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Abstract

We derive a lognormal limit theorem for products of independent sums of positive random variables or,
in general, products of non-degenerate independent U-statistics. An application of the result gives a limit
theorem for the determinant of a Wishart matrix.
r 2005 Elsevier B.V. All rights reserved.

MSC: primary 60F05; 62G32

Keywords: Central limit theorem; Lognormal distribution; Products of sums of iid rv’s; Wishart determinant;

U-statistics
1. Introduction

The asymptotic behavior of a product of partial sums of a sequence of independent and
identically distributed (iid) positive random variables has been recently studied in several papers
(see, e.g., Qi, 2003 for a brief review). In particular, it was shown in Rempa"a and Weso"owski
see front matter r 2005 Elsevier B.V. All rights reserved.
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(2002) that if ðX nÞ is a sequence of iid positive square integrable random variables with EðX 1Þ ¼ m,
VarðX 1Þ ¼ s240 and the coefficient of variation g ¼ s=m then setting Sk ¼

Pk
i¼1 X i we have as

n ! 1Qn
k¼1 Sk

n!mn

� �1=ðg
ffiffi
n

p
Þ

!
d
e
ffiffi
2

p
N,

where !
d

stands for convergence in distribution and N is a standard normal random variable.
This result was recently extended in Qi (2003) and Lu and Qi (2004) to a general limit theorem
covering the case when the underling distribution is in the domain of attraction of a stable law
with index from the interval [1,2].
The purpose of the current note is to obtain a limit theorem for

Qn
k¼1 Sk in case when the partial

sums Sk are mutually independent and have square integrable components. This particular setup
seems to be of interest as it pertains to a limit theorem for random determinants of Wishart
matrices. Our main result is provided in Theorem 1 of Section 2 below. In Section 3 we discuss its
extensions to non-iid case as well as to a case of so-called non-degenerate U-statistics. Section 4
contains an application of our result to Wishart determinants. For the convenience of the
readership we have also provided in Section 4 a brief outline of some basic facts on Wishart
matrices. We note that the result obtained therein overlaps with that of Girko (1990, 1997) but we
believe that our method of the proof is in general much simpler and, in particular, requires
virtually no background in random matrices theory.
2. Main result

Our main result of this note is the following limit theorem.

Theorem 1. Let ðX k;iÞi¼1;...;k; k ¼ 1; 2; . . . be a triangular array of iid positive square integrable rv’s
with finite absolute moment of order p42. Denote m ¼ EðX 1Þ40, g ¼ s=m, where s2 ¼ VarðX 1Þ,
and Sk ¼ X k;1 þ � � � þ X k;k, k ¼ 1; 2; . . .. Then as n ! 1

n
g2

2

Qn
k¼1 Sk

n!mn

� � 1

g
ffiffiffiffiffiffi
logðnÞ

p

!
d
eN,

where N is a standard normal rv.

Before proving the above result we will establish a version of the classical central limit theorem,
essentially, for scaled iid rv’s. To this end we will use the clt for triangular arrays, so the basic step
in the proof will rely on verifying the Lindeberg condition. First we recall an elementary fact
about the moments of sums of iid variables (e.g., Lee, 1990, p. 22). In the sequel, for notational
convenience, we set Ck ¼ Sk=ðmkÞ.

Lemma 1 (Burkholder Inequality). Let pX2. Under the assumptions of Theorem 1 there exists a

universal constant Dp (i.e., depending on p but not on k) such that for kX1

EjðCk 
 1Þjpp
Dp

kp=2
.
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Lemma 2. Under the assumptions of Theorem 1, as n ! 1

1

g
ffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ

p Xn

k¼1

ðCk 
 1Þ!
d

N.

Proof. Since

Var
Xn

k¼1

Sk

mk

 1

� � !
¼ g2

Xn

k¼1

1

k
! 1 as n ! 1

and by Lemma 1 also

lim sup
n

Xn

k¼1

E
Sk

mk

 1










pDp

X1
k¼1

1

kp=2
o1.

Thus

Pn
k¼1 E Sk

mk

 1




 


p� �2=p

Var
Pn

k¼1
Sk

mk

 1

� �� � ! 0 as n ! 1

so the Lyapounov and hence the Lindeberg condition is satisfied. &

Lemma 3. Under the assumptions of Theorem 1, as n ! 1
(i)
 1ffiffiffiffiffiffiffiffiffi
logðnÞ

p
Pn

k¼1 ½ðCk 
 1Þ2 
 g2

k
�!

P
0,P P
(ii)
 1ffiffiffiffiffiffiffiffiffi
logðnÞ

p n
k¼1jCk 
 1j3! 0:
Proof. For the proof of (i) denote Zk ¼ kðCk 
 1Þ2 
 g2 and note that EZk ¼ 0 and by our
assumptions and Lemma 1 there exists 0oao1 such that supk EjZkj

1þao1. Let an be any
numeric sequence such that an ! 1 but a1
a

n = logðnÞ ! 0 (e.g., an ¼ logðnÞ will do). Define Z0
k ¼

Zk IðjZkj=kpanÞ and note that for some universal constant Da

P
Xn

k¼1

Zk=ka
Xn

k¼1

Z0
k=k

 !
p
Xn

k¼1

PðjZkj4k anÞpDa=a1þa
n ! 0 as n ! 1. (1)

We now show that for the weighted sum of Z0
k’s the weak law of large numbers holds. Indeed, for

any e40

P
Xn

k¼1

ðZ0
k=k 
 EZ0

k=kÞ












4e

ffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ

p !
p

1

e2 logðnÞ

Xn

k¼1

EðZ0
k=k 
 EZ0

k=kÞ2

p
1

e2 logðnÞ

Xn

k¼1

EjZ0
k=kj2p

a1
a
n

e2 logðnÞ

Xn

k¼1

EjZk=kj1þa ! 0 as n ! 1. ð2Þ
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Finally, note that since EZk ¼ 0 then

Xn

k¼1

EZ0
k=k












 ¼

Xn

k¼1

1

k
EZk IðjZk=kj4anÞ












p 1

aan

Xn

k¼1

EjZk=kj1þa ! 0 as n ! 1. (3)

The relations (1)–(3) imply (i). In order to show the second assertion we proceed similarly
denoting this time W k ¼ kðCk 
 1Þ2 and W 0

k ¼ W k IðjW kjpk bnÞ where bn is any numeric
sequence satisfying bn ! 1 but b1
2an = logðnÞ ! 0. Note that as before, supk EjW kj

1þao1.
In this notation, the relation (ii) follows for jW 0

k=kj3=2 in view of the Markov inequality
since

1ffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ

p Xn

k¼1

EjW 0
k=kj3=2p

b1=2
a
nffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ

p Xn

k¼1

EjW k=kj1þa ! 0 as n ! 1.

The fact that this also implies (ii) for the Ck’s is immediate since

P
Xn

k¼1

jW k=kj3=2a
Xn

k¼1

jW 0
k=kj3=2

 !
p
Xn

k¼1

PðjW kj4k bnÞp
Xn

k¼1

EjW k=ðk bnÞj
1þa

pDa=b1þa
n ! 0 as n ! 1: &

Finally, we are in position to prove our main result.

Proof of Theorem 1. We first note that Ck ¼ Sk=ðmkÞ converges almost surely to one. Indeed, for
any d40 we have

P sup
kXr

jCk 
 1j4d
� �

p
X1
k¼r

PðjCk 
 1j4dÞp
1

d

X1
k¼r

EjCk 
 1jp ! 0 as r ! 1.

Consequently, there exist two sequences ðdmÞ # 0 (d1 ¼ 1=2) and ðRmÞ " 1 such that

P sup
kXRm

jCk 
 1j4dm

 !
odm.

Take now any real x and any m. Then

P
1

g
ffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ

p Xn

k¼1

logðCkÞ þ
g2

2k

� �
px

 !
¼ P

1

g
ffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ

p Xn

k¼1

logðCkÞ þ
g2

2k

� � 

px; sup
k4Rm

jCk 
 1j4dm

!
þ P

1

g
ffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ

p Xn

k¼1

logðCkÞ þ
g2

2k

� � 

px; sup
k4Rm

jCk 
 1jpdm

!
¼ Am;n þ Bm;n

and Am;nodm.
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To compute Bm;n we will expand the logarithm: logð1þ xÞ ¼ x 
 x2

2
þ x3

3ð1þyxÞ3
, where y 2 ð0; 1Þ

depends on x 2 ð
1; 1Þ. Thus,

Bm;n ¼ P
1

g
ffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ

p XRm

k¼1

logðCkÞ þ
g2

2k

� �
þ

1

g
ffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ

p Xn

k¼Rmþ1

logð1þ ðCk 
 1ÞÞ þ
g2

2k

� � 

px; sup
k4Rm

jCk 
 1jpdm

!

¼ P
1

g
ffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ

p XRm

k¼1

logðCkÞ þ
g2

2k

� �
þ

1

g
ffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ

p Xn

k¼Rmþ1

ðCk 
 1Þ

 



1

2g
ffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ

p Xn

k¼Rmþ1

ðCk 
 1Þ2 

g2

k

 �

þ
1

3g
ffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ

p Xn

k¼Rmþ1

ðCk 
 1Þ3

ð1þ ykðCk 
 1ÞÞ3
px; sup

k4Rm

jCk 
 1jpdm

!

¼ P
1

g
ffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ

p XRm

k¼1

logðCkÞ þ
g2

2k

� �
þ

1

g
ffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ

p Xn

k¼Rmþ1

ðCk 
 1Þ

 



1

2g
ffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ

p Xn

k¼Rmþ1

ðCk 
 1Þ2 

g2

k

 �
þ

1

3g
ffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ

p
�

Xn

k¼Rmþ1

ðCk 
 1Þ3

ð1þ ykðCk 
 1ÞÞ3

" #
I sup

k4Rm

jCk 
 1jpdm

 !
px

!


 P
1

g
ffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ

p XRm

k¼1

logðCkÞ þ
g2

2k

� �
þ

1

g
ffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ

p Xn

k¼Rmþ1

ðCk 
 1Þ

 



1

2g
ffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ

p Xn

k¼Rmþ1

ðCk 
 1Þ2 

g2

k

 �
px; sup

k4Rm

jCk 
 1j4dm

!
¼ Dm;n þ Fm;n,

where yk, k ¼ 1; . . . ; n are ð0; 1Þ-valued rv’s and Fm;nodm.
Rewrite now Dm;n as

Dm;n ¼ P
1

g
ffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ

p XRm

k¼1

logðCkÞ 
 Ck þ 1þ
ðCk 
 1Þ2

2



g2

2k

� �
þ

1

g
ffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ

p Xn

k¼1

ðCk 
 1Þ

 



1

2g
ffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ

p Xn

k¼1

ðCk 
 1Þ2 

g2

k

 �
þ

1

3g
ffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ

p Xn

k¼Rmþ1

ðCk 
 1Þ3

ð1þ ykðCk 
 1ÞÞ3

" #
I

� sup
k4Rm

jCk 
 1jodm

 !
px

!
.
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Observe that for any fixed m

1

g
ffiffiffiffiffi
2n

p
XRm

k¼1

logðCkÞ 
 Ck þ 1þ
ðCk 
 1Þ2

2



g2

2k

� �
!
P

0 as n ! 1 (4)

(as a matter of fact, this sequence converges to zero a.s.).
Invoking Lemma 3(i) we see

P
1

2g
ffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ

p Xn

k¼1

ðCk 
 1Þ2 

g2

k

 �
4e

 !
! 0.

Note that for jxjo1=2 and any y 2 ð0; 1Þ it follows that jxj3=j1þ yxj3p8jxj3. Thus for any m

1=3

g
ffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ

p Xn

k¼Rmþ1

jCk 
 1j3

j1þ ykðCk 
 1Þj3

" #
I sup

k4Rm

jCk 
 1jodm

 !

p
8=3

g
ffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ

p Xn

k¼1

jCk 
 1j3!
P

0, ð5Þ

as n ! 1 by Lemma 3(ii).
Since, on the other hand, by Lemma 1 it follows that

1

g
ffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ

p Xn

k¼1

ðCk 
 1Þ!
d

N

as n ! 1 then by (4) and (5) we conclude that for any fixed m

Dm;n ! FðxÞ,

where F is the standard normal distribution function.
Finally, observe that

P log n
g2

2

Qn
k¼1 Sk

n!mn

� � 1

g
ffiffiffiffiffiffi
logðnÞ

p

px

 !
¼ P

1

g
ffiffiffiffiffiffiffiffiffiffiffiffi
logðnÞ

p Xn

k¼1

logðCkÞ þ
g2

2
logðnÞ

 !
px

 !

¼ Am;n þ Dm;n þ Fm;n,

which implies the assertion of Theorem 1, since Am;n þ Fm;no2dm ! 0 as m ! 1, uniformly in n
and

logðnÞ 

Pn

k¼1
1
kffiffiffiffiffiffiffiffiffiffiffiffi

logðnÞ
p ! 0 as n ! 1: &

Remark 1. It is perhaps worth to notice that as soon as we have Sk=k ! m a.s. (in particular,
under the assumptions of Theorem 1) then by the property of the geometric mean it follows
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directly that as n ! 1Qn
k¼1 Sk

n!

� �1=n

! m a:s.

3. Extensions

The following extension of Theorem 1 covering the non-all-iid setting is rather straightforward.

Theorem 2. Let ðX k;iÞi¼1;...;k; k ¼ 1; 2; . . . be a triangular array of independent and rowwise

identically distributed, positive rv’s with finite absolute moment of order p42. Denote, as
before, Sk ¼ X k;1 þ � � � þ X k;k, with mk ¼ EðX k;1Þ40, s2k ¼ VarðX k;1Þ, and gk ¼ sk=mk. Let c2n ¼Pn

k¼1 g
2
k=k. If
(i)
 cn ! 1 as n ! 1,P

(ii)
 1

k¼1 Ej
Sk
kmk

kmk
jpo1,
then as n ! 1

e
c2n
2

Qn
k¼1 Sk=mk

n!

� �1=cn

!
d
eN,

where N is a standard normal rv.

Another direction leading to an extension of the result of Theorem 1 is via a notion of a U-
statistic introduced by Hoeffding (1948). Let U-statistic Un be defined as

Un ¼
n

m

� �
1 X
1pi1o���oimpn

hðX i1 ; . . . ;X im
Þ, (6)

where h is a symmetric real function of m arguments, the X i’s are iid rv’s, and the summation is
carried over all possible choices of m distinct indices out of the set f1; 2; . . . ; ng. Let us note that if
m ¼ 1 and hðxÞ ¼ x then the above definition gives simply Sn=n. If we assume that
EhðX 1; . . . ;X mÞ

2o1 and define h1ðxÞ ¼ Ehðx;X 2; . . . ;X mÞ as well as

Ûn ¼
m

n

Xn

i¼1

ðh1ðX iÞ 
 EhÞ þ Eh

" #
,

then we may write

Un ¼ Ûn þ Rn, (7)

where

Rn ¼
n

m

� �
1 X
1pi1o���oimpn

HðX i1 ; . . . ;X im
Þ,
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and

Hðx1; . . . ;xmÞ ¼ hðx1; . . . ; xmÞ 

Xm

i¼1

ðh1ðxiÞ 
 EhÞ 
 Eh.

It is well known (cf. e.g., Lee, 1990, Chapter 1) that,

CovðÛn;RnÞ ¼ 0 (8)

and

VarRn ¼ Oðn
2Þ. (9)

The result of Theorem 1 can be extended to U-statistics as follows.

Theorem 3. Let ðX k;iÞi¼1;...;k; k ¼ m;m þ 1; . . . be a triangular array of iid random variables. Let Uk

be a statistic given by (6) based on X k;1; . . . ;X k;k. Assume Ejhjpo1 for some p42 and
PðhðX 1; . . . ;X mÞ40Þ ¼ 1; as well as s2 ¼ m2 Varðh1ðX 1ÞÞa0: Denote m ¼ Eh40 and let g ¼
s=m40 be the coefficient of variation. Then, as n ! 1

n
g2

2

Qn
k¼1 Uk

mn

� � 1

g
ffiffiffiffiffiffi
logðnÞ

p

!
d
eN,

where N is a standard normal rv.

Proof. Set now Ck ¼ Uk=m and let g be defined as above. Retaining the notation of Section 2 with
these modifications we find that the result of Lemma 1 still holds true (Lee, 1990, p. 21).
Regarding the extension of the conclusion of Lemma 2 set zn ¼ gðlogðnÞÞ
1=2 and note that by (7)

zn

Xn

k¼m

ðCk 
 1Þ ¼ zn

Xn

k¼m

Ûk

m

 1þ

Rn

m

 !
¼ zn

Xn

k¼m

Ûk

m

 1

 !
þ zn

Xn

k¼m

Rn

m
.

The first sum in the latest expression above is asymptotically standard normal in view of the result
of Lemma 2 of Section 2 and the second one vanishes asymptotically in probability since by (9)

z2n Var
Xn

k¼1

Rn

m

 !
¼ z2n

Xn

k¼1

VarRn

m2

� �
! 0 as n ! 1.

Hence, the result of Lemma 2 remains valid for U-statistics and a similar argument can be invoked
to argue that the results of Lemma 3 are true for U-statistics as well. Finally, in view of the SLLN
for U-statistics (see, e.g., Lee, 1990, p. 122) which implies that under our assumptions Ck ! 1 as
k ! 1, we may virtually repeat the expansion argument used in the proof of Theorem 1 to obtain
the required assertion of Theorem 3. &
4. Asymptotics for Wishart determinants

Asymptotic distribution of random determinants for squares of matrices of iid Gaussian-like
entries is derived in Girko (1990, Theorem 6.3.1). Unfortunately, the proof is rather complicated
and difficult to follow. In this section we are concerned with non-iid Gaussian entries, more
precisely with a sequence of Wishart matrices W nðn;SnÞ, n ¼ 1; 2; . . .. It appears that in this case
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which on one side is more general than Girko’s since the entries of the matrix which is squared are
non-iid, on the other hand is more restrictive since the entries are Gaussian, the limiting law of
determinants (properly normalized) is lognormal, as expected. The main advantage of our
approach is the fact that the proof we offer herein is an immediate consequence of our asymptotic
result for the product of independent sums as given in Theorem 1.
We first recall some basic facts about the classical Wishart distribution. For further references,

see, e.g., Anderson (1984).
Let Y 1; . . . ;Y n be iid d-dimensional Gaussian zero-mean random vectors with a positive

definite covariance matrix S. The d � d dimensional random matrix A ¼
Pn

i¼1 Y iY
T
i is said to

have the classical Wishart distribution W dðn;SÞ. If nXd then the distribution of A is concentrated
on the open cone of d � d positive definite symmetric matrices Vþ

d and its density with respect to
the appropriate Lebesgue measure is

f ðxÞ ¼
detðxÞ

n
d
1
2 exp½
 1

2
ðs
1; xÞ�

2
nd
2 detðSÞ

n
2Gdð

n
2Þ

; x 2 Vþ
d .

If nod then the Wishart measures is singular with respect to the Lebesgue measure and is
concentrated on the boundary of the cone Vþ

d .
Let A�W dðn;SÞ be decomposed into blocks according to the dimensions p and q, p þ q ¼ d

A ¼
A1 A12

A21 A2

 !
,

such that A1 is a p � p, A12 ¼ AT
21 is a p � q and A2 is a q � q matrix. Similarly we can decompose

R ¼
R1 R12

R21 R2

 !
.

It is well known that:
1.
 A1�W pðn;S1Þ,

2.
 A2�1 ¼ A2 
 A21A


1
1 A12�W qðn 
 p;S2�1Þ with S2�1 ¼ S2 
 S21S
1

1 S12,

3.
 the pair ðA1;A12Þ and A2�1 are independent,

4.
 detðAÞ ¼ detðA1Þ detðA2�1Þ.
Now we decompose A ¼ ½aij� step by step. First A ¼ Að1...dÞ into blocks: Að1...d
1Þ of dimensions
ðd 
 1Þ � ðd 
 1Þ and Ad ¼ add of dimensions 1� 1, then Að1...d
1Þ into blocks Að1...d
2Þ of
dimensions ðd 
 2Þ � ðd 
 2Þ and Ad
1 ¼ ad
1;d
1 of dimensions 1� 1, ending up with Að12Þ

decomposed into A1 ¼ a11 and A2 ¼ a22 both of dimensions 1� 1. By properties (1–4) above we
have the following multiplicative representation for the determinant of A

detðAÞ ¼ Ad�ð1...d
1ÞAd
1�ð1...d
2Þ � . . . � A2�1A1,

where the factors are independent gamma variables:

Y nþ1
k ¼ Ak�1...k
1�G
n þ 1
 k

2
;

1

2Sk�ð1...k
1Þ

� �
; k ¼ 1; . . . ; d
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understanding that Y 1 ¼ A1. Here the gamma distribution Gða; pÞ is defined through its density of
the form f ðxÞ / xp
1e
axI ð0;1ÞðxÞ for a; p40. Thus for a triangular array of iid w2 variables with
one degree of freedom X kj, j ¼ 1; . . . ; k, k ¼ 1; 2; . . . ; d, we have

Y k ¼
d

ckn

Xk

l¼1

X kl,

where ckn ¼ Snþ1
k�ð1...n
kÞ, k ¼ n 
 d þ 1; . . . ; n.
Taking all what was said above into account and using our Theorem 1 we can obtain the

following asymptotic result for determinants of Wishart matrices.

Theorem 4. Let An�W nðn;SnÞ, n ¼ 1; 2; . . .. Then

detðAnÞ

detðSnÞðn 
 1Þ!

� � 1ffiffiffiffiffiffiffiffi
2 logðnÞ

p

!
d
eN. (10)

Proof. Note that putting d ¼ n in the considerations prior to the formulation of Theorem 4, we have

detðAnÞQn
k¼1 ckn

¼
d
Yn

k¼1

Xn

l¼1

X kl

 !
,

where ðX klÞ are iid w2ð1Þ random variables. Thus in the notation of Theorem 1 we have m ¼ 1 and
g2 ¼ 2. Moreover

Qn
k¼1 ckn ¼ detðSnÞ. Now the result follows directly from Theorem 1. &
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