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1. Introduction

The family of stochastic processes with uncorrelated increments, linear regressions,

and quadratic conditional variances contains a number of processes of importance.

It includes the Wiener, Poisson, Gamma and Pascal processes; for details and ad-

ditional references, see Theorem 1 of Ref. 24. It includes their free counterparts

which are Markov processes whose bivariate distributions match the bivariate dis-

tributions of free Brownian motion, free Poisson process; for details and additional

references, see Ref. 3, Theorem 4.3 of Ref. 15 and Proposition 3.4 of Ref. 4. It in-

cludes the classical version of the q-Brownian motion, see Ref. 5, and the classical

version of the q-Poisson process, see Ref. 2.

All of the above-mentioned examples share the property that the conditional

variance with respect to the past sigma field is constant. In this paper we expand this

class of processes by constructing the first example of a Markov process with linear

regressions and quadratic conditional variances which has non-constant conditional
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variances with respect to both past and future sigma fields. In a subsequent paper,12

we construct additional examples.

Throughout this paper (Xt)t≥0 is a square integrable stochastic process such

that for all t, s ≥ 0

E(Xt) = 0 , E(XtXs) = min{t, s} . (1)

Consider the σ-fields Gs,u = σ{Xt : t ∈ [0, s] ∪ [u,∞)}, Fs = σ{Xt : t ∈ [0, s]},

Gu = σ{Xt : t ∈ [u,∞)}. We assume that the process has linear regressions,

Assumption 1.1. For all 0 ≤ s < t < u,

E(Xt|Gs,u) = aXs + bXu , (2)

where

a = at,s,u =
u− t

u− s
, b = bt,s,u =

t− s

u− s
(3)

are the deterministic functions of 0 ≤ s < t < u.

We also assume that the process has quadratic conditional variances,

E(X2
t |Gs,u) = AX2

s + BXsXu + CX2
u + D + αXs + βXu , (4)

where A = At,s,u, B = Bt,s,u, C = Ct,s,u, D = Dt,s,u, α = αt,s,u, β = βt,s,u

are the deterministic functions of 0 < s < t < u. Generically, see Theorem 2.2 of

Ref. 13, conditions (1), (2) and (4) imply that there are five real parameters q, η,

θ, σ, τ such that

At,s,u =
(u− t)(u(1 + σt) + τ − qt)

(u− s)(u(1 + σs) + τ − qs)
, (5)

Bt,s,u =
(u− t)(t− s)(1 + q)

(u− s)(u(1 + σs) + τ − qs)
, (6)

Ct,s,u =
(t− s)(t(1 + σs) + τ − qs)

(u− s)(u(1 + σs) + τ − qs)
, (7)

Dt,s,u =
(u− t)(t− s)

u(1 + σs) + τ − qs
, (8)

αt,s,u =
(u− t)(t− s)

u(1 + σs) + τ − qs
×
uη − θ

u− s
, (9)

βt,s,u =
(u− t)(t− s)

u(1 + σs) + τ − qs
×
θ − sη

u− s
. (10)

Equivalently,
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Var(Xt|Gs,u)

=
(u− t)(t− s)

u(1 + σs) + τ − qs

(

1 + σ
(uXs − sXu)2

(u− s)2
+ η

uXs − sXu

u− s

+ τ
(Xu −Xs)

2

(u− s)2
+ θ

Xu −Xs

u− s
+ (1 − q)

(Xu −Xs)(sXu − uXs)

(u− s)2

)

, (11)

compare Proposition 2.5 of Ref. 15. (Recall that the conditional variance of X with

respect to a σ-field F is defined as Var(X |F) = E(X2|F)− (E(X |F))2.) In Ref. 15

we prove that the solution of Eqs. (1), (2) and (11) exists and is unique when

−1 < q ≤ 1, and σ = η = 0; it is then given by the Markov process which we called

q-Meixner process. (The case q = 1 yields Lévy processes, and was studied earlier

by several authors, see Ref. 24, and the references therein.) Due to the invariance

of this problem under the time inversion that maps (Xt) to the process (tX1/t),

processes that satisfy (11) with −1 < q ≤ 1, τ = θ = 0 are also Markov, and can

be expressed in terms of the q-Meixner processes as (tX1/t).

In this paper we consider the next simplest case, which one may call the free

bi-Poisson processes. The adjective “free” refers to our choice of q = 0 in (11). The

name “bi-Poisson” was originally motivated by the fact that under our choice of

σ = τ = 0 in (11), one has linear conditional variances under each uni-directional

conditioning; the q-Poisson processes, and in particular, the classical Poisson process

and the free Poisson process, have linear conditional variances when conditioned

with respect to the future, and constant conditional variances when conditioned

with respect to the past. After the first version of this paper was written, we no-

ticed in Ref. 16 that when q = 1 the respective bi-Poisson process can indeed be

constructed from two Poisson processes and suitable changes of time.

The role of these simplifying assumptions seems technical: σ = τ = 0 allows us

to prove that all moments are finite, see Lemma 3.2; the assumption that q = 0

allows us to guess useful algebraic identities between the orthogonal polynomials in

Proposition 2.2. These considerations lead to the following.

Assumption 1.2. For all 0 ≤ s < t < u,

Var(Xt|Gs,u)

=
(u− t)(t− s)

u

(

1 + η
uXs − sXu

u− s
+ θ

Xu −Xs

u− s
+

(Xu −Xs)(sXu − uXs)

(u− s)2

)

.

(12)

In Sec. 2 we construct the Markov process with covariances (1), linear regres-

sions (2), and conditional variances (12) for a large set of real parameters η, θ. Our

construction relies on guessing appropriate families of orthogonal polynomials and

on information about their connection coefficients. In Sec. 3 we show that the solu-

tion is unique. In Sec. 4 we point out an intriguing connection with free probability:
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we show that the one-dimensional distributions of the bi-Poisson process are closed

under the c-free convolution.

2. Existence

When η = 0, expression (12) coincides with (28) of Ref. 15 for τ = q = 0, so the

corresponding Markov process exists and is determined uniquely, see Theorem 3.5

of Ref. 15. Since the transformation Xt 7→ tX1/t switches the roles of η, θ, it follows

that the corresponding Markov process also exists when θ = 0. We may therefore

restrict our attention to the case ηθ 6= 0. The construction of the processes is based

on the idea already exploited in Ref. 15; namely, we construct the transition prob-

abilities of the suitable Markov process, by defining the corresponding orthogonal

polynomials. The construction relies on auxiliary identities between the orthogonal

polynomials, which are used to verify the martingale polynomial property (26).

2.1. One dimensional distributions

We begin by carefully examining the “candidate” for the one dimensional distribu-

tion of Xt. For t > 0, let p0(x; t) = 1, and consider the following monic polynomials

{pn(x; t) : n ≥ 1} in variable x.

xp0(x; t) = p1(x; t) , (13)

xp1(x; t) = p2(x; t) + (tη + θ)p1(x; t) + tp0(x; t) , (14)

xpn(x; t) = pn+1(x) + (tη + θ)pn(x; t) + t(1 + ηθ)pn−1(x; t) , n ≥ 2 . (15)

From the general theory of orthogonal polynomials it follows that if 1 + ηθ ≥ 0,

then pn(x; t) are orthogonal with respect to the unique probability measure πt, see

Ref. 17. We will need the following.

Lemma 2.1. If ηθ 6= 0, then

πt({x : 1 + ηx < 0}) = 0 . (16)

Proof. If 1 + ηθ = 0, then the recurrence is degenerate and the distribution is

supported at the zeros of polynomial p2(x) = x2 − (tη+ θ)x− t = (x+ t/θ)(x− θ)x;

this follows from the fact that all higher order polynomials are the multiples of p2.

The support supp(πt) = {−t/θ,−1/η} is disjoint with the open set {x : 1+ηx < 0},

ending the proof in this case.

If 1 + ηθ > 0, then (15) is a constant coefficient recurrence which has been

analyzed by several authors, see Ref. 22 and the references therein. The Cauchy

transform

G(z) =

∫

1

z − x
πt(dx)
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is given by the corresponding continued fraction,

G(z) =
1

z − t

z−(tη+θ)− t(1+ηθ)

z−(tη+θ)−
t(1+ηθ)

. . .

which after some calculation gives

G(z) =
z(1 + 2ηθ) + tη + θ −

√

(z − (tη + θ))2 − 4t(1 + ηθ)

2(1 + zη)(t+ zθ)
. (17)

The Stieltjes inversion formula gives the distribution πt as the limit in distribution

as ε→ 0+ of the absolutely continuous measures − 1
π=G(x+ iε)dx. This gives

πt(dx) =

√

4t(1 + ηθ) − (x− tη − θ)2

2π(xη + 1)(xθ + t)
1(x−tη−θ)2<4t(1+ηθ)

+ p(t)δ−t/θ + q(t)δ−1/η , (18)

where δx denotes the point mass at x. The weights at the discrete point masses are

p(t) =
−((1 + ηθ)t− θ2)/θ + ε|(1 + ηθ)t− θ2|/|θ|

2(θ − ηt)

and

q(t) =
η(t− (1 + ηθ)/η2) + ε|η||t− (1 + ηθ)/η2|

2(ηt− θ)
,

where the sign ε = ε(t, η, θ) = ±1 is selected simultaneously for both expressions by

the appropriate choice of the branch of the square root. We found that a practical

way to choose the sign is to select ε = ±1 so that both expressions give a number

in the interval [0, 1]; in our setting this determines ε uniquely for every choice of

the parameters. Denote by U the open set {x : 1+xη < 0}. It is easy to check that

the support of the absolutely continuous part of πt does not intersect U . Thus the

only possibility for the set U to carry positive πt-probability is when −t/θ ∈ U .

This is possible only if ηθ > 0 and t is large enough. The Stieltjes inversion formula

gives the weight of the point mass at −t/θ as

p(t) =
(θ2 − (1 + ηθ)t)+

θ2 − tηθ
.

This shows that the point −t/θ carries positive probability p(t) only for t < θ2

1+ηθ .

On the other hand, −t/θ ∈ U only for t > θ/η. Since trivially θ/η ≥ θ2

1+ηθ , this

shows that πt(U) = 0.
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2.2. Transition probabilities

Fix 0 < s < t, and let x ∈ R be such that 1 + xη ≥ 0. Consider monic polynomials

in variable y defined by the three-step recurrence

Q0(y;x, t, s) = 1 ,

Q1(y;x, t, s) = y − x ,

yQ1(y;x, t, s) = Q2(y;x, t, s)+((t−s)η+θ)Q1(y;x, t, s)+(t−s)(1+xη)Q0(y;x, t, s) ,

and for n ≥ 2 by the constant coefficients recurrence

yQn(y;x, t, s) = Qn+1(y;x, t, s)

+ (tη + θ)Qn(y;x, t, s) + t(1 + ηθ)Qn−1(y;x, t, s) . (19)

Notice that recurrence (15) is a special case of (19) corresponding to x = s = 0. We

want these polynomials to be orthogonal with respect to the conditional distribution

L(Xt|Xs).

To this end, we define Ps,t(x, dy) as the (unique) probability measure which

makes the polynomials {Qn(y;x, t, s) : n ∈ N} orthogonal. This is possible when-

ever 1 + ηθ ≥ 0 and 1 + xη ≥ 0; the latter holds true for all x from the support

of the probability measure πs(dy) = P0,s(0, dy), see Lemma 2.1. Since the coeffi-

cients of the three-step recurrence (19) are bounded, it is well known that measures

Ps,t(x, dy) have bounded support.

The next step is to prove that Ps,t(x, dy) form a consistent family of measures,

so that they indeed define the transition probabilities of the Markov chain which

starts at the origin. To this end, we need the following algebraic relations between

the polynomials. These relations are a more complicated version of Theorem 1 of

Ref. 14 and Lemma 3.1 of Ref. 15.

Proposition 2.2. For n ≥ 0

Qn(z;x, u, s) = Qn(y;x, t, s) +

n−1
∑

k=0

Bk(y;x, t, s)Qn−k(z; y, u, t) , (20)

where B0 = 1 and

B1(y;x, t, s) = Q1(y;x, t, s) − (t− s)ηB0 ,

Bk(y;x, t, s) = Qk(y;x, t, s) − tηBk−1(y;x, t, s) , k = 2, 3, . . . .
(21)

In addition, for n ≥ 1

Qn(y;x, t, s) =

n
∑

k=0

B̃n−k(x; s)(pk(y; t) − pk(x; s)) , (22)

where B̃k(x; s) = Bk(0;x, 0, s) are linear (affine) functions in variable x.
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Proof. Let

φ(ζ; y, x, t, s) =

∞
∑

n=0

ζnQn(y;x, t, s)

be the generating function of Qn. Since

φ(ζ; y, x, t, s) = 1 + ζ
∞
∑

n=0

ζnQn+1(y;x, t, s) ,

a calculation based on recurrence (19) shows that

φ(ζ; y, x, t, s) =
1 + ζ(tη + θ − x) + ζ2(s+ syη − txη + tηθ)

1 + ζ(tη + θ − y) + ζ2t(1 + ηθ)
.

From (21) we get a similar expression for the generating function of Bn. Namely,

ψ(ζ; y, x, t, s) =

∞
∑

n=0

ζnBn(y;x, t, s) =
φ(ζ; y, x, t, s) + ηsζ

1 + ηtζ
.

This gives

ψ(ζ; y, x, t, s) =
1 + ζ(sη + θ − x) + s(1 + ηθ)ζ2

1 + ζ(tη + θ − y) + t(1 + ηθ)ζ2
.

It is now easy to verify that the two generating functions satisfy the identity:

φ(ζ; z, x, u, s) − φ(ζ; y, x, t, s) = ψ(ζ; y, x, t, s)(φ(ζ; z, y, u, t) − 1) , (23)

which implies (20). Since ψ(ζ, y, x, t, s)ψ(ζ, x, y, s, t) = 1 from (23) we get

φ(ζ; z, y, u, t) = 1 + ψ(ζ;x, y, s, t)(φ(ζ; z, x, u, s) − φ(ζ; y, x, t, s)) .

Since pn(x, t) = Qn(x; 0, t, 0) setting x = 0, s = 0 proves (22).

We now follow the argument from Proposition 3.2 of Ref. 15 and verify that

probability measures Ps,t(x, dy) are the transition probabilities of a Markov process.

Let U = {x : 1 + ηx ≥ 0}.

Proposition 2.3. If 0 ≤ s < t < u, 1 + ηθ ≥ 0, and x ∈ supp(πs) then

Ps,u(x, ·) =

∫

U

Pt,u(y, ·)Ps,t(x, dy) . (24)

Proof. Since (19) is a constant-coefficient recurrence, the explicit expression for

Ps,u(x, ·) is known; in particular U 3 x 7→ Ps,u(x, U) is a continuous function. We

first prove that (24) holds true for s = 0, x = 0. Let ν(A) =
∫

U Pt,u(y,A)πt(dy). To

show that ν(dz) = πu(dz), we verify that the polynomials Qn(z; 0, u, 0) = pn(z;u)

are orthogonal with respect to ν(dz). This is established by applying (20) and

Lemma 2.1 as follows. By (20) we have
∫

R

pn(z;u)ν(dz) =

∫∫

U×R

pn(z;u)Pt,u(y, dz)πt(dy)

=

∫∫

U×R

pn(y; t)Pt,u(y, dz)πt(dy)
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+

∫∫

U×R

n−1
∑

k=0

Bk(y; 0, t, 0)Qn−k(z; y, u, t)Pt,u(y, dz)πt(dy)

=

∫

U

pn(y; t)πt(dy)

+

∫

U

n−1
∑

k=0

Bk(y; 0, t, 0)

(
∫

R

Qn−k(z; y, u, t)Pt,u(y, dz)

)

πt(dy) .

From p0 = 1 we see that
∫

U
pn(y; t)πt(dy) =

∫

R
pn(y; t)πt(dy) = 0 for n ≥ 1;

similarly
∫

R
Qj(z; y, u, t)Pt,u(y, dz) = 0 for j ≥ 1. Therefore,

∫

R
pn(z;u)ν(dz) = 0

for all n ≥ 1. Since polynomials {pn} satisfy the three-step recurrence (15), this

shows that ν is their orthogonality measure. By uniquencess of the moment problem,

ν = πu.

From the fact that (24) holds for s = 0, x = 0, we deduce that

Ps,t(x, U) = 1 for all x ∈ supp(πs) . (25)

To see this, we use the already established part of (24) as follows. Lemma 2.1 implies

that

1 = πt(U) =

∫

R

Ps,t(x, U)πs(dx) ,

so Ps,t(x, U) = 1 on the set of x of πs-probability one. However, since Ps,t(x, U) is

a continuous function of x, the conclusion follows for all x ∈ supp(πs).

To end the proof of (24), left ν(A) =
∫

U
Pt,u(y,A)Ps,t(x, dy). We will show that

ν(dz) = Ps,u(x, dz) by verifying that the polynomials Qn(z;x, u, s) are orthogonal

with respect to ν(dz). Polynomials {Qn} satisfy the three-step recurrence (19); it

suffices therefore to show that for n ≥ 1 these polynomials integrate to zero. Since
∫

R
Qk(z; y, u, t)Pt,u(y, dz) = 0 for k ≥ 1, by (20) we have

∫

R

Qn(z;x, u, s)ν(dz)

=

∫

U

Qn(y;x, t, s)Ps,t(x, dy)

+

n−1
∑

k=0

∫

U

Bk(y;x, t, s)

(
∫

R

Qn−k(z; y, u, t)Pt,u(y, dz)

)

Ps,t(x, dy)

=

∫

U

Qn(y;x, t, s)Ps,t(x, dy) .

By (25), this equals to
∫

R
Qn(y;x, t, s)Ps,t(x, dy) = 0, ending the proof.

For 1+ ηθ ≥ 0, let (Xt) be the Markov process with the transition probabilities

Ps,t(x, dy), X0 = 0. The following martingale polynomial property holds, compare

Sec. 2.5 of Ref. 1 and Proposition 3.3 of Ref. 15.

In
fi

n.
 D

im
en

s.
 A

na
l. 

Q
ua

nt
um

. P
ro

ba
b.

 R
el

at
. T

op
. 2

00
7.

10
:2

77
-2

91
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 U

N
IV

E
R

SI
T

Y
 O

F 
C

IN
C

IN
N

A
T

I 
on

 0
9/

20
/1

2.
 F

or
 p

er
so

na
l u

se
 o

nl
y.



June 7, 2007 12:1 WSPC/102-IDAQPRT 00273

Bi-Poisson Process 285

Lemma 2.4. For t > s, n ∈ N we have

E(pn(Xt; t)|Fs) = pn(Xs; s) . (26)

Proof. By definition, for n ≥ 1 we have E(Qn(Xt;Xs, t, s)|Xs) = 0. Since

p1(x; t) = x, and Q1(y;x, t, s) = y − x, by the Markov property (26) holds true

for n = 1. Suppose that (26) holds true for all n ≤ N . Then (22) implies

0 = E(QN+1(Xt;Xs, t, s)|Xs) = B̃0(Xs; s)(E(pN+1(Xt; t)|Xs) − pN+1(Xs; s)) .

Since B̃0 = 1, this proves that E(pN+1(Xt; t)|Xs) = pN+1(Xs; s), which by the

Markov property implies (26) for N + 1.

Theorem 2.5. Suppose 1 + ηθ ≥ 0 and (Xt) is the Markov process with X0 = 0

and with the transition probabilities Ps,t(x, dy) defined via (19). Then (1), (2) and

(12) hold true.

Proof. Condition (1) holds true. Indeed, E(Xt) =
∫

p1(x; t)p0(x; t)πt(dx) = 0. Let

s < t. From (26) we get E(XsXt) = E(XsE(p1(Xt; t)|Fs)) =
∫

p2
1(x; s)πs(dx) =

∫

(p2(x; s)+(sη+θ)p1(x; s)+s)πs(dx) = s. Since random variables Xt are bounded,

polynomials are dense in L2(Xs, Xu). Thus by the Markov property to prove (2)

we only need to verify that

E(pn(Xs; s)Xtpm(Xu;u))

= at,s,uE(Xspn(Xs; s)pm(Xu;u)) + bt,s,uE(pn(Xs; s)Xupm(Xu;u)) (27)

for all m, n ∈ N and 0 < s < t. For the proof of (12), we need to verify that for any

n, m ≥ 1 and 0 < s < t

E(pn(Xs; s)X
2
t pm(Xu;u))

= AE(X2
s pn(Xs; s)pm(Xu;u)) + BE(Xspn(Xs; s)Xupm(Xu;u))

+CE(pn(Xs; s)X
2
upm(Xu;u)) + αE(Xspn(Xs; s)pm(Xu;u))

+βE(pn(Xs; s)Xupm(Xu, u)) + DE(pn(Xs; s)pm(Xu;u)) , (28)

where A, B, C, D, α, β are given by Eqs. (5)–(10) with σ = τ = q = 0; recall that

(15) implies E(p2
1(Xs; s)) = s, and for n ≥ 1

E(p2
n+1(Xs; s)) = s(1 + ηθ)E(p2

n(Xs; s)) , (29)

see p. 19 of Ref. 17. An efficient way to verify (27) and (28) is to use generating

functions. For s ≤ u, let

φ0(z1, z2, s) =

∞
∑

m,n=0

zn
1 z

m
2 E(pn(Xs; s)pm(Xu;u)) .
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From (26) it follows that φ0(z1, z2, s) does not depend on u, and from (29) it

follows that

φ0(z1, z2, s) =
1 − z1z2ηθs

1 − z1z2s(1 + ηθ)
.

Consider now the generating function

φ1(z1, z2, s, t) =

∞
∑

m,n=0

zn
1 z

m
2 E(pn(Xs; s)Xtpm(Xu;u)) .

From (26) and (15) we get

φ1(z1, z2, s, t) =

∞
∑

n=0

zn
1E

(

pn(Xs; s)

(

Xt + z2Xtp1(Xt; t) +

∞
∑

m=2

zm
2 Xtpm(Xt; t)

))

=

∞
∑

n=0

zn
1E(pn(p1 + z2(p2 + (tη + θ)p1 + tp0)))

+
∞
∑

n=0

zn
1E

(

pn

(

∞
∑

m=2

zm
2 (pm+1 + (tη + θ)pm + t(1 + ηθ)pm−1)

))

.

Thus

φ1(z1, z2, s, t) =

(

1

z2
+ tη + θ

)

(φ0(z1, z2, s)− 1) + z2t(1 + ηθ)φ0(z1, z2, s)− ηθtz2 ,

which gives

φ1(z1, z2, s, t) =
sz1 + tz2 + sz1z2(tη + θ)

1 − sz1z2(1 + ηθ)
.

A calculation verifies that

φ1(z1, z2, s, t) = at,s,uφ1(z1, z2, s, s) + bt,s,uφ1(z1, z2, s, u) ,

(see (3)); thus (27) follows. Finally, for s ≤ t1 ≤ t2 ≤ u consider the generating

function

φ2(z1, z2, s, t1, t2) =
∞
∑

m,n=0

zn
1 z

m
2 E(pn(Xs; s)Xt1Xt2pm(Xu;u)) .

Another calculation based on (26) and (15) gives

φ2(z1, z2, s, t1, t2)

=

(

1

z2
+ t2η + θ

)

(φ1(z1, z2, s, t1) − φ1(z1, 0, s, t1))

+ z2t2(1 + ηθ)φ1(z1, z2, s, t1) − z1z2st2ηθ .
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A computer-assisted calculation now verifies that

φ2(z1, z2, s, t, t)

= Aφ2(z1, z2, s, s, s) + Bφ2(z1, z2, s, s, u) + Cφ2(z1, z2, s, u, u) + Dφ0(z1, z2, s)

+αφ1(z1, z2, s, s) + βφ1(z1, z2, s, u) ,

which proves (28).

3. Uniqueness

We first state the main result of this section.

Theorem 3.1. Suppose (Xt)t≥0 is a centered square-integrable stochastic process

with covariance (1). If (Xt) satisfies (2) and (12) with 1 + ηθ ≥ 0, then (Xt) is the

Markov process, as defined in Theorem 2.5.

The proof of Theorem 3.1 is based on the method of moments, and we begin by

verifying that the moments exist.

Lemma 3.2. Under the assumptions of Theorem 3.1 E(|Xt|
p) <∞ for all p > 0.

Proof. This result follows from Corollary 4 of Ref. 10. To use this result, fix t1 < t2
and let ξ1 = t

−1/2
1 Xt1 , ξ2 = t

−1/2
2 Xt2 . Then their correlation ρ = E(ξ1ξ2) =

√

t1/t2 ∈ (0, 1). It remains to notice that E(ξi|ξj) = ρξj and the variances

Var(ξi|ξj) = 1 − ρ2 + ajξj for some aj ∈ R; these relations follow from taking

the limits s → 0 or u → ∞ in (2) and (12). Thus by Corollary 4 of Ref. 10,

E(|ξ1|
p) <∞ for all p > 0.

The next result is closely related to Proposition 3.1 of Ref. 11 and Theorem 2

of Ref. 24.

Lemma 3.3. Suppose Xt has covariance (1), and satisfies conditions (2) and (12).

Then for every k ≥ 0 and 0 ≤ s < t there exists a monic polynomial pk(x) of degree

k with coefficients determined uniquely from s, t and the parameters in (12) such

that E(Xk
t |Fs) = pk(Xs).

Proof. By Lemma 3.2, E(|Xn
t |) < ∞ for all n. We proceed by induction on the

degree k of the monomial. Clearly, E(Xk
t |Fs) is a unique monic polynomial of

degree k when k = 0, 1. Suppose that the conclusion holds true for all s < t and all

k ≤ n for some integer n ≥ 1. Multiplying (2) by Xn
u and applying to both sides

conditional expectation E(·|Fs), we get

E(XtE(Xn
u |Ft)|Fs) = aXsE(Xn

u |Fs) + bE(Xn+1
u |Fs) .

Using the induction assumption, we can write this equation as

E(Xn+1
t |Fs) = aXn+1

s + bE(Xn+1
u |Fs) + fn(Xs) , (30)
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where fn is a unique polynomial of degree at most n. Multiplying (4) by Xn−1
u and

applying E(·|Fs) to both sides, we get

E(X2
t E(Xn−1

u |Ft)|Fs) = AX2
sE(Xn−1

u |Fs)+BXsE(Xn
u |Fs)+CE(Xn+1

u |Fs)+· · · .

Using the induction assumption, we can write this equation as

E(Xn+1
t |Fs) = (A + B)Xn+1

s + CE(Xn+1
u |Fs) + gn(Xs) , (31)

where gn is a unique polynomial of degree at most n. Since b−C 6= 0, subtracting

(30) from (31) we get

E(Xn+1
u |Fs) =

a −A−B

C− b
Xn+1

s + hn(Xs) ,

where hn is a (unique) polynomial of degree at most n. From (5)–(7) we get

a −A−B

C− b
=

1 + σu

1 + σs
= 1 ,

as σ = 0. Thus E(Xn+1
t |Fs) = Xn+1

s + hn(Xs) is a monic polynomial of degree

n+ 1 in variable Xs with uniquely determined coefficients.

Proof of Theorem 3.1. Denote by (Yt) the Markov process from Theorem 2.5.

We will verify by the method of moments that (Xt) and (Yt) have the same finite

dimensional distributions.

Process (Xt) satisfies the assumptions of Lemma 3.3; by Theorem 2.5, process

(Yt) also satisfies the assumptions of Lemma 3.3. Therefore, for n ≥ 0

E(Y n
t |Fs) = Y n

s + hn−1(Ys) , (32)

E(Xn
t |Fs) = Xn

s + hn−1(Xs) (33)

with the same polynomial hn−1. From this, we use induction to deduce that all

mixed moments are equal. Taking s = 0, from (32) and (33) we see that E(Xn
t ) =

E(Y n
t ) for all n ∈ N, t > 0. Suppose that for some k ≥ 1 and all 0 < t1 < t2 <

· · · < tk, all n1, . . . , nk ∈ N we have

E(Xn1
t1 X

n2
t2 · · ·Xnk

tk
) = E(Y n1

t1 Y
n2
t2 · · ·Y nk

tk
) .

Then from (32) and (33), and the induction assumption for any t > tk and n ∈ N

we get

E(Xn1
t1 X

n2
t2 · · ·Xnk

tk
Xn

t ) = E(Xn1
t1 X

n2
t2 · · ·Xnk

tk
E(Xn

t |Ftk
))

= E(Xn1
t1 X

n2
t2 · · ·X

nk−1

tk−1
Xnk

tk
(Xn

tk
+ hn−1(Xtk

)))

= E(Y n1
t1 Y

n2
t2 · · ·Y

nk−1

tk−1
Y nk

tk
(Y n

tk
+ hn−1(Ytk

)))

= E(Y n1
t1 Y

n2
t2 · · ·Y nk

tk
E(Y n

t |Ftk
)) = E(Y n1

t1 Y
n2
t2 · · ·Y nk

tk
Y n

t ) .

Since t > tk and n ∈ N are arbitrary and the random variables are bounded, this

shows that all mixed moments of the (k+1)-dimensional distributions match. Thus

(Xt) is a version of the Markov process (Yt).
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Corollary 3.4. Suppose (Xt) is a Markov process from Theorem 2.5 with parame-

ters η = θ. Then the process (tX1/t)t>0 has the same finite dimensional distributions

as process (Xt)t>0.

Proof. It is well known that (1), and hence (2), are preserved by the transformation

(Xt) 7→ (tX1/t). A calculation shows that if η = θ, then the conditional variance

(12) is also preserved by this transformation. Thus by Theorem 3.1, both processes

have the same distribution.

We remark that Corollary 3.4 gives an example of a Markov process with time-

inversion property which is not covered by the criterion in Ref. 18. Other lesser

known examples of Markov processes with time-inversion property are classical

versions of the q-Brownian motions for −1 ≤ q ≤ 1.

4. Relations to Noncommutative Probability

The c-convolution Fc was introduced in Ref. 7 and studied in Refs. 6, 8, 9, 20 and

21. It is a binary operation on the pairs of probability measures (µ, ν). For our

purposes the most convenient definition is the analytic approach from Theorem 5.2

of Ref. 6. According to this result, the c-convolution (µ, ν) of pairs of probability

measures (µ1, ν1) and (µ2, ν2) can be defined using the Cauchy transforms

Gj(z) =

∫

1

z − x
µj(dx) , gj(z) =

∫

1

z − x
νj(dx) , j = 1, 2 .

Let kj(z) be the inverse function of gj(z) in a neighborhood of ∞, and define

rj(z) = kj(z) − 1/z . (34)

On the second component the c-convolution acts as the free convolution, ν = ν1�ν2.

Recall that the free convolution ν of measures ν1, ν2 is the unique probability

measure with the Cauchy transform g(z) which solves the equation:

g(z) =
1

z − r1(g(z)) − r2(g(z))
,

see Ref. 23. To define the action of the c-convolution on the first component, let

Rj(z) = kj(z) − 1/Gj(kj(z)) .

The first component of the c-convolution is defined as the unique probability mea-

sure µ with the Cauchy transform

G(z) =
1

z −R1(g(z)) −R2(g(z))
.

Functions r, R define the c-free cumulants with interesting combinational interpre-

tation, see Ref. 7. We write

(µ, ν) = (µ1, ν1)Fc(µ2, ν2) .
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Let (Xt) be the Markov process from Theorem 2.5 with parameters 1 + ηθ ≥ 0. As

previously, denote by πt the distribution of Xt.

Proposition 4.1. For every t ≥ 0, there exists a probability measure νt such that

the pairs (πt, νt) form a semigroup with respect to the c-convolution,

(πt+s, νt+s) = (πt, νt)Fc(πs, νs) .

Proof. Fix η, θ. Let (Nt) be the Markov process from Theorem 2.5 taken with

parameters η = 0, and the value of θ as fixed above. Then (Nt) is obtained from

the free Poisson process with parameter λ = 1/θ2 by centering and multiplication

by θ. Let νt be the distribution of the random variable Nt(1+ηθ) + tη. It is easy to

verify that (34) gives rt(z) = t z+η
1−zθ ; clearly, rt+s = rt + rs and measures νt form a

semigroup with respect to the free convolution. The Cauchy transform Gt(z) of πt

is given by Eq. (17). Simplifying the expression Rt(z) = kt(z)− 1/Gt(kt(z)), where

kt(z) = rt(z) + 1/z we get

Rt(z) =
tz

1 − zθ
.

Since Rt+s(z) = Rt(z) +Rs(z), this verifies the c-convolution property for πt.

Remark 4.2. Measures πt for θ = 1 occur also in the Poisson Limit Theorem

for c-convolutions; up to centering and reparametrization, the Cauchy transform

derived on p. 380 of Ref. 6 is equivalent to (17).

Remark 4.3. Krystek and Yoshida21 generalize the t-transformation of Ref. 9 to a

two-parameter operation and define the corresponding t-deformed free convolution

that acts on single probability measures rather than on pairs of measures. A version

of Proposition 4.1 that uses this t-deformed free convolution holds true, at least

when θ = 1. For further related generalizations see Ref. 19.

Remark 4.4. When η = θ = ρ, the law πl of X1 is the “free game law”; to see

this, compare (17) with t = 1, to formula (2) in Ref. 4 with a = 2ρ, b = ρ2. This

is a “free analogue” of the classical case16 with q = 1, where X1 has the centered

gamma law.
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9. M. Bożejko and J. Wysoczański, Remarks on t-transformations of measures and con-
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