on the parameter m ∈ N. Namely,

E(Yt |F≤s ∨ F≥u) = π(t, u)

π(s, u)
Ys + π(s, t)

π(s, u)
Yu (63)

and

Var(Yt |F≤s ∨ F≥u) = π(s, t)π(t, u)

(π(s, u))2
(Yu − Ys). (64)



Conditional moments of q-Meixner processes 439

Proof. We first show that the transition probabilities are consistent. For any 0 ≤
s < t < u and integers i, n ≥ 0, i + n ≤ m

P(Yu = i + n|Ys = i)

=
n∑

j=0

P(Yu = i + n|Yt = i + j)P (Yt = i + j |Ys = i)

=
n∑

j=0

(m− i)! (π(t, u ))n−j (1 − π(0, u ))m−i−n (π(s, t ))j

j !(n− j)!(m− i − n)! (1 − π(0, s ))m−i

= (m− i)! (1 − π(0, u))m−i−n

n!(m− i − n)! (1 − π(0, s))m−i

n∑

j=0

(
n

j

)

(π(s, t))j (π(t, u))n−j

= (m− i)!

n!(m− i − n)!

(1 − π(0, u))m−i−n

(1 − π(0, s))m−i (π(s, t)+ π(t, u))n .

= (m− i)!

n!(m− i − n)!

(1 − π(0, u))m−i−n

(1 − π(0, s))m−i (π(s, u))n .

Then the joint distribution of (Ys, Yt , Yu) is given by

P(Yu = i + j + k, Yt = i + j, Ys = i)

= P(Yu = i + j + k|Yt = i + j)P (Yt = i + j |Ys = i)P (Ys = i|Y0 = 0)

=
(
m− i − j

k

)
(π(t, u))k (1 − π(0, u))m−i−j−k

(1 − π(0, t))m−i−j

×
(
m− i

j

)
(π(s, t))j (1 − π(0, t))m−i−j

(1 − π(0, s))m−i

×
(
m

i

)

(π(0, s))i (1 − π(0, s))m−i

= m!

i!j !k!(m− i − j − k)!
(π(0, s))i (π(s, t))j (π(t, u))k

× (1 − π(0, u))m−i−j−k .

From this, it is easy to see that conditionally on Ys, Yu, the increment Yt − Ys
has the binomial distribution with Yu − Ys trials and the probability of success
π(s, t)/π(s, u), i.e.,

P(Yt = k + i|Ys = i, Yu = i + n) =
(
n

k

)(
π(s, t)

π(s, u)

)k (
π(t, u)

π(s, u)

)n−k
.

Therefore

E(Yt |Ys, Yu) = Ys + π(s, t)

π(s, u)
(Yu − Ys),

and (63) follows from the Markov property. Similarly, (64) is a consequence of
Markov property and the formula for the variance of the binomial distribution. 	
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Remark 4.2. For s ≤ t the conditional distribution of Yt − Ys given Ys is binomial
b(m− Ys, π(s, t)/(1 − π(0, s)), which gives

Cov(Ys, Yt ) = mπ(0, s) (1 − π(0, t)) .
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12. Bożejko, M., Leinert, M., Speicher, R.: Convolution and limit theorems for conditionally

free random variables. Pacific J. Math. 175, 357–388 (1996)
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