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Abstract

Matsumoto and Yor [2001. An analogue of Pitman’s 2M − X theorem for exponential Wiener functionals. Part II: the role of
the GIG laws. Nagoya Math. J. 162, 65–86] discovered an interesting invariance property of a product of the generalized inverse
Gaussian (GIG) and the gamma distributions. For univariate random variables or symmetric positive definite random matrices it is a
characteristic property for this pair of distributions. It appears that for random vectors the Matsumoto–Yor property characterizes only
very special families of multivariate GIG and gamma distributions: components of the respective random vectors are grouped into
independent subvectors, each subvector having linearly dependent components. This complements the version of the multivariate
Matsumoto–Yor property on trees and related characterization obtained in Massam and Wesołowski [2004. The Matsumoto–Yor
property on trees. Bernoulli 10, 685–700].
© 2006 Elsevier B.V. All rights reserved.
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1. Introduction

Consider two random variables: X having the generalized inverse Gaussian (GIG) distribution �−p,a,a and Y having
the gamma distribution �p,a . Recall, that the GIG distribution �−p,a,b, where p ∈ R, a, b > 0 are the parameters, is
defined by

�−p,a,b(dx) = K1x
−p−1 exp(−a−1x − (bx)−1)I(0,∞)(x) dx

and the gamma distribution �q,c, where q, c > 0 are parameters, is defined by

�q,c(dy) = K2y
q−1 exp(−c−1y)I(0,∞)(y) dy

(K1,K2 are normalizing constants). Matsumoto andYor (2001) observed that if random variables X andY are independent
then U = (X + Y )−1 and V = X−1 − (X + Y )−1 are also independent and have the same distributions as Xand Y,
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respectively. The following extension of the Matsumoto–Yor (MY in the sequel) property is immediate: if (X, Y ) has
the distribution �−p,a,b ⊗ �p,a (⊗ denotes the product measure) then (U, V ) is distributed according to �−p,b,a ⊗ �p,b.
Its interpretation in terms of Brownian motion and related stochastic processes was given in Matsumoto andYor (2003).
Letac and Wesołowski (2000) obtained its converse with the proof based on an application of the Laplace transform
technique (see Wesołowski, 2002b for an alternative approach based on densities). They dealt additionally with a matrix
variate version of the MY property deriving a related characterization under the assumption that densities of random
matrices X and Y exist and are strictly positive real functions of the class C2. Wesołowski (2002a) extended this result
by weakening the smoothness assumption, imposed on densities, to differentiability. Regression-type characterizations
obtained in that paper have been recently refined in Chou and Huang (2004). The MY property for random matrices
of different dimensions and related characterization has been studied in Massam and Wesołowski (2006), where a
connection with the conditional structure of Wishart matrices was strongly emphasized.

The bivariate version of the MY property and a respective characterization has been considered recently in Bobecka
and Wesołowski (2005). It has been proved there that in the bivariate setting, the property does not characterize general
families of bivariate GIG and gamma distributions, but is more restrictive: it implies that respective random vectors
have independent or linearly dependent components.

Here we are concerned with the MY property for random vectors of higher dimensions. The bivariate case is only a
starting point of our induction argument. It appears that random vectors with the MY property have to have components
grouped into independent subvectors, each vector having linearly dependent GIG or gamma components, respectively.
So, similarly as in two dimensions only very special types of multivariate GIG and gamma distributions are involved.
In the proof we borrow a lot from Bobecka and Wesołowski (2004), which will be referred to as BW in the sequel.

It has to be emphasized that another version of the multivariate MY property, defined in the language of directed trees,
has been studied recently in Massam and Wesołowski (2004). These authors showed that the MY-like independence
properties (defined through taking different roots in the given undirected tree) characterize multivariate distributions
W(q, KG, a) with densities

f (k) ∝ |k|q−1e−(a,k), k ∈ M(G, KG),

where G = (V , E) is an undirected tree with p vertices (V is the set of vertices and E the set of vertices),

KG = {ki,j = kj,i �= 0, (i, j) ∈ E, ki,j = kj,i = 0, (i, j) /∈ E},
M(G, KG) = {k = (k1, . . . , kp) ∈ Rp : k = [ki,j ] ∈ �+

p , ki,i = ki, ki,j ∈ KG, i �= j},
where �+

p is the cone of p×p positive definite symmetric matrices. Such distributions, due to the shape of their density
function, can be regarded as versions of a multivariate gamma law. However, their univariate marginals are not of the
gamma type, moreover those attached to the leaves of the tree are independent GIGs.

Let us note that the development of studies related to the MY property is somehow parallel to investigations concerning
the Lukacs characterization of the gamma law. The Lukacs theorem (1955) for the univariate case was followed by
its matrix variate analogue—see Olkin and Rubin (1962), Casalis and Letac (1996), Letac and Massam (1998), and
Bobecka and Wesołowski (2002). The case of random vectors, first studied in the bivariate case of constant regressions
by Wang (1981), only recently has been considerably expanded—see Bobecka (2002), Bobecka and Wesołowski (2003)
and BW.

2. Characterization

In the sequel, we will use the following definitions:
We will say that a positive random vector Ȳ =(Y1, . . . , Yn) has a distribution MG∗(Ā, p̄, �̄), where Ā=(A1, . . . , Ar)

is such that
⋃r

i=1 Ai = {1, . . . , n}, Ai ∩ Aj = ∅, i �= j and p̄ = (p1, . . . , pr), �̄ = (�1, . . . , �n), where pi, �j > 0, if a
Laplace transform of Ȳ is of the form

LȲ (�1, . . . , �n) =
r∏

i=1

⎛
⎝1 −

∑
j∈Ai

�j�j

⎞
⎠

−pi

,
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i.e. Yj has gamma distribution: �pj ,�j
, j =1, . . . , n, and the components of Ȳ are grouped into independent subvectors:

Z̄1 = (Yl)l∈A1 , . . . , Z̄r = (Yl)l∈Ar
, each subvector having linearly dependent components, i.e. ∀i ∃k ∈ Ai such that

Yj = (�j /�k) Yk ∀j ∈ Ai (note that in the case r = n the components of Ȳ are independent).
We will say that a positive random vector X̄ = (X1, . . . , Xn) has a distribution MGIG∗(Ā, p̄, �̄, �̄), where Ā =

(A1, . . . , Ar) is such that
⋃r

i=1 Ai = {1, . . . , n}, Ai ∩ Aj = ∅, i �= j and p̄ = (p1, . . . , pr), �̄ = (�1, . . . , �n),
�̄ = (�1, . . . , �n), where pi ∈ R, �j , �j > 0, if Xj has GIG distribution: �−pj ,�j ,�j

, j = 1, . . . , n, and the components

of X̄ are grouped into independent subvectors: Z̄1 = (Xl)l∈A1 , . . . , Z̄r = (Xl)l∈Ar
, each subvector having linearly

dependent components, i.e. ∀i ∃k ∈ Ai such that Xj = (�j /�k)Xk ∀j ∈ Ai (note that in the case r = n the components
of X̄ are independent).

Now we are ready to state the main result of this paper which characterizes the MG∗ and MGIG∗ distributions
through the MY property. In the proof we combine and develop techniques used in the univariate (Letac and Wesołowski,
2000) and the bivariate (Bobecka and Wesołowski, 2005) characterizations related to the MY property as well as those
used in the multivariate Lukacs characterization (BW).

Theorem 1. Let X̄ = (X1, . . . , Xn) and Ȳ = (Y1, . . . , Yn) be independent non-degenerate n-variate positive random
vectors. Let

Ū = (U1, . . . , Un) =
(

1

X1 + Y1
, . . . ,

1

Xn + Yn

)

and

V̄ = (V1, . . . , Vn) =
(

1

X1
− 1

X1 + Y1
, . . . ,

1

Xn

− 1

Xn + Yn

)
.

The random vectors Ū and V̄ are independent iff the random vectors X̄ and Ȳ have distributions MGIG∗(Ā, p̄, �̄, �̄)

and MG∗(Ā, p̄, �̄), respectively, for some Ā, p̄, �̄, �̄.

Proof. First, we will show that

Claim 1. ∃Ā = (A1, . . . , Ar) such that
⋃r

i=1 Ai = {1, . . . , n}, Ai ∩ Aj = ∅, i �= j, and Ȳ ∼ MG∗(Ā, p̄, �̄), V̄ ∼
MG∗(Ā, p̄, �̄).

The proof of this claim is by induction on n. For n= 2 theorem holds (see Bobecka and Wesołowski, 2005) and thus
the claim is true. Assume that it is true for n − 1�2. We will show that it is true for n.

Observe that if any one of X̄ and Ȳ is not degenerate at a point then all four random vectors X̄, Ȳ , Ū and V̄ are not
degenerate. The independence property and the identity

Yj

Xj

= Vj

Uj

, j = 1, . . . , n,

imply

E

⎛
⎝ n∏

j=1

Y
�j

j exp

⎛
⎝ n∑

j=1

�j Yj

⎞
⎠
⎞
⎠E

⎛
⎝ n∏

j=1

X
−�j

j exp

⎛
⎝ n∑

j=1

(�jXj + 	jX
−1
j )

⎞
⎠
⎞
⎠

= E

⎛
⎝ n∏

j=1

V
�j

j exp

⎛
⎝ n∑

j=1

	jVj

⎞
⎠
⎞
⎠E

⎛
⎝ n∏

j=1

U
−�j

j exp

⎛
⎝ n∑

j=1

(�jU
−1
j + 	jUj )

⎞
⎠
⎞
⎠ , (1)

for any negative �j , 	j and fixed non-negative �j , j = 1, . . . , n.
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Taking logarithm of both sides of (1) and applying �2/��j�	j we obtain

E(X
−�j +1
j

∏n
i �=j,i=1X

−�i

i exp(
∑n

j=1(�jXj+	jX
−1
j )))E(X

−�j −1
j

∏n
i �=j,i=1 X

−�i

i exp(
∑n

j=1(�jXj+	jX
−1
j )))

[E(X
−�j

j

∏n
i �=j,i=1 X

−�i

i exp(
∑n

j=1(�jXj+	jX
−1
j )))]2

= E(U
−�j +1
j

∏n
i �=j,i=1 U

−�i

i exp(
∑n

j=1(�jU
−1
j +	jUj )))E(U

−�j −1
j

∏n
i �=j,i=1U

−�i

i exp(
∑n

j=1(�jU
−1
j +	jUj )))

[E(U
−�j

j

∏n
i �=j,i=1 U

−�i

i exp(
∑n

j=1(�jU
−1
j +	jUj )))]2

,

(2)

j = 1, . . . , n.
Now applying (1) for �j , �j − 1 and �j + 1 to (2) we arrive at

E(Y
�j −1
j

∏n
i �=j,i=1 Y

�i

i exp(
∑n

j=1 �j Yj ))E(Y
�j +1
j

∏n
i �=j,i=1 Y

�i

i exp(
∑n

j=1�j Yj ))

[E(Y
�j

j

∏n
i �=j,i=1 Y

�i

i exp(
∑n

j=1�j Yj ))]2

= E(V
�j −1
j

∏n
i �=j,i=1V

�i

i exp(
∑n

j=1	jVj ))E(V
�j +1
j

∏n
i �=j,i=1 V

�i

i exp(
∑n

j=1 	jVj ))

[E(V
�j

j

∏n
i �=j,i=1 V

�i

i exp(
∑n

j=1	jVj ))]2
, (3)

j = 1, . . . , n.
Inserting �j = 1 and �i = 0 for i �= j into (3) we obtain

E(Y 2
j exp(

∑n
j=1 �j Yj ))E(exp(

∑n
j=1 �j Yj ))

[E(Yj exp(
∑n

j=1 �j Yj ))]2 = E(V 2
j exp(

∑n
j=1 	jVj ))E(exp(

∑n
j=1 	jVj ))

[E(Vj exp(
∑n

j=1 	jVj ))]2 , (4)

for j = 1, . . . , n. Then by the principle of separation of variables (4) implies

�2f

��2
j

f

(
�f

��j

)2 = cj ,

�2g

�	2
j

g

(
�g

�	j

)2 = cj , j = 1, . . . , n, (5)

where f and g are the Laplace transforms of Ȳ and V̄ , respectively, and cj , j = 1, . . . , n, are some constants greater
than one.

Observe that there are two possible cases:
Case I: For any {i1, . . . , in−1} ⊂ {1, . . . , n} the components of (Yi1 , . . . , Yin−1) are independent. Then it follows that

the components of the vector (Vi1 , . . . , Vin−1) are independent.
Case II: There exists {j1, . . . , jn−1} ⊂ {1, . . . , n} such that the components of the vector (Yj1 , . . . , Yjn−1) are not

independent. Then the same holds for the vector (Vj1 , . . . , Vjn−1).

Proof of Claim 1 in Case I. As in Theorem 2 in BW, using the induction assumption, we conclude that only the
following two situations are possible:

either
1. ∃i, j such that ci �= cj and then (see Case I.1, p. 153 in BW)

f (�̄) =
n∏

j=1

(1 − �j�j )
−pj , �j < �−1

j , j = 1, . . . , n

and

g(	̄) =
n∏

j=1

(1 − �j	j )
−pj , 	j < �−1

j , j = 1, . . . , n,
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wherepj=1/(cj−1) > 0 and�j > 0,�j > 0 , j=1, . . . , n, i.e. the random vectors Ȳ=(Y1, . . . , Yn) and V̄ =(V1, . . . , Vn)

have independent gamma components: Yj ∼ �
pj ,�−1

j
, Vj ∼ �

pj ,�−1
j

, j = 1, . . . , n;
or
2. cj = c ∀j = 1, . . . , n, and then (see Case I.2, p. 154 in BW)

f (�̄) =
⎡
⎣ n∏

j=1

(1 − �j�j ) + M

n∏
j=1

�j

⎤
⎦

−p

, �j < �−1
j , j = 1, . . . , n (6)

and

g(	̄) =
⎡
⎣ n∏

j=1

(1 − �j	j ) + N

n∏
j=1

	j

⎤
⎦

−p

, 	j < �−1
j , j = 1, . . . , n, (7)

where p = 1/(c − 1) > 0 and �j > 0, �j > 0, j = 1, . . . , n.
In the next step of the proof it will be shown that we have M = 0 and N = 0 which implies that the components of

Ȳ and V̄ are independent: Yj ∼ �
pj ,�−1

j
, Vj ∼ �

pj ,�−1
j

, j = 1, . . . , n.

Again, we apply the principle of separation of variables to (3) with �j = �i = 1, j, i = 1, . . . , n arriving at

E

⎛
⎝ n∏

i �=j,i=1

Yi exp

⎛
⎝ n∑

j=1

�j Yj

⎞
⎠
⎞
⎠E

⎛
⎝Y 2

j

n∏
i �=j,i=1

Yi exp

⎛
⎝ n∑

j=1

�j Yj

⎞
⎠
⎞
⎠

= d

⎡
⎣E

⎛
⎝Yj

n∏
i �=j,i=1

Yi exp

⎛
⎝ n∑

j=1

�j Yj

⎞
⎠
⎞
⎠
⎤
⎦

2

, (8)

where d > 1 is a constant, j = 1, . . . , n. Now we fix j and �i for i �= j, i = 1, . . . , n, and introduce a new random
variable Z = Z�i ,i �=j,i=1,...,n with the distribution defined by

PZ(dyj ) =
∫∞

0 · · · ∫∞
0

∏n
i �=j,i=1 yie

∑n
i �=j,i=1 �i yi F (dy1, . . . , dyn)

E(
∏n

i �=j,i=1 Yie
∑n

i �=j,i=1 �iYi )
,

where F is the df of Ȳ and the integral in the numerator is with respect to yi , i �= j, i = 1, . . . , n. Then after dividing
both sides of (8) by [E(

∏n
i �=j,i=1Yie

∑n
i �=j,i=1�iYi )]2 we have

E(e�j Z)E(Z2e�j Z) = d[E(Ze�j Z)]2,

which means that Z is a gamma random variable, �q(�i ,i �=j,i=1,...,n),1/a(�i ,i �=j,i=1,...,n), where q and a are some positive
functions depending on �i , i �= j, i = 1, . . . , n. The functions depend on j also, but we will keep the letters q and a
with no subscripts since we always deal with only one j at a time. Then in particular

E(e�j Z) = 1

(1 − a(�i , i �= j, i = 1, . . . , n)�j )
q(�i ,i �=j,i=1,...,n)

. (9)

Now observe that

E

⎛
⎝ n∏

i �=j,i=1

Yi exp

⎛
⎝ n∑

j=1

�j Yj

⎞
⎠
⎞
⎠= E(e�j Z)E

⎛
⎝ n∏

i �=j,i=1

Yi exp

⎛
⎝ n∑

i �=j,i=1

�iYi

⎞
⎠
⎞
⎠ ,

j = 1, . . . , n.
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Let j = n. Inserting �j = 0 for j = 1, . . . , n − 2 into the above equation we obtain

E

(
n−1∏
i=1

Yi exp(�n−1Yn−1 + �nYn)

)
= E(e�nZ)E

(
n−1∏
i=1

Yi exp(�n−1Yn−1)

)
.

Differentiating the Laplace transform (6) of Ȳ and using (9) we obtain the following equation:

(1 − �n−1�n−1)[pn−1(1 − �n�n)
∏n−1

j=1 �j − pM�n] − p(p + 1)M�n−1�n�n−1

(1 − �n−1�n−1)
p+2(1 − �n�n)

p+1

= 1

(1 − ã(�n−1)�n)
q̃(�n−1)

pn−1∏n−1
j=1 �j

(1 − �n−1�n−1)
p+1 ,

which can be rewritten in the form

(1 − �n−1�n−1)(1 − �n�n) − M

pn−2
∏n−1

j=1 �j

(1 + p�n−1�n−1)�n

(1 − �n−1�n−1)(1 − �n�n)
p+1 = 1

(1 − ã(�n−1)�n)
q̃(�n−1)

, (10)

for any �n−1 < �−1
n−1, �n < �−1

n , where ã(�n−1) = a(0, . . . , 0, �n−1), q̃(�n−1) = q(0, . . . , 0, �n−1). Letting �n ↗ �−1
n

we get that ã(�n−1) = �n for any �n−1 < �−1
n−1and (10) takes the form

(1 − �n−1�n−1)(1 − �n�n) − M

pn−2
∏n−1

j=1 �j

(1 + p�n−1�n−1)�n

1 − �n−1�n−1
= (1 − �n�n)

p−q̃(�n−1)+1, (11)

for any �n−1 < �−1
n−1, �n < �−1

n . Inserting �n−1 = 0 in (11) we get

1 −
(

�n + M

pn−2
∏n−1

j=1 �j

)
�n = (1 − �n�n)

p−q+1 (12)

for any �n < �−1
n , where q= q̃(0)=q(0, . . . , 0). Thus, it follows that either �n+M/(pn−2∏n−1

j=1 �j ) �= 0 which implies

q = p and thus M = 0 or �n + M/(pn−2∏n−1
j=1 �j ) = 0, that is M = −pn−2∏n

j=1 �j , and then q = p + 1.

Now observe that the case M =−pn−2∏n
j=1 �j is impossible: putting back M =−pn−2∏n

j=1 �j into (11) we obtain

(1 − �n−1�n−1)(1 − �n�n) + (1 + p�n−1�n−1)�n�n

1 − �n−1�n−1
= (1 − �n�n)

p−q̃(�n−1)+1,

which is equivalent to

1 + (p + 1)�n−1�n−1

1 − �n−1�n−1
�n�n = (1 − �n�n)

p−q̃(�n−1)+1, (13)

for any �n−1 < �−1
n−1, �n < �−1

n . For any, fixed �n−1, the left-hand side of (13) is a linear function of �n. Thus, q̃(�n−1)=p

for any �n−1 < �−1
n−1, �n−1 �= 0. Putting it back into (13) we get

(p − 1)�n−1�n−1 + 1 = 0,

for any �n−1 < �−1
n−1, �n−1 �= 0. This is a contradiction.

Similarly, we can show that N = 0. �

Proof of Claim 1 in Case II. We proceed as in Theorem 2 in BW (Case II, p. 158).
If there exists {j1, . . . , jn−1} ⊂ {1, . . . , n} such that the components of the vector (Yj1 , . . . , Yjn−1) are not in-

dependent, we can assume, without loss of generality, that this is the vector (Y1, . . . , Yn−1). Then, by the induction
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assumption, ∃Ã1, . . . , Ãr :
⋃r

i=1 Ãi ={1, . . . , n−1}, Ãi ∩Ãj =∅,i �= j and ∃i �Ãi > 1 such that the Laplace transform
of (Y1, . . . , Yn−1) is of the form

f (�1, . . . , �n−1) =
r∏

k=1

⎛
⎝1 −

∑
j∈Ãk

�j�j

⎞
⎠

−pk

.

Now take Yi1 ∈ Ã1, . . . , Yir ∈ Ãr (note that we have r �n − 2) and consider the vector (Yi1 , . . . , Yir , Yn). Since the
dimension of (Yi1 , . . . , Yir , Yn) is not greater than n − 1, its Laplace transform has the desired form by the induction
assumption, that is either Yn is independent of Yi1 , . . . , Yir or there exists k such that Yn = aY ik , where a = �n/�ik ,
k = 1, . . . , r .

Similarly, the Laplace transform of (V1, . . . , Vn−1) is of the form

g(	1, . . . , 	n−1) =
r∏

k=1

⎛
⎝1 −

∑
j∈Ãk

�j	j

⎞
⎠

−pk

.

Now take Vi1 ∈ Ã1, . . . , Vis ∈ Ãr and consider the vector (Vi1 , . . . , Vir , Vn). Since the dimension of (Vi1 , . . . , Vir , Vn)

is not greater than n − 1, its Laplace transform has the desired form by the induction assumption, that is either Vn is
independent of Vi1 , . . . , Vir or there exists l such that Vn = bV il , where b = �n/�il , l = 1, . . . , r .

Hence, in this case, Ȳ ∼ MG∗(Ā, p̄, �̄), V̄ ∼ MG∗(B̄, p̄, �̄).
Moreover, observe that it has to be Ā = B̄.
We have: Ā = (A1, . . . , Ar), B̄ = (B1, . . . , Br) such that

⋃r
i=1 Ai = {1, . . . , n}, Ai ∩ Aj = ∅, i �= j,

⋃r
i=1 Br =

{1, . . . , n}, Bi ∩ Bj = ∅, i �= j . Suppose that Ā �= B̄. Take j1 ∈ A1, . . . , jr ∈ Ar . Since Ā �= B̄ there exists
jksuch that jk ∈ Ak and jk /∈ Bk , that is jk ∈ Bl , l �= k, k = 1, 2, . . . , r . We can assume, without loss of generality,
that jk = j1 and l = r . Then (Yj1 , . . . , Yjr ) has a density and(Vj1 , . . . , Vjr ) does not have a density (Vj1 , Vjr ∈ Br

which means that Vj1 , Vjr are linearly dependent). But if (Yj1 , . . . , Yjr ) has a density then also (Xj1 + Yj1 , . . . , Xjr +
Yjr )= (1/Uj1 , . . . , 1/Ujr ) has a density. Hence (Uj1 +Vj1 , . . . , Ujr +Vjr )= (1/Xj1 , . . . , 1/Xjr ) has a density. Thus,
(Vj1 , . . . , Vjr )=(1/Xj1 −1/(Xj1 +Yj1), . . . , 1/Xjr −1/(Xjr +Yjr )) has also a density since it is a smooth function of
the r-variate random vectors (Xj1 , . . . , Xjr ) and (Yj1 , . . . , Yjr ) with independent absolutely continuous components.
This is a contradiction. �

Summing up, we have the following two cases:
either
Case I: Ȳ and V̄ have independent gamma components: Yj ∼ �

pj ,�−1
j

, Vj ∼ �
pj ,�−1

j
, j = 1, . . . , n

or
Case II: Ȳ ∼ MG∗(Ā, p̄, �̄) and V̄ ∼ MG∗(Ā, p̄, �̄) that is Ȳ and V̄ have gamma components: Yj ∼ �

qj ,�−1
j

,

Vj ∼ �
qj ,�−1

j
, j = 1, . . . , n (∀j ∈ Ai qj = pi , i = 1, . . . , r) and the components of Ȳ and V̄ are grouped into

independent subvectors: Z̄1 = (Yl)l∈A1 ,…,Z̄r = (Yl)l∈Ar
, W̄1 = (Vl)l∈A1 ,…, W̄r = (Vl)l∈Ar

each subvector having
linearly dependent components: ∀i ∃k ∈ Ai such that Yj = (�j /�k)Yk , Vj = (�j /�k)Vk (P-a.s.) ∀j ∈ Ai (note that if
r = n then Ȳ and V̄ are as in Case I and if r = 1 we have a univariate case).

Now, to finish the proof, we will show the following.

Claim 2. X̄ ∼ MGIG∗(Ā, p̄, �̄, �̄) and Ū ∼ MGIG∗(Ā, p̄, �̄, �̄).

Proof of Claim 2 in Case I. In this case all the random vectors X̄, Ȳ , Ū , V̄ have densities. Since X̄, Ȳ are independent
and Ū , V̄ are independent we have the following identity for the densities:

fŪ (u1, ..un)fV̄ (v1, . . . , vn) =
fX̄

(
1

u1 + v1
, . . . ,

1

un + vn

)
fȲ

(
1

u1
− 1

u1 + v1
, . . . ,

1

un

− 1

un + vn

)
∏n

j=1(uj + vj )
2u2

j

,
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which holds a.e. with respect to the Lebesgue measure L2n in R2n for uj , vj ∈ (0, ∞), j = 1, . . . , n. Using the fact
that Ȳ and V̄ have independent gamma components we obtain the following:

fŪ (u1, . . . , un)

n∏
j=1

u
pj +1
j e�−1

j uj e�−1
j u−1

j

= df X̄((u1 + v1)
−1, . . . , (un + vn)

−1)

n∏
j=1

(uj + vj )
−(pj +1)e�−1

j (uj +vj )e�−1
j (uj +vj )−1

(14)

for uj , vj ∈ (0, ∞), j = 1, . . . , n, L2n a.e., where d = const.
Denoting uj + vj = mj , j = 1, . . . , n, the above equation can be written as

fŪ (u1, . . . , un) = c(m1, . . . , mn)

n∏
j=1

gj (uj ), (15)

where c (m1, . . . , mn) is the right-hand side of (14) and

gj (uj ) = u
−pj −1
j e−�−1

j uj −�−1
j u−1

j ,

j=1, . . . , n.We can choose m1, . . . , mn sufficiently large such that (15) holds for (u1, . . . , un) ∈ (0, m1)×· · ·×(0, mn)

Ln a.e. This implies that Ū has independent GIG components Uj ∼ �−pj ,�j ,�j
, j =1, . . . , n. Dually, by (14), it follows

that X̄ has also independent GIG components Xj ∼ �−pj ,�j ,�j
, j = 1, . . . , n. �

Proof of Claim 2 in Case II. Since Ȳ ∼ MG∗(Ā, p̄, �̄) and V̄ ∼ MG∗(Ā, p̄, �̄) we have: ∀i ∃k ∈ Ai such that
Yj = (�j /�k)Yk , Vj = (�j /�k)Vk (P-a.s.) ∀j ∈ Ai . Moreover, Vj = 1/Xj − 1/(Xj + Yj ), j = 1, . . . , n which implies

�j

�k

Yk

Xk(Xk + Yk)
=

�j

�k

Yk

Xj

(
Xj + �j

�k

Yk

) (P -a.s.) ∀j ∈ Ai .

Since Yk is P-a.s. positive we obtain

Yk

(
Xk − �j

�k

Xj

)
= X2

k − �j�k

�k�j

X2
j (P -a.s.) ∀j ∈ Ai . (16)

Assume now that Xk �= (�j /�k)Xj on a set G of positive probability P. Then on G we have

Yk =
X2

k − �j�k

�k�j

X2
j

Xk − �j

�k

Xj

∀j ∈ Ai ,

which contradicts the independence of X̄ and Ȳ . Thus, Xk = (�j /�k)Xj P-a.s. ∀j ∈ Ai and by (16) �j /�k = �k/�j .
Thus, ∀i ∃k ∈ Ai such that Xj = (�j /�k)Xk (P-a.s.) ∀j ∈ Ai . Since Uj = 1/(Xj + Yj ), j = 1, . . . , n, we obtain
immediately that ∀i ∃k ∈ Ai such that Uj = (�j /�k)Uk (P-a.s.) ∀j ∈ Ai .

Now take j1 ∈ A1, . . . , jr ∈ Ar . Since (Yj1 , . . . , Yjr ) and (Vj1 , . . . , Vjr ) have independent gamma components we
get (as in case 1 above) that (Xj1 , . . . , Xjr ) and (Uj1 , . . . , Ujr ) have independent GIG components.

It means that the components of X̄ and Ū are grouped into independent subvectors, each subvector having linearly
dependent components.

Thus, X̄ ∼ MGIG∗(Ā, p̄, �̄, �̄) and Ū ∼ MGIG∗(Ā, p̄, �̄, �̄). �
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