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Abstract. The limit theorems for certain stochastic processes generated by permanents of
random matrices of independent columns with exchangeable components are established.
The results are based on the martingale decomposition of a random permanent function sim-
ilar to the one known for U -statistics and on relating the components of this decomposition
to some multiple stochastic integrals.

1. Introduction

Denote by A = [aij ] an m × n real matrix with m ≤ n. Then a permanent of the
matrix A is defined by

Per A =
∑

(i1,... ,im): {i1,... ,im}⊂{1,... ,n}
a1 i1 . . . am im.

The permanent function has a long history, having been first introduced by
Cauchy in 1812 in his celebrated memoir on determinants. More recently, several
problems in statistical mechanics, quantum field theory and chemistry, as well as
enumeration problems in combinatorics and linear algebra have been reduced to
the computation of a permanent. Unfortunately, the fastest known algorithm for
computing a permanent of n × n matrix runs, as shown by Ryser [16], in O(n2n)

time. Moreover, strong evidence for the apparent complexity of the problem was
provided by Valiant [20] who showed that evaluating a permanent is #P -complete,
even when restricted to 0 − 1 matrix. In view of these results, the approxima-
tion theory for a permanent function in case of a large dimension of the matrix A

has become a very active area of research over past twenty years (for most recent
results for both random and non-random settings cf. e.g., Pate [12], Rempała and
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Wesołowski [15], Forbert and Marx [5], Coelho, and Duffner [4] and references
therein).

Let us note that if the entries of A satisfy aij = aj for 1 ≤ i ≤ m and 1 ≤ j ≤ n,
then Per A reduces, in essence, to an elementary symmetric polynomial of degree
m in variables a1, . . . , an. In probability theory a random permanent function is,
therefore, of interest since it can be viewed as a natural generalization of a concept
of a random elementary symmetric polynomial, i.e., a U -statistic based on the prod-
uct kernel which asymptotic behavior has been intensely studied (cf. e.g., Székely
[18], Móri and Székely [11], van Es and Helmers [21] or Székely and Szeldi [17]).

In the present work we shall be concerned with the setting where A = X
(n) =

[Xij ] is an m×n (m ≤ n) real random matrix of square integrable components and
such that its columns are build from the first m terms of independent identically dis-
tributed (iid) sequences (Xi,1)i≥1, (Xi,2)i≥1, . . . , (Xi,n)i≥1 of exchangeable random
variables (r.v.’s). Note that under these assumptions all entries of the matrix X

(n)

are identically distributed, albeit not necessarily independent. For i, k = 1, . . . , m

and j = 1, . . . , n we denote µ = E Xij , σ 2 = V ar Xij and ρ = Corr(Xkj , Xij ).
Observe that, via De-Finetti’s theorem, necessarily ρ ≥ 0. Assuming in the sequel
that µ �= 0 we denote additionally by γ = σ/µ the variation coefficient. Finally,

we let N denote a standard normal rv and
d→ stand for convergence in distribution.

In what follows m = mn ≤ n is always a non-decreasing sequence. In this notation
we derive herein the following.

Theorem 1 (Approximation theorem for random permanents).

(i) Suppose that ρ = 0.
If m/n → λ > 0 as n → ∞ then

1(
n
m

)
m!µm

Per (X (n))
d→ exp(

√
λγN − λγ 2/2).

If m/n → λ = 0 and m = mn → ∞ as n → ∞ then

√
n

m

(
Per (X (n))(

n
m

)
m!µm

− 1

)
d→ γN .

(ii) Suppose that ρ > 0.
If m2/n → λ > 0 as n → ∞ then

1(
n
m

)
m!µm

Per (X (n))
d→ exp(

√
λργN − λργ 2/2).

If m2/n → λ = 0 and m = mn → ∞ as n → ∞ then

√
n

m

(
Per (X (n))(

n
m

)
m!µm

− 1

)
d→ √

ργN .
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This general result extends and gives the common ground to some special cases
of the above reported at various times in the literature. See, for instance, van Es
and Helmers [21], Korolyuk and Borovskikh [8], Janson [7], and Rempała and
Wesołowski [13]. As a motivation for the potential applicability of the result, con-
sider the following simple example.

Example 1. Counting matchings in a bipartite random graph. Let Gm,n,p =
(V1, V2; E) be a bipartite random graph with V1 = {r1, r2, . . . , rm}, V2 =
{c1, c2, . . . , cn}, (m ≤ n) and E ⊂ V1 ×V2. Assume that the edges occur indepen-
dently with a fixed probability 0 < p < 1. In this setting, the reduced adjacency
matrix of Gm,n,p is a random m × n matrix X = [Xi,j ] of independent Bernoulli
B(p) random variables. If m = n it is well known (cf. e.g.,[2] chapter 7) that the
number of perfect matchings in Gn,n,p, equals Per(X). Extending the concept of
a perfect matching to the case when m < n, we shall say that a matching is fully
saturating if it saturates the set V1. Denoting the number of fully saturating match-
ings by H(Gm,n,p) we have again H(Gm,n,p) = Per(X). Observe that according
to our earlier notation we have µ = p, γ = √

(1 − p)/p. Note also that in this
particular case the distribution of H(Gm,n,p) is the same as that of a random vari-
able m!

(
Tmn

m

)
, where Tmn is a binomial b(mn, p). From Theorem 1 it follows now

that if n, m → ∞ and m/n → λ > 0 then

H(G, m, n, p)(
n
m

)
m!pm

d→ exp(
√

λγN − λγ 2/2).

On the other hand, if n − m → ∞ and m/n → 0 then,
√

mp

n(1 − p)

(
H(G, m, n, p)(

n
m

)
m!pm

− 1

)
d→ N .

In the case m = n the first of the above relations was noted, in a slightly different
form, in [7].

In the current paper we show that the assertions of Theorem 1 are consequences
of the corresponding functional limit theorems based on some general results from
the stochastic integration theory. For a different approach see [15]. In order to con-
sider a functional version of Theorem 1 we extend the definition of a permanent
function to a stochastic process (in the sequel referred to as “permanent stochastic
process” or PSP) in a manner similar to that of extending the concept of a “U -
statistic” to a “U -process” (see [10]). That such a construction is possible follows
from the orthogonal decomposition of a random permanent introduced in Rempała
and Wesołowski [14], similar to the famous Hoeffding decomposition for U -statis-
tics (cf, e.g., [10]) and, in fact, being in some sense its natural extension. In order
to obtain the final result we first derive a general limit theorem for the elementary
symmetric polynomial process (ESPP) based on a triangular array of rowwise inde-
pendent, zero mean, square integrable random variables (rv’s). Our theorem in the
special case of the independent, identically distributed (iid) sequence of random
variables reduces to the one obtained in Móri and Székely [11] and Kurtz and Prot-
ter [9]. For a concise proof, we adapt to our setting the idea of Kurtz and Protter
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taken from [9] (referred to as KP in the sequel) of representing ESPP as a multiple
stochastic integral.

The paper is organized as follows. In the reminder of this section we define PSP
via orthogonal decomposition of a permanent. In Section 2 we recall some basic
facts from the stochastic integration theory and then derive the invariance princi-
ple for an ESPP via stochastic integrals convergence theorem of KP. The result
is presented as Theorem 2. In Section 3 we relate the results of Section 2 to the
asymptotic behavior of the component processes of PSP (Proposition 1). Once this
result is established the results for PSP’s follow via the truncation-type argument
along with the basic properties of the Prohorov distance and the martingale prop-
erties of the component processes. These are the main results of the paper and are
presented in the last two theorems of Section 3. In particular, from the theorems of
Section 3 the approximation theorems of Rempała and Wesołowski quoted above
follow immediately.

To define the appropriate random functions related to permanents, let us first
note the following useful representation of a random permanent. Namely, it has
been proved in [14] that

Per X
(n)

(
n
m

)
m!µm

= 1 +
m∑

c=1

(
m

c

)
U(m,n)

c , (1)

where

U(m,n)
c =

(
n

c

)−1(
m

c

)−1

c!−1
∑

1≤i1<...<ic≤m

∑

1≤j1<...<jc≤n

Per [X̃iujv ] u = 1, . . . , c

v = 1, . . . , c

,

for X̃ij = Xij /µ − 1, i = 1, . . . , m, j = 1, . . . , n. Moreover, the U
(m,n)
c ’s are

orthogonal, i.e.,

Cov
(
U(m,n)

c1
, U(m,n)

c2

)
= 0 for c1 �= c2. (2)

as well as

V ar U(m,n)
c =

(
n

c

)−1(
m

c

)−1

γ 2c
c∑

r=0

(
m − r

c − r

)
ρc−r (1 − ρ)r

r!
. (3)

Extending the definition of orthogonal components U
(m,n)
c (c=1,2, . . . ) to

random functions is straightforward. For any real number x let [x] denote the larg-
est integer less or equal to x. Then for any c=1,2, . . . and for any t ∈ [0, 1] such
that c ≤ [nt] let us define

U(m,n)
c (t) = 1(

n
c

)(
m
c

)
c!

∑

1≤i1<...<ic≤m

∑

1≤j1<...<jc≤[nt]

Per [X̃iujv ] u = 1, . . . , c

v = 1, . . . , c

,

and put U
(m,n)
c (t) = 0 if c > [nt].
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Now, the decomposition (1) suggests that on the interval [0, 1] we may define
the stochastic process associated with Per (X (n)), say PSP X

(n)(·), by the relation

PSP X
(n)(t) =

(
n

m

)
m! µm

[
1 +

m∑

c=1

(
m

c

)
U(m,n)

c (t)

]
t ∈ [0, 1].

It follows from (1) that the trajectory of PSP X
(n)(·) coincides with a perma-

nent function for t = 1, i.e.,

PSP X
(n)(1) = Per (X (n)). (4)

2. Weak Convergence of the ESPP

In this section we derive a general result on weak convergence of ESPP based on
any rowwise independent (i.e., independent across any row) triangular array of zero
mean, square integrable rv’s. The result can be viewed as the extension of Dons-
ker’s central limit theorem. Recall that in accordance with our initial convention
here and elsewhere the symbol

d→ denotes weak convergence.

Theorem 2. Let Yl,k , k = 1, . . . , l, l = 1, 2, . . . , be a double array of square
integrable, zero-mean, rowwise independent rv’s. Assume that

lim
l→∞

1

l

l∑

k=1

V ar Yl,k = σ 2 > 0, (5)

∀ ε > 0 lim
l→∞

1

l

l∑

k=1

E Y 2
l,kI {|Yl,k| > ε

√
l} = 0. (6)

Then, for any positive integer c,

[(
S

(l)
[lt](1)√

l

)

t∈[0,1]

, . . . ,

(
S

(l)
[lt](c)

(
√

l)c

)

t∈[0,1]

]T

d→ (7)

d→
[(

σ t1/2

1!
H1(Bt/

√
t)

)

t∈[0,1]
, . . . ,

(
σctc/2

c!
Hc(Bt/

√
t)

)

t∈[0,1]

]T

in the Skorokhod space DRc ([0, 1]), where

S
(l)
[lt](j) =

∑

1≤k1<...<kj ≤[lt]

Yl,k1 . . . Yl,kj
,

is an elementary symmetric polynomial of degree j (where a sum over empty set of
indices is taken as zero), Hj is the j -th Hermite polynomial with leading coefficient
equal to one, j = 1, 2, . . . , and B = (Bt )t∈[0,1] is the standard Brownian motion.
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Remark 1. The asymptotic distribution of l−c/2 S
(l)
[lt](c) for fixed c and iid rv’s

appears in Móri and Székely [11]. The relation (7), again for iid rv’s only, appears
in KP.

Remark 2. The above theorem can be also viewed as a functional version of the
result on elementary symmetric polynomial statistics in [15].

Several different ways of proving the statement (7) are possible. In particular,
the approach utilizing the Newton identities along with some properties of elemen-
tary symmetric polynomials and the Marcinkiewicz-Zygmund-type law of large
numbers could be adapted to the present setting. However, a somewhat simpler
proof is also possible, based on a quite general result on the convergence of sto-
chastic integrals, due to KP (see also Jakubowski, Memin and Pagés [6]) . We have
chosen the latter approach below since the application of the stochastic integrals
theory allows us to present a more concise argument, avoiding many technical
details that otherwise would need to be addressed.

In order to proceed we shall recall first some basic facts and definitions. Let
F = (Ft )t∈[0,1] be a filtration in a probability space (�, F, P ). If Y = (Yt )t∈[0,1]
is a right continuous F martingale then its quadratic variation process ([Y ]t )t∈[0,1]
is defined for any t ∈ [0, 1] by

n∑

k=1

(Y
u

(n)
k+1

− Y
u

(n)
k

)2 P→ [Y ]t ,

where (u
(n)
k ) is a sequence of (non-random) partitions of [0, t] such that maxk(u

(n)
k+1−

u
(n)
k ) → 0 as n → ∞. Denote by DRk the Skorokhod space of cadlag functions on

[0, 1] with values in Rk . Let Y be an F martingale with trajectories in DR and let
X = (Xt )t∈[0,1] be an F adapted process with trajectories in DRk . Then, following
KP we define the stochastic integral as a limit in probability of the Riemann-Stieltjes
sums ∫ t

0
Xs dYs = lim

∑
Xti

(n) (Y
t
(n)
i+1

− Yti
(n) ),

for (non-random) partitions (t
(n)
i ) of [0, t] such that max(t

(n)
i+1 − t

(n)
i ) converges to

zero. The integral exists if the respective limit in probability of the Riemann-Stielt-
jes sums exists. We will use the notation

∫
X dY for the process (

∫ t

0 Xs dYs)t∈[0,1].
The version of the convergence result for stochastic integrals which suits our

purposes can be formulated in the following way (cf. Theorem 2.2 in [9]).

Theorem 3 (KP). Assume that (X, Y ), (X1, Y1), (X2, Y2), . . . are pairs of sto-
chastic processes such that trajectories of the their first components are in DRk and
trajectories of the second components are in DR. Let Yn be a martingale with respect
to a filtration Fn, n = 1, 2, . . . , and supn≥1 E([Yn]t ) < ∞ for any t ∈ [0, 1], where
([Yn]t )t∈[0,1] is the quadratic variation process for the square integrable martin-
gale Yn. Assume also that the process Xn is Fn adapted, n = 1, 2, . . . If (Xn, Yn)

converges weakly to (X, Y ) in DRk+1 then (Xn, Yn,
∫

Xn dYn) converges weakly
to (X, Y,

∫
X dY) in DR2k+1 .
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We shall use the above result to give a simple proof of our Theorem 2. The idea
of representing elementary symmetric polynomials via stochastic integrals comes
from Example 3.1 of KP.

Proof. (of Theorem 2) Define for any k = 1, 2, . . . , c

Y (k)
n (t) = S

(n)
[nt](k)

(
√

n)k
t ∈ [0, 1].

Observe that

Y (k)
n =

∫
Y (k−1)

n dY (1)
n .

Also define

Y (k)(t) =
(

σktk/2

k!
Hk(Bt/

√
t)

)
t ∈ [0, 1].

Note that a simple application of Ito’s formula gives

Y (k) =
∫

Y (k−1) dY (1).

Let Z
(k)
n = [Y (1)

n , . . . , Y
(k)
n ], n = 1, 2, . . . and let Z(k) = [Y (1), . . . , Y (k)], k =

1, 2, . . . , c.
To prove that

Z(k)
n

d→ Z(k) ,

in the Skorokhod space DRk , k = 1, . . . , c, we use induction with respect to k.
The result for k = 1 follows in view of the conditions (5) and (6) which imply,

by the Donsker theorem for triangular arrays (see, e.g. Billingsley [1], page 194),

that Z
(1)
n = Y

(1)
n

d→ B = Y (1) in DR. Observe also that the process Y
(1)
n is a mar-

tingale since it is based on the summation of independent rv’s. Moreover, since the
process Y

(1)
n just cumulates jumps while remaining constant for given n in-between

jumps, then its quadratic variation is

[Y (1)
n ]t = n−1

[nt]∑

k=1

Y 2
n,k.

Consequently,

sup
n

E([Y (1)
n ]t ) = sup

n

[nt]σ 2

n
≤ tσ 2 .

Let us also note that all the processes Y
(k)
n ,k = 1, . . . , c, are adapted to the

same filtration, generated by Y
(1)
n ,n = 1, 2, . . . , and similarly, the processes Y (k),

k = 1, . . . , c, are adapted to the same filtration, generated by the Wiener process
B.
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Assume now thatZ(k−1)
n

d→ Z(k−1) inDRk−1 .Then, obviously, (Z(k−1)
n , Y

(1)
n )

d→
(Z(k−1), Y (1)) in DRk as Y

(1)
n and Y (1) are components of Z

(k−1)
n and Z(k−1), respec-

tively. Consequently, by the KP theorem it follows that

(Z(k−1)
n , Y (1)

n ,

∫
Z(k−1)

n dY (1)
n )

d→ (Z(k−1), Y (1),

∫
Z(k−1) dY (1)).

But the above convergence yields immediately the final result since (Y
(1)
n ,∫

Z
(k−1)
n dY

(1)
n ) = Z

(k)
n and (Y (1),

∫
Z(k−1) dY (1)) = Z(k). 
�

3. Convergence of the component processes

Recall that by definition

PSP X
(n)(t)(

n
m

)
m!µm

=
[

1 +
m∑

c=1

(
m

c

)
U(m,n)

c (t)

]
t ∈ [0, 1].

We shall first establish the limiting result for U
(m,n)
c (·) (c = 1, 2, . . . ).

To this end, let us consider for any c = 1, 2, . . . a process (W
(n)
c (t)) defined by

the following rescaling of U
(m,n)
c (t).

W(n)
c (t) =

(
n

c

)(
m

c

)
c! U(m,n)

c (t) =
∑

1≤i1<...ic≤m

∑

1≤j1<...jc≤[nt]

PSP [X̃iujv ](t) u = 1, . . . , c

v = 1, . . . , c

for t ∈ [c/n, 1] and W
(n)
c (t) = 0 for t ∈ [0, c/n). The reminder of this section is

devoted to the proof of the following

Proposition 1. Let c be an arbitrary positive integer. Assume that m = mn → ∞
as n → ∞.

If ρ = 0 then

[
W

(n)
1 (t)√
mn

, . . . ,
W

(n)
c (t)

(
√

mn)c

]T

t∈[0,1]

d−→



γ
√

tH1

(
Bt√

t

)

1!
, . . . ,

(γ
√

t)cHc

(
Bt√

t

)

c!




T

t∈[0,1]

in DRc .

If ρ > 0 then

[
W

(n)
1 (t)

m
√

n
, . . . ,

W
(n)
c (t)

(m
√

n)c

]T

t∈[0,1]

d−→



γ
√

ρtH1

(
Bt√

t

)

1!
, . . . ,

(γ
√

ρt)cHc

(
Bt√

t

)

c!




T

t∈[0,1]

in DRc .
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Proof. Consider first the case ρ = 0. For an arbitrary fixed positive integer c define
a process V

(n)
c by

V (n)
c (t) = n−c/2

∑

1≤j1<...<jc≤[nt]

Yn,j1 . . . Yn,jc

for t ∈ [c/n, 1], where

Yn,j = m−1/2
m∑

i=1

X̃i,j , j = 1, . . . , n,

and V
(n)
c (t) = 0 for t ∈ [0, c/n).

Observe that by Theorem 2 the convergence

[V (n)
1 (t), . . . , V (n)

c (t)]t∈[0,1]
d→



γ
√

tH1

(
Bt√

t

)

1!
, . . . ,

(γ
√

t)cHc

(
Bt√

t

)

c!




T

t∈[0,1]

, (8)

in DRc follows as soon as we verify (5) and the Lindeberg condition (6), which in
our current setting takes the form

E(Y 2
n,1I (|Yn,1| >

√
nε)) → 0

for any ε > 0 as n → ∞. To prove that the condition is satisfied observe first that

E (Y 2
n,1I (|Yn,1| >

√
nε)) ≤ sup

k≥1
E (Y 2

k,1I (Y 2
k,1 > nε2)).

Consequently, it suffices to show that the sequence of rv’s (Y 2
k,1)k≥1 is uniformly

integrable. To this end, let us note the following.

(i) By a central limit theorem for exchangeable sequences - see, e.g., Thm 2.1.2
p.30 in Taylor et al. [19] - it follows that Y 2

k,1 converges in distribution

to E (X̃2
1,1|F)N 2, where F is the σ -algebra of permutable events for the

exchangeable sequence (X̃i,1)i≥1, and N is a standard normal rv independent
of F , and

(ii) E (E (X̃2
1,1|F)N 2) = E (X̃2

1,1) = γ 2 which, on the other hand, equals

E (Y 2
1,k) for any k ≥ 1.

Hence, we conclude that the positive sequence of random variables (Y 2
k,1)k≥1 is uni-

formly integrable since it converges in distribution and the corresponding sequence
of expectations also converges (all being equal) to the suitable limit. This entails
(5) and (6) and thus, via Theorem 2, also (8).

Observe that for any k = 1, . . . , c

W
(n)
k (t)

(
√

mn)k
= V

(n)
k (t) − R

(n)
k (t)

(
√

mn)k
, (9)

where (R
(n)
k (t)) is a process such that for any t ∈ [k/n, 1] it is a sum of different

products X̃i1,j1 . . . X̃ik,jk
such that 1 ≤ j1 < . . . < jk ≤ [nt], (i1, . . . , ik) ∈
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{1, . . . , m}k and at least one of the indices i1, . . . , ik in the sequence (i1, . . . , ik)

repeats. For t ∈ [0, k/n) we define R
(n)
k (t) to be equal to zero.

Note that (R
(n)
k (t))t∈[0,1] is a martingale for any fixed n, in view of the assumed

independence of columns of X
(n). Consequently, by the maximal inequality,

P

(
sup

t∈[0,1]

|R(n)
k (t)|

(
√

mn)k
> ε

)
≤ E (R

(n)
k (1))2

ε2(mn)k
= V ar (R

(n)
k (1))

ε2(mn)k
.

Using the fact that R(n)
k (1) is a sum of orthogonal products (observe that the covari-

ance of any two of such different products equals zero since the columns are inde-
pendent and elements in each column have zero correlation) and that the variance
of any of such single product equals γ 2k while the number of products in R

(n)
k (1)

equals
(
n
k

)
(mk − (

m
k

)
k!) we obtain

V ar

(
R

(n)
k (1)

(
√

nm)k

)
= γ 2k

(
n
k

)
(mk − (

m
k

)
k!)

nkmk
≤ γ 2k

k!

mk − (
m
k

)
k!

mk
= O(1/m) → 0,

as n → ∞ (since the numerator is of order O(mk−1)).
Consequently, the c-variate process

[
R

(n)
1 (t)√
mn

, . . . ,
R

(n)
c (t)

(
√

mn)c

]T

t∈[0,1]

P→ 0

in DRc and thus the first result follows immediately by (8) and (9).
Next, let us consider the case ρ > 0.As above, let us define for any c = 1, 2, . . .

the process (V
(n)
c (t))t∈[0,1] by

V (n)
c (t) = n−c/2

∑

1≤j1<...<jc≤[nt]

Yn,j1 . . . Yn,jc ,

where

Yn,j = 1

m

m∑

i=1

X̃ij ,

j = 1, 2, . . . , n.
Similarly to the previous case, in order to apply the result of Theorem 2, we only

need to show that the Lindeberg condition (6) and the condition (5) are satisfied. As
above, we shall argue that the sequence (Y 2

k,1)k≥1 is uniformly integrable. To this
end, we observe first that by a version of the law of large numbers for exchangeable
sequences (see, e.g.,[3], Ch. 7, p.223 ) it follows that

Y 2
k,1

d→ E2(X̃1,1|F),

where F is the σ -algebra of permutable events. Further, by the de Finetti theorem,
we have
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E(E2(X̃1,1|F)) = E(E(X̃1,1|F)E(X̃2,1|F))

= E(E(X̃1,2X̃2,1|F)) = E(X̃1,1X̃1,2) = ργ 2.

We also note that

E(Y 2
k,1) = 1

m2 [mγ 2 + m(m − 1)ργ 2] → ργ 2 , m = mk → ∞.

Thus, the sequence (Y 2
k,1)k≥1 is uniformly integrable and the conditions (5) and

(6) of Theorem 2 are satisfied. This allows us to conclude that in the sense of the
appropriate Skorokhod space

[V (n)
1 (t), . . . , V (n)

c (t)]Tt∈[0,1]

d→
[
(
√

ρtγ )1

1!
H1(Bt/

√
t), . . . ,

(
√

ρtγ )c

c!
Hc(Bt/

√
t)

]T

t∈[0,1]
. (10)

Similarly to the previous case of uncorrelated components, for any k = 1, . . . , c,
we have

W
(n)
k (t)

mk(
√

n)k
= V

(n)
k (t) − R

(n)
k (t)

mk(
√

n)k
, (11)

however, note that this time some of the elements of R
(n)
k (1) are correlated - this

is true for the pairs of products originating from exactly the same columns; if at
least one column in the pair of products is different then their correlation is zero.
Consequently,

V ar

(
R

(n)
k (1)

mk
√

n
k

)
= 1

m2knk

∑

1≤j1<...jk≤n

V ar
(
Rj1,... ,jk

(n)
)

=
(
n
k

)

m2knk
V ar

(
R1,... ,k(n)

)
,

where Rj1,... ,jk
(n) denotes sum of respective products arising from the columns

j1, . . . , jk . Since

|Cov(X̃i1,j1 . . . X̃ik,jk
, X̃l1,j1 . . . X̃lk,jk

)| ≤ γ 2k

for any choices of rows (i1, . . . , ik) and (l1, . . . , lk), we conclude that

V ar
(
R1,... ,k(n)

)
<

(
mk −

(
m

k

)
k!

)2

γ 2k.

Hence, it follows that

V ar

(
R

(n)
k (1)

mk(
√

n)k

)
<

(
n
k

)
(mk − (

m
k

)
k!)2γ 2k

m2knk
<

γ 2k

k!

(mk − (
m
k

)
k!)2

m2k
→ 0
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as n → ∞. As before the process (R
(n)
k (t))t∈[0,1] is a martingale for fixed n and

thus once again the maximal inequality yields
[

R
(n)
1 (t)

m
√

n
, . . . ,

R
(n)
c (t)

(m
√

n)c

]T

t∈[0,1]

P−→ 0 in DRc .

Now, the second assertion of the theorem follows from (10) and (11) and the
proof of Proposition 1 is complete. 
�

4. Main results

Having established the result of Proposition 1 in the previous section, we are finally
in position to state our two main theorems which are functional versions of the lim-
iting result of Theorem 1. In particular, due to (4) they entail the latest.

To begin, we consider the case when the entries of matrix X are uncorrelated.

Theorem 4. Assume that ρ = 0 and let (Bt )t∈[0,1] denote the standard Brownian
motion.

If m/n → λ > 0 as n → ∞ then

(PSP X(n)(t))t∈[0,1](
n
m

)
m!µm

d→
(

exp

(√
λγBt − λtγ 2

2

))

t∈[0,1]
in DR. (12)

If m/n → 0 and m = mn → ∞ as n → ∞ then
√

n

m

(
(PSP X(n)(t))t∈[0,1](

n
m

)
m!µm

− 1

)
d→ γ (Bt )t∈[0,1] in DR. (13)

Proof. Consider first the case λ > 0. For any n and any N such that N < mn define
a process S(n)

N = (S
(n)
N (t))t∈[0,1] by

S
(n)
N (t) = 1 +

N∑

c=1

(
m

c

)
U(m,n)

c (t) = 1 +
N∑

c=1

(
√

mn)c(
n
c

)
c!

W
(n)
c (t)

(
√

mn)c
.

Observe that by the first assertion of Proposition 1 it follows that

(S
(n)
N (t))t∈[0,1]

d→ GN =
(

N∑

c=0

(λtγ 2)c/2

c!
Hc(Bt/

√
t)

)

t∈[0,1]

(14)

in DR as n → ∞, since for any c = 1, 2, . . .

(
√

mn)c(
n
c

)
c!

→ λc/2 .

Define also a process T(n)
N = (T

(n)
N (t))t∈[0,1] by

T
(n)
N (t) =

mn∑

c=N+1

(
m

c

)
U(m,n)

c (t) .
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And let G∞ = (G∞(t))t∈[0,1] be defined by

(G∞(t))t∈[0,1] =
( ∞∑

c=0

(λtγ 2)c/2

c!
Hc(Bt/

√
t)

)

t∈[0,1]

= exp

(√
λγBt − λtγ 2

2

)

t∈[0,1]

.

Let � denote the Prokhorov distance between the random elements in DR. Then

�(Z(n), G∞) ≤ �(Z(n), S(n)
N ) + �(S(n)

N , GN) + �(GN, G∞), (15)

where Z(n) = S(n)
N + T(n)

N . Let us note that for any t ∈ [0, 1]

PSP X(n)(t) =
(

n

m

)
m! µm Z(n)(t)

and that (14) implies �(S(n)
N , G

N
) → 0 as n → ∞ for any fixed N , as well as,

that we have �(GN, G∞) → 0 as N → ∞. Therefore, in order to argue that
�(Z(n), G∞) → 0 as n → ∞ we only need to show that �(Z(n), S(n)

N ) tends to zero
uniformly in n as N → ∞.

To this end observe that by the definition of the Prohorov distance

�(Z(n), S(n)
N ) ≤ inf{ε > 0 : P( sup

t∈[0,1]
|T (n)

N (t)| > ε) ≤ ε}.

On the other hand, as before, it is easy to see that due to the assumed indepen-
dence of columns of X

(n) the process T(n)
N is a martingale for fixed n, N and thus,

via the maximal inequality and the relations (2) and (3) for ρ = 0, we have for any
ε > 0

P( sup
t∈[0,1]

|T (n)
N (t)| > ε) ≤ ε−2V ar T

(n)
N (1) = ε−2

m∑

c=N+1

(
m
c

)
γ 2

(
n
c

)
c!

≤ ε−2
∞∑

c=N+1

γ 2c

c!
= ε−2 αN → 0

as N → ∞, which entails

�(Z(n), S(n)
N ) ≤ 3

√
αN → 0,

uniformly in n, as N → ∞ and hence, by (15) also �(Z(n), G∞) → 0 as n → ∞.
Thus, we conclude that Z(n) converges weakly to G∞ in DR.
For the proof in the case λ = 0, let us observe that

√
n

m

m∑

c=1

(
m

c

)
U(m,n)

c (t) = W
(n)
1 (t)√
mn

+ R(m,n)(t) , (16)

where

R(m,n)(t) =
√

n

m

m∑

c=2

(
m

c

)
U(m,n)

c (t).
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Observe that due to the independence of columns of the matrix X the process
(R(m,n)(t)) is a martingale for fixed values of m, n. Consequently, by the maximal
inequality we get

( sup
t∈[0,1]

|R(m,n)(t)| > ε) ≤ ε−2 V ar R(m,n)(1) = ε−2 n

m

m∑

c=2

(
m
c

)
γ 2c

(
n
c

)
c!

≤ m

n
exp(γ 2) → 0 (17)

and conclude that (R(m,n)(t)) converges to zero in probability in DR. Hence, the
final result follows now directly by Proposition 1. 
�

Remark 3. A quick inspection of the proof of the second part of the theorem reveals
that a slight modification of the argument shows the validity of the second part of
the hypothesis also for m remaining fixed. Indeed, note that since (17) holds for
fixed m thus in view of (16) it is enough to argue that the conclusion of Proposi-
tion 1 holds for W

(n)
1 (t)/

√
mn. This is immediate, however, upon noticing that in

(9) we have R
(n)
1 = 0 which entails

W
(n)
1 (t)/

√
mn = V

(n)
1 (t),

and hence Theorem 4 holds true for fixed m as well. In particular, let us note that
for m = 1 we obtain simply Donsker’s theorem.

The result of Theorem 4 is complemented with the corresponding one in the
case when ρ > 0.

Theorem 5. Assume that ρ > 0 and, as before, let (Bt )t∈[0,1] denote the standard
Brownian motion.

If m2/n → λ > 0 as n → ∞ then

(PSP X
(n)(t))t∈[0,1](

n
m

)
m! µm

d→ exp

(√
λρ γBt − λρ tγ 2

2

)

t∈[0,1]
in DR.

If m2/n → 0 and m = mn → ∞ as n → ∞ then

√
n

m

(
(PSP X(n)(t))t∈[0,1](

n
m

)
m!µm

− 1

)
d→ √

ρ γ (Bt )t∈[0,1] in DR.

Proof. The proof of the result parallels, to large extent, that of Theorem 4. As
before, consider first the case λ > 0. For any n and N such that N < mn define a
process S(n)

N = (S
(n)
N (t))t∈[0,1] by

S
(n)
N (t) = 1 +

N∑

c=1

(
m

n

)
U(m,n)

c (t) = 1 +
N∑

c=1

(
√

m n)c(
n
c

)
c!

W
(n)
c (t)

(
√

m n)c
.
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Observe that by the second assertion of Proposition 1 it follows that

(S
(n)
N (t))t∈[0,1]

d→ GN =
(

N∑

c=0

(λρ tγ 2)c/2

c!
Hc(Bt/

√
t)

)

t∈[0,1]

in DR as n → ∞, since for any c = 1, 2, . . .

(
√

n m)c(
n
c

)
c!

→ λc/2 .

Define also a process T(n)
N = (T

(n)
N (t))t∈[0,1] by

T
(n)
N (t) =

mn∑

c=N+1

(
m

c

)
U(m,n)

c (t) .

And let G∞ = (G∞(t))t∈[0,1] be defined by

(G∞(t))t∈[0,1] =
( ∞∑

c=0

(λρ tγ 2)c/2

c!
Hc(Bt/t)

)

t∈[0,1]

= exp

(√
λρ γBt − λρ tγ 2

2

)

t∈[0,1]
.

As before, if � denotes the Prokhorov distance between the random elements in
DR, then

�(Z(n), G∞) ≤ �(Z(n), S(n)
N ) + �(S(n)

N , GN) + �(GN, G∞).

where Z(n) = S(n)
N + T(n)

N . In order to complete the argument along the lines of the
first part of the proof of Theorem 4 we only need to argue that for any ε > 0

P( sup
t∈[0,1]

|T (n)
N (t)| > ε) → 0,

uniformly in n as N → ∞. To this end note that again by the martingale property
and the maximal inequality as well as by the relations (2) and (3)

P( sup
t∈[0,1]

|T (n)
N (t)| > ε) ≤ ε−2V ar T

(n)
N (1)

= ε−2 n

m2

m∑

c=N+1

(
m
c

)
γ 2c

(
n
c

)
c∑

r=0

1

r!

(
m − r

c − r

)
(1 − ρ)rρc−r

≤ ε−2 exp(1)

m∑

c=N+1

(
m2

n

)c
γ 2c

c!
,

in view of the inequalities
(
m−r
c−r

) ≤ (
m
c

)
and c! (

m
c)

2

(n
c)

≤
(

m2

n

)c

for 0 ≤ r ≤ c ≤ m.

Therefore,
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P( sup
t∈[0,1]

|T (n)
N (t)| > ε) ≤ ε−2 exp(1)

m∑

c=N+1

(
m2

n

)c
γ 2c

c!

≤ ε−2 exp(1)

∞∑

c=N+1

(2λ γ 2)c

c!
= ε−2 αN → 0

as N → ∞, and the first part of the theorem follows.
The proof in the case λ = 0, follows similarly to the second part of the proof

of Theorem 4 with obvious modifications. Consider

√
n

m

m∑

c=1

(
m

c

)
U(m,n)

c (t) = W
(n)
1 (t)

m
√

n
+ R(m,n)(t) ,

where

R(m,n)(t) =
√

n

m

m∑

c=2

(
m

c

)
U(m,n)

c (t).

The process (R(m,n)(t)) is a martingale for fixed values of m, n and thus

P( sup
t∈[0,1]

|R(m,n)(t)| > ε) ≤ ε−2V ar R(m,n)(1) ≤ ε−2 m2

n
exp(1 + γ 2) → 0,

follows, in view of

V ar Rm,n(1) = n

m2

m∑

c=2

(
m
c

)
γ 2c

(
n
c

)
c∑

r=0

1

r!

(
m − r

c − r

)
(1 − ρ)rρc−r

≤ exp(1)
n

m2

m∑

c=2

(
m2

n

)c
γ 2c

c!
≤ exp(1)

m2

n

m∑

c=2

(
m2

n

)c−2
γ 2c

c!

≤ exp(1)
m2

n

m∑

c=2

γ 2c

c!
≤ m2

n
exp(1 + γ 2)

if only n is large enough to have m2/n < 1. The result now follows as in the proof
of Theorem 4. 
�

Remark 4. Let us again note that the above result remains valid for m being a fixed
constant (see the remark after the proof of Theorem 4).
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